
Lower and Upper Bounds for SPARQL Queries over OWL Ontologies

Birte Glimm and Yevgeny Kazakov
University of Ulm, Germany

<firstname.surname>@uni-ulm.de

Ilianna Kollia and Giorgos Stamou
National Technical University of Athens, Greece

ilianna2@mail.ntua.gr, gstam@cs.ntua.gr

Abstract

The paper presents an approach for optimizing the evaluation
of SPARQL queries over OWL ontologies using SPARQL’s
OWL Direct Semantics entailment regime. The approach is
based on the computation of lower and upper bounds, but
we allow for much more expressive queries than related ap-
proaches. In order to optimize the evaluation of possible
query answers in the upper but not in the lower bound, we
present a query extension approach that uses schema knowl-
edge from the queried ontology to extend the query with ad-
ditional parts. We show that the resulting query is equivalent
to the original one and we use the additional parts that are
simple to evaluate for restricting the bounds of subqueries of
the initial query. In an empirical evaluation we show that the
proposed query extension approach can lead to a significant
decrease in the query execution time of up to four orders of
magnitude.

Introduction
Query answering—the computation of answers to users’
queries w.r.t. ontologies and data—is an important task in
the context of the Semantic Web. Ontologies formulated in
the Web Ontology Language OWL (Motik, Patel-Schneider,
and Parsia 2009) correspond to Description Logic (DL)
knowledge bases (KBs) (Baader et al. 2007), i.e., to theo-
ries in a decidable fragment of First-Order Logic. Many
Description Logic reasoners support some form of query an-
swering, but while much effort has been spent on optimizing
standard reasoning tasks for expressive DLs, e.g., the com-
putation of subsumption relations between concepts (unary
predicates), less attention has been given to optimizing the
evaluation of more complex query patterns. The need for
an efficient evaluation of complex queries over OWL on-
tologies becomes more urgent with the standardization of
the SPARQL 1.1 Entailment Regimes (Glimm and Ogbuji
2013), which extend the SPARQL Query Language (Harris
and Seaborne 2013) with the capability of querying also for
answers that are entailed by the queried ontology, whereas
without entailment regimes only explicitly stated knowledge
is taken into account. In this paper, we propose a way
of exploiting the knowledge in the ontology to more effi-
ciently evaluate complex queries over OWL 2 DL ontolo-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

gies under the OWL Direct Semantics entailment regime of
SPARQL 1.1.

Since computing the answers to a query over an expres-
sive knowledge base is computationally very costly, approx-
imation techniques have been proposed that use a weak-
ened version of the KB to compute a lower bound (yields
sound but potentially incomplete results) and a strength-
ened version to compute an upper bound (yields com-
plete but potentially unsound results) for the query an-
swers (Zhou et al. 2014; Pan, Thomas, and Zhao 2009;
Ren, Pan, and Zhao 2010). The weakened and strengthened
versions are typically approximated in a simpler logic, for
which more efficient reasoning algorithms can be used. An-
other well-known technique is to compute the bounds from
a pre-model, i.e., a complete and clash-free tableau gener-
ated by a DL reasoner (Kollia and Glimm 2012). Facts
that are derived deterministically are used as lower bound,
while also non-deterministically derived facts are consid-
ered for the upper bound. For simple queries, the lower
bound allows for simply reading off the answers, while an-
swers in the “gap”, i.e., potential answers in the upper but
not the lower bound, usually have to be checked individu-
ally by performing a consistency check with a fully fledged
OWL 2 DL reasoner. Following Zhou et al. (2014), we
refer to the technique of first computