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Abstract

We introduce Extended Property Paths (EPPs), a significant
enhancement of SPARQL property paths. EPPs allow to cap-
ture in a succinct way a larger class of navigational queries
than property paths. We present the syntax and formal seman-
tics of EPPs and introduce two different evaluation strategies.
The first is based on an algorithm implemented in a custom
query processor. The second strategy leverages a translation
algorithm of EPPs into SPARQL queries that can be executed
on existing SPARQL processors. We compare the two evalu-
ation strategies on real data to highlight their pros and cons.

1 Introduction
Motivated by the spread of graph-like data, the area of graph
databases has received renewed attention. SPARQL, the
W3C standard query language for data in RDF, has recently
been enhanced with property paths (Harris and Seaborne
2013) to support graph navigation capabilities. The regular-
expression-like syntax of property paths enables to write
SPARQL navigational queries in a more succinct way and
extend the matching of triple patterns to arbitrary length
paths.

However, property paths offer limited navigation capabil-
ities; queries like “Find my exclusive friends”, that is, my
friends that are not friend of any of my friends, cannot be ex-
pressed. To enhance the expressive power of property paths
and enable to write more navigational queries in a succinct
way, we introduce Extended Property Paths (EPPs). In de-
signing EPPs we identified a core of new features and inves-
tigated how to make available such features; indeed, one can
devise a custom query processor like in (Alkhateeb, Baget,
and Euzenat 2009; Fionda and Pirrò 2013) and/or leverage
existing (SPARQL) processors. The goal of this paper is to
discuss the design and implementation of EPPs.
Related Work. Graph query languages have been deeply
studied (Wood 2012). It emerged that for certain classes
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of languages, like Conjunctive Regular Path Queries (CR-
PQs) (Barceló et al. 2012; Alkhateeb, Baget, and Euzenat
2009), the evaluation problem can become too expensive,
making the class unattractive for practical purposes. Hence,
restricted classes of languages like acyclic CRPQs and
Nested Regular Expressions (NREs) (Pérez, Arenas, and
Gutierrez 2010) have been proposed. NREs are at the core of
navigational languages for RDF such as nSPARQL (Pérez,
Arenas, and Gutierrez 2010) and NautiLOD (Fionda, Gutier-
rez, and Pirrò 2012). Languages like TriAL (Libkin, Reut-
ter, and Vrgoč 2013), TriQ (Arenas, Gottlob, and Pieris
2014) and NEMODEQ (Rudolph and Krötzsch 2013) are
grounded on (extensions of) Datalog. Other expressive lan-
guages like SPARQLeR (Kochut and Janik 2007) and ex-
tended CRPQs (Barceló et al. 2012) focus on discovering
paths.

In terms of expressiveness, Barceló et al. (Barceló, Pérez,
and Reutter 2012) showed that NREs cannot express queries
involving, for instance, path conjunction. SPARQL prop-
erty paths are even less expressive than NREs because of
the lack of nesting and tests also within (arbitrary length)
paths. TriAL can capture queries not captured by NREs
and nSPARQL. However, NREs/nSPARQL queries can be
evaluated in linear time. Arenas et al. (Arenas, Gott-
lob, and Pieris 2014) studied the relationships between
TriQ, TriAL and NEMODEQ in terms of Datalog± pro-
grams (Cali et al. 2010). Fletcher et al. (Fletcher et al. 2011)
compared the expressiveness of navigational languages by
considering different sets of features. We compare EPPs
with closely-related languages in Section 3.3.

EPPs extend the expressive power of SPARQL property
paths and NREs-based languages with new features such as
path conjunction, path negation and powerful types of tests.
These features are partially available in the W3C standard
language XPath 2.0 used to query tree-like data (Berglund
et al. 2010). From a concrete point of view, with EPPs we
faced two main challenges: (i) how to make EPPs a con-
servative extension of SPARQL property paths; (ii) how to
make EPPs readily available in existing SPARQL proces-
sors.

1.1 EPPs by Example
We now give an overview of EPPs via a concrete example.
The syntax and semantics of EPPs will be discussed in detail
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Figure 1: An example of RDF graph.

in Section 2.
Example 1 (Extended Property Paths). By considering
the graph in Fig. 1, find pairs of nodes1 (ni, nj) simultane-
ously connected via two paths: one labeled as p5 and the
other labeled as p10; moreover, from nj an edge labeled as
p6 that leads to nodes having value <6 must not exists.
NREs-based languages (and PPs) cannot express such re-
quest due to the lack of path conjunction/negation. With
EPPs it can be expressed as:

?x ((p5&p10)∼(p5&&TP( o,p6&&T( o<6)))) ?y

The path conjunction & enables to check that both paths p5

and p10 connect ni with nj , while path negation ∼ enables
to discard from the set of nodes satisfying the first path those
that also satisfy the second one. Note also that SPARQL
property paths and NREs-based languages lack tests like TP,
to check the existence of a path (via p6) to nodes having
value <6.

The evaluation of the EPP expression with the algorithm
described in Section 3 starts from all the bindings of the vari-
able ?x; we discuss the case ?x→n0. From n0, the evalu-
ation of the first path (p5&p10) enables to reach n3. The
second path (negated via ∼) is evaluated again from n0 and
consists in the logical AND (via &&) of two tests. The first
test checks for the existence of an edge p5, which leads to
n3. The second test (i.e., TP) includes: (i) the position in
the RDF triple from which the test starts; (ii) a path. The
position symbol o means that the test starts from the ob-
ject of the previous navigational step, that is, the object of
the triple (n0, p5, n3). From n3, another logical AND
of two tests is evaluated. The first one checks the existence
of an edge p6 and enables to reach the node 6. The second
AND, which starts from the object of the previous step (i.e.,
6), checks that the value is <6; in this case the test fails and
n3 is not included in the results of the negated path. Con-
versely, n4 satisfies the test, it is included in the results of the
negated path and thus, it is not a valid binding for ?y when
considering ?x→n0.

Overall, for ?x→ n0 we get ?y→ n3 meaning that from
n0 the navigation of the graph according to the expression
enabled to reach n3.

We have also devised a translation procedure (see Sec-
tion 3.2) of EPPs into SPARQL. The translation of Exam-
ple 1 is shown in Fig. 2; here, ?o 0 0 1 0 1 0 is a variable

1The prefix ex: is omitted for sake of space.

automatically generated by the translation. The advantage
of the translation is that the query in Fig. 2 can be executed
on existing SPARQL processors. From the syntactic point
of view, the advantage of using EPPs to write navigational
queries instead of writing them directly into pure SPARQL
is that the same request can be expressed more succinctly
and without the need to deal with intermediate variables.

SELECT DISTINCT ?x ?y WHERE {
{ ?x p5 ?y. ?x p10 ?y. }
MINUS
{ ?x p5 ?y.

FILTER EXISTS
{ ?y p6 ?o_0_0_1_0_1_0.

FILTER( ?o_0_0_1_0_1_0 < 6 ) }}}

Figure 2: Translation into SPARQL of Example 1.

1.2 Contributions and Organization
The contributions of this paper are the following: (i) EPPs a
language more expressive than NREs-based languages and
SPARQL property paths; (ii) a concise syntax and a formal
semantics for EPPs (iii) an algorithm for the evaluation of
EPPs and an implementation in a custom query processor;
(iv) a formalization and implementation of a translation pro-
cedure of EPPs into SPARQL; (v) a comparison between the
custom query processor and Jena ARQ (for EPPs translated
into SPARQL).

EPPs can be seen as a language per se, which goes be-
yond NREs-based languages and SPARQL property paths.
Moreover, EPPs serve also the purpose of capturing a larger
fragment of pure SPARQL navigational queries in a suc-
cinct way. To the best of our knowledge, EPPs are the first
proposal covering both aspects.

The remainder of the paper is organized as follows. Sec-
tion 2 presents EPPs; syntax and semantics. Section 3 intro-
duces an evaluation algorithm for EPPs and the translation
of EPPs into SPARQL. The implementation and evaluation
of EPPs are discussed in Section 4. We conclude in Sec-
tion 5.

2 Extended Property Paths
Let U (URIs), B (blank nodes), L (literals), and V (vari-
ables, starting withe the ’?’ symbol) be four pairwise dis-
joint, countably infinite sets. An RDF triple is a tuple of the
form 〈s, p, o〉 ∈ (U∪B)×U×(U∪B∪L). An RDF graph G
is a set of triples. We indicate by nodes(G) ⊆ U∪B∪L the
set of URIs, blank nodes and literals that appear as subject
or object of some triples in G. Moreover, T ⊆ U ∪ B ∪ L is
the set of terms of G.

2.1 Extended Property Paths Syntax
The syntax of EPPs is reported in Table 1.
Commonalities with SPARQL property paths (PPs)
The first line of the syntax covers the syntax of
PPs (Harris and Seaborne 2013) (section 9.1); moreover,
(Negated)PropertySets like ‘!(u1 ||...ˆun’‘)’ that are
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epp ::= ‘ˆ’ epp | epp ‘+’ | epp ‘?’ | epp‘∗’ | epp ‘/’ epp | epp ‘|’ epp | ‘(’ epp ‘)’ |
[pos]1 test [pos]2 | epp ‘&’ epp | epp ‘∼’ epp

test ::= ‘!’ test | test ‘&&’ test | test ‘||’ test | ‘(’ test ‘)’ | base
base ::= uri | ‘TP(’pos ‘,’ epp ‘)’ | ‘T(’EExp‘)’

EBuiltInCall ::= BuiltInCall | pos
pos ::= ‘ s’ | ‘ p’ | ‘ o’

Table 1: Syntax of EPPs expressions. 1If omitted is s; 2If omitted is o.

R1 EJˆeppKG :=
{
(u, v) : (v, u) ∈ EJeppKG

}
R2 EJepp1/epp2KG :=

{
(u, v) : ∃w (u, w) ∈ EJepp1KG ∧ (w, v) ∈ EJepp2KG

}
R3 EJ(epp)∗KG := {(u, u) | u ∈ nodes(G)} ∪

⋃∞
i=1 EJeppiKG | epp1 = epp ∧ eppi = eppi−1/epp

R4 EJ(epp)+KG :=
⋃∞

i=1 EJeppiKG | epp1 = epp ∧ eppi = eppi−1/epp

R5 EJ(epp)?KG := {(u, u) | u ∈ nodes(G)} ∪ EJeppKG

R6 EJ(epp1|epp2)KG :=
{
(u, v) : (u, v) ∈ EJepp1KG ∨ (u, v) ∈ EJepp2KG

}
R7 EJ(epp1&epp2)KG :=

{
(u, v) : (u, v) ∈ EJepp1KG ∧ (u, v) ∈ EJepp2KG

}
R8 EJ(epp1 ∼ epp2)KG :=

{
(u, v) : (u, v) ∈ EJepp1KG ∧ (u, v) /∈ EJepp2KG

}
R9 EJpos1 test pos2KG :=

{
(Pm(pos1, t), Pm(pos2, t))) | triple t ∈ G ∧ ET JtestKGt

}
R10 ET JuKGt := Pm( p, t) = u

R11 ET JT(EExp)KGt := EvalSPARQLBuilt-in(EExp, t)

R12 ET JTP(pos, epp) KGt := ∃v : (Pm(pos, t), v) ∈ EJeppKG

R13 ET Jtest1&&test2 KGt := ET Jtest1 KGt ∧ ET Jtest2 KGt
R14 ET Jtest1||test2 KGt := ET Jtest1 KGt ∨ ET Jtest2 KGt
R15 ET J!test KGt := ¬ET Jtest KGt

Table 2: Formal semantics of EPPs expressions.

a combination of forward/reverse predicates in a (negated)
set are expressible in the EPPs syntax via the productions
test → base → u. Note that EPPs use the symbol ‘||’
while PPs use ‘|’.
New features introduced by Extended Property Paths
The following additional features are introduced: path con-
junction (epp1&epp2), path negation (epp1∼epp2) and
different types of tests (test) within a path, also by speci-
fying the starting and ending positions (pos). EPPs enable
to test from each of the subject, predicate and object posi-
tions in RDF triples, mapped in the syntax to s, p and o,
respectively. Positions do not need to be always specified;
by default a test starts from the subject ( s) and ends on the
object ( o) of a triple.

Tests (test) can be of different types and can be com-
bined by using the logical operators AND (&&), OR (||) and
NOT (!). A test can be a simple check for the existence of
a URI or a nested EPP, i.e., TP(pos,epp), which corre-
sponds to the evaluation of epp starting from a position pos
(of the last triple traversed) and whose evaluation returns
true if, and only if, there exists at least one node that can be
reached via epp. A base test (production base) can be of
type T, which is a SPARQL boolean expression; here, EExp
(not reported here for sake of space) extends the production
[110] in the SPARQL grammar2 where BuiltInCall3

is substituted with EBuiltInCall , which enables to
use in EPPs tests available in SPARQL as built-in condi-
tions also augmented with positions (pos). Built-in condi-

2http://www.w3.org/TR/sparql11-query/\#rExpression
3http://www.w3.org/TR/sparql11-query/\#rBuiltInCall

tions are constructed using elements of the set U ∪ L and
constants, logical connectives (¬, ∧, ∨), (in)equality sym-
bol(s) (=,<,>,≤,≥), unary (e.g., isURI,) and binary (e.g.,
STRSTARTS) functions.

2.2 Extended Property Paths Semantics
The semantics (shown in Table 2) for the interpretation of
an EPP expression epp on a graph G uses two functions: (i)
EJeppKG defined as a binary relation (u,v) such that u and
v are nodes in G and v is reachable from u via a path in G
satisfying epp; and (ii) ET Jtest KGt defined as a boolean
function, which evaluates true if, and only if, the triple t
satisfies the test test. The semantics also uses the position
mapping function Pm defined as follows:

Definition 2 (Position mapping function). Let
t=〈x,y,z〉 be a triple pattern, {x,y,z} ⊆ T ∪ V .
The position mapping function Pm(pos,t) is defined as:
(i) Pm( s,t) = x, (ii) Pm( p,t) = y (iii) Pm( o,t) = z.

Pm selects one among the subject, predicate and object of
a triple on the basis of the value of pos. Consider the
triple 〈u1,p1,u2〉 and the test T( p=p1); this instantiates
Pm as Pm( p, 〈u1,p1,u2〉)=p1, which checks p1=p1 re-
turning true while testing T( o=u3) gives false.

3 Algorithms and Complexity
This section presents two strategies for the evaluation of
EPPs expressions. The first via an ad-hoc algorithm; the
second one via a translation into SPARQL queries that can
be executed on existing processors.
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Function EVALUATE
(
n, epp,G)

Input: node n, expression epp, graph G; Output: node set Res.

1: if epp = (epp1)
∗ then

2: return CLOSURE(n, epp1,G, {}, 0)
3: else if epp = (epp1)

+ then
4: return CLOSURE(n, epp1,G, {}, 1)
5: else
6: return BASE(n, epp,G))

Function CLOSURE
(
n, epp,G, Res, l)

Input: node n, EPPs expression epp, graph G, node set Res, lower bound l;
Output: node set Res.

1: if l = 1 then
2: S = EVALUATE(n, epp,G)
3: else
4: S = {n}
5: while S 6= ∅ do
6: n = extractNode(S) /* extract one node */
7: if n /∈ Res then
8: Res = Res ∪ {n}
9: S = S ∪ EVALUATE(n, epp,G)
10: return Res

Function BASE
(
n, epp,G)

Input: node n, EPPs expression epp, graph G; Output: node set Res.

1: if epp = epp1|epp2 then
2: return EVALUATE(n, epp1,G) ∪ EVALUATE(n, epp2,G)
3: if epp = epp1/epp2 then
4: Res′ := EVALUATE(n, epp1,G)
5: Res = {}
6: for all nodes n′ ∈ Res′ do
7: Res = Res ∪ EVALUATE(n′, epp2,G)
8: return Res
9: if epp = epp1&epp2 then
10: return EVALUATE(n, epp1,G)∩ EVALUATE(n, epp2,G)
11: if epp = epp1 ∼ epp2 then
12: return EVALUATE(n, epp1,G) \ EVALUATE(n, epp2,G)
13: if epp = epp1? then
14: return {n} ∪ EVALUATE(n, epp1,G)
15: if epp = pos1testpos2 then
16: Res = {}
17: for all triple t ∈ G s.t. Pm(pos1, t) = n do
18: if EVALTEST(t, test,G) then
19: Res = Res ∪ {Pm(pos1, t), Pm(pos2, t)}
20: return Res

Function EVALTEST
(
t, test,G)

Input: triple t, graph G; Output: true if t satisfy test.

1: if test = test1&&test2 then
2: return EVALTEST

(
t, test1,G) ∧ EVALTEST

(
t, test2,G)

3: if test = test1||test2 then
4: return EVALTEST

(
t, test1,G) ∨ EVALTEST

(
t, test2,G)

5: if test =!test1 then
6: return ¬EVALTEST

(
t, test1,G)

7: if test = u then
8: return Pm( p, t) = u

9: if test = TP(pos, epp) then
10: return EVALUATE(Pm(pos, t), epp,G) 6= ∅
11: if test = T(EExp) then
12: return EvalSPARQLBuilt-in(EExp, t)

Figure 3: EPPs evaluation algorithm.

3.1 Recursion-based Algorithm

The algorithm for the evaluation of an EPP expression starts
by invoking EVALUATE (Fig. 2), which receives as input a
graph G, an expression epp and a node n. If epp is non
recursive (i.e., it does not contain the closure operators ‘+’

and ‘∗’) then it is given as input to the function BASE, which
considers the various forms of syntactic expressions. For
recursive expressions the algorithm uses the function CLO-
SURE. Finally, the boolean function EVALTEST handles the
different types of test.

The result of the evaluation of an EPP expression epp
from a node n is a set of pairs of nodes (n,nr) where nodes
nr are reachable from n via paths satisfying epp.

We now discuss the complexity of the algorithm. We as-
sume G to be stored by its adjacency list. In particular, for
each t ∈ T , a Hashtable is maintained where the set of keys
is the set of predicates p such that there exists a triple in G
having as subject t and as predicate p, and the set of values
are lists of objects o reachable by traversing p-predicates
from t. We assume that given t and a predicate p the set
of nodes reachable can be accessed in time O(1). An addi-
tional Hashtable is used for inverse navigation, that is, for
navigation starting on the object and ending on the subject.
Both structures use space O(|G|). Let |epp| be the size of
the EPP expression epp.

Theorem 3 Given the EPP expression epp, an RDF graph
G and a node n ∈ G the evaluation of EJeppKG can be
performed in time O(|G| · |epp|) + cEExp.

Proof: [SKETCH] The function EVALUATE is recursively
called on each sub-expression of the epp in input; if such
sub-expressions are not recursive (i.e., do not contain ‘*’,
‘+’), EVALUATE is invoked at most O(|epp|) times. The
base cases (lines 15-19 of function BASE) require to con-
sider at most all the edges for all the nodes; this can be
done in time O(|G|). If epp is recursive, the function CLO-
SURE is executed at mostO(nodes(G)) times; the procedure
EVALUATE is invoked for each node in the worst case. When
evaluating a subexpression from a node we use memoization
to store its result (i.e., the set of reachable nodes) thus avoid-
ing to recompute the same expression from the same node
multiple times. Memoization guarantees that the total time
required by CLOSURE is O(|epp| · |G|). As for nested ex-
pressions, memoization enables to mark nodes of the graph
satisfying a given subexpression.

Path conjunction and negation, corresponding to intersec-
tion and difference of set of nodes respectively (line 10 and
12 of BASE), can be computed in time O(|G|) by using a
(prefect) hash function as the graph is known beforehand.
As for tests, their cost is constant for logical operators and
simple URI checking. The complexity is parametric wrt
the cost of other SPARQL-based built-in conditions EExp
(cEExp). Finally, observe that with memoization the space
complexity is O(|epp| · nodes(G)2). �

3.2 Translation into SPARQL
The W3C spec. (Harris and Seaborne 2013) informally men-
tions the fact that non-recursive property paths can be eval-
uated via a translation into equivalent SPARQL algebraic
forms. However, no formal proof of the correctness and
completeness of such translation is provided. Recursive
property paths are handled in the standard via auxiliary func-
tions called ALP (Harris and Seaborne 2013). With EPPs
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Figure 4: Operational tree for Ex. 1 after propagation.

(that are meant to extend property paths) we adopted a sim-
ilar approach. In what follows, we give an overview of how
non-recursive EPPs (NREPPs) are translated into SPARQL
queries. For recursive EPPs we modified the ALP function
defined in the W3C standard where subexpressions in recur-
sive calls to ALP are evaluated via the SPARQL translation.

The NREPPtoSPARQL translation
Let P=(α,epp, β), α, β ∈ T ∪ V be a NREPP pattern. The
translation algorithm At uses a structure called operational
tree built from the parse tree of P . The operational tree as-
sociated to P is an ordered, labeled, rooted tree with node
attributes reflecting the operational structure of P . We now
give a high level overview of the three phases of the transla-
tion algorithm At:

Figure 5: Translation rules. aIf the node in input has the
attribute negated=true use ‘!’ (resp., ‘NOT’).

(i) Building of the operational tree

Consider a NREPP pattern P . In the operational tree asso-
ciated to P , nodes are of two types: (i) operational nodes
(labeled with ∼,&, /, |, ˆ) and (ii) test nodes (labeled with
test4,||,&&,TP,u,T(EExp)). Each node ni in the opera-
tional tree has a single parent and its children are an ordered
set. Moreover, ni has an attribute id whose unique value is
computed as the concatenation of the parent’s id and ni’s
position in the ordered set of children. The operational tree
for Example 1 is shown in Fig. 4.
(ii) Propagation of variables and terms5

The key point is the propagation of variable names and RDF
terms (kept in nodes’ attributes). This is done by travers-
ing the operational tree top-down and propagating attributes
from each parent node to its children.
(iii) Application of the translation rules
This phase always starts by applying rule Rm in Fig. 5 on the
root of the operational tree. This generates the outermost
part of the final rewritten query into the SPARQL syntax.
The translation proceeds by applying rules at each node of
the operational tree visited according to a pre-order depth-
first traversal.

For instance, in Fig. 4, after the root, the node with
id=0 0 and labeled with ∼ is visited. This causes the trig-
gering of rule R5, which enables to generate another (in-
ternal) chunk of the final SPARQL query. Node 0 0 is an
operational node representing path negation ∼. As it can be
noted, our translation procedure uses the SPARQL MINUS
operator to reflect the semantics of EPPs dealing with path
negation. The semantics of nodes representing EPPs test
(e.g., 0 0 1 0 1) is reflected into SPARQL via the FILTER
operator.

Correctness of the translation
In order to prove the correctness of the translation of
NREPPs into SPARQL we have defined a SPARQL based
semantics (not reported here for sake of space) where
conjunction (&) and negation (∼) are translated into join
(./) and difference (\) of (multi)sets of solution map-
pings (Pérez, Arenas, and Gutierrez 2009). Let JPKGepps de-
note the SPARQL-based semantics of EPPs, where P is an
NREPP pattern, and [[S]]W3C

G denote the SPARQL W3C se-
mantics (Harris and Seaborne 2013), where S is a SPARQL
query. The following theorem shows the correctness of the
translation.
Theorem 4 The translation algorithmAt is correct and runs
in polynomial time in the size of the expression to be trans-
lated. Moreover, for any RDF graph G given P it holds that
[[P]]eppsG =[[S]]W3C

G , where S=At(P) is the query produced
by translating P .

Proof: [SKETCH]At is polynomial as it requires one scan
of the operational tree (whose size is polynomial in the size
of the EPP expression). As for the correctness, it is enough
to prove that the propagation of variable names and RDF
terms in the operational tree is correct. This proof can be

4In the syntax it coresponds to pos1 test pos2.
5Negation (!) for test nodes is propagated top-down when

building the tree via the attribute negated.
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done by structural induction on the depth of the operational
tree. Finally, the semantic equivalence can be proved by as-
sociating to all types of EPP patterns the corresponding se-
mantics as per SPARQL specification (Harris and Seaborne
2013). �

Complexity of the translated queries. Consider a NREPP
epp in a pattern P and its translation into SPARQL Sepp.
Clearly, the complexity of evaluating Sepp depends on the
fragment of SPARQL used in the translation. In particular
(see Fig. 5) we make usage of SELECT, UNION, MINUS
and FILTER and we do not use OPTIONAL. The complex-
ity of this and other SPARQL fragments has been studied
in (Pérez, Arenas, and Gutierrez 2009).
Summary. EPPs can be seen as a language per se and can
be evaluated by implementing the algorithm in Fig. 3 in
a custom processor, thus being independent from existing
SPARQL processors. EPPs can also be seen as a conserva-
tive extension of SPARQL property paths and, thanks to the
translation algorithm, can be evaluated on existing SPARQL
processors. We have implemented both strategies; their pros
and cons will be discussed in Section 4.

3.3 Comparison with Related Languages
As the goal of EPPs is to extend the expressive power of
SPARQL property paths (PPs) and NREs-based languages,
we compared such proposals with EPPs; Table 3 summa-
rizes the (informal) comparison. We consider the following
features of EPPs: path conjunction (&), path negation (∼),
nesting (TP), tests over node values (test) and usage of
positions (pos). As it can be observed, PPs are the least
expressive language; they do not support any of the new fea-
tures of EPPs. This motivated our choice of extending PPs
as described in Section 2.1. As for NREs, they clearly sup-
port nesting but neither other types of tests (e.g., node equal-
ity) nor path conjunction/negation as discussed in (Barceló,
Pérez, and Reutter 2012).

Language & ∼ TP test pos
EPPs Yes Yes Yes Yes Yes
PPs No No No No No

NREs No No No No No
nSPARQL Yes Yes Yes No Yes

Table 3: Comparison of EPPs with related languages.

As for nSPARQL (based on NREs), it supports path con-
junction and negation only via the SPARQL algebra; it also
supports nesting and positions. However, it does not allow
to test (in)equalities of nodes reached with a nested expres-
sion. EPPs support logical combination of tests representing
nesting and tests representing (in)equalities as well as safe-
negation6. Note that neither PPs nor NREs nor nSPARQL
can express Example 1. nSPARQL supports positions by
transforming an RDF graph into another graph where nav-
igational axes (similar to those defined in XPath) are made

6The first element must be positive path.

explicit. On the other hand, EPPs do not require any trans-
formation. In the syntax of EPPs, positions enable to per-
form edge to node traversals allowing to reach the node rep-
resenting the predicate of a triple whence it is possible to tra-
verse e.g. the property hierarchy. Finally, we want to empha-
size that EPPs are syntactically compatible with PPs and are
the only language, which thanks to the NREPPtoSPARQL
translation, can be used in existing SPARQL processors.

4 Implementation and Evaluation
We have implemented both a custom query processor for
EPPs and the NREPPtoSPARQL translation7.
Dataset and query set. We used a crawl of the FOAF
social network (∼500MBs) obtained from the BTC20128

by traversing from the URI of T. Berners-Lee (TBL)
foaf:knows predicates up to distance 4. We call the re-
sulting graph GF , which has ∼4M triples. We created 4
groups Gi, i ∈ {1,..., 4} of EPP expressions each with 3
queries; this gives a queryset Q of 12 queries. The exper-
iments have been performed on an Intel i5 machine with
8GBs RAM. Results are the average of 5 runs after removing
lowest and highest values.

Experiment 1: Running time
For each epp ∈ Q we generated the corresponding
SPARQL query Sepp via the algorithm described in Sec-
tion 3.2. We measured the execution time for each epp ∈ Q
with our processor and the execution time for Sepp in Jena
ARQ9. Fig. 6 shows the running times. The number of re-
sults ranges from ∼50 to ∼8000.

G1 G2 G3 G4

1.E+00&

1.E+01&

1.E+02&

1.E+03&

1.E+04&

1.E+05&

1& 2& 3& 4& 5& 6& 7& 8& 9& 10& 11& 12&

Ti
m
e%
(m

s)
%

Recursion8based&algorithm&
Jena&ARQ&

Figure 6: EPPs-custom-processor vs. Jena ARQ.

As it can be observed, forG1, which contains queries ask-
ing for friends of TBL up to distance 3, our evaluator per-
forms better than ARQ at distance 1 and 2; at distance 3
times are comparable. The group G2 additionally considers
a test based on nesting. Again, our evaluator performs bet-
ter at distance 1 and 2; at distance 3 it shows a higher run-
ning time. In G3, which considers negation (e.g., exclusive
friends at various distances) our approach performs consis-
tently better. Finally, in G4 that includes conjunction (to ask
for mutual friends at various distances) our approach per-
forms better at distance 1 and 2 and obtains a higher running
time at distance 3.

7Available at http://extendedpps.wordpress.com
8http://km.aifb.kit.edu/projects/btc-2012
9http://jena.apache.org
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The complexity of the algorithm described in Section 3 is
lower than that of Jena ARQ, which implements SPARQL.
However, our evaluation suggests that for real-world data
and natural queries (e.g., mutual friends) working with
the translation of EPPs and using existing processors is
still useful. Hence, the advantage of our approach is that
navigational queries can be written in a succinct way via
the EPPs syntax and execute after their translation via
NREPPtoSPARQL. Anecdotally, while the EPP asking for
mutual friends at distance 3 contains ∼200 characters, the
SPARQL query (obtained from the translation) contains
∼700 characters. Moreover, when writing the SPARQL
query one has also to deal with a large number of variables
that need to be consistently joined.

Experiment 2: Translation overhead
We compared the elapsed times of our NREPPtoSPARQL
with the SPARQLtoALGEBRA translation of Jena ARQ. We
used 28 queries generated in two steps. We started with
4 base expressions plus a fifth one combining them. Sec-
ond, starting from them we generated increasingly longer
expressions. We found that our NREPPtoSPARQL transla-
tion performs comparably (in the order of ms) to the existing
SPARQLtoALGEBRA translation.

5 Conclusions and Future Work
We introduced Extended Property Paths (EPPs), a significant
extension of SPARQL property paths. We have provided an
algorithm for their evaluation and also a translation proce-
dure into SPARQL.

EPPs bring some benefits: (i) users can leverage their syn-
tax to write more expressive navigational queries in a suc-
cinct way; (ii) EPPs are immediately available into existing
SPARQL processors. Our study opens some research ques-
tions such as investigating properties of the translation (e.g.,
minimality) and studying optimization techniques. Also
containment of EPPs is an open question.
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Kay, M.; Robie, J.; and Siméon, J. 2010. XML Path Lan-
guage (XPath) 2.0, W3C.

Cali, A.; Gottlob, G.; Lukasiewicz, T.; Marnette, B.; and
Pieris, A. 2010. Datalog+/-: A Family of Logical Knowl-
edge Representation and Query Languages for New Appli-
cations. In Proc. of the 25th Annual IEEE Symposium on
Logic in Computer Science, 228–242. IEEE.
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Adapting Graph Query Languages for RDF Data. In Proc.
of the 32nd Symposium on Principles of Database Systems,
201–212. ACM.
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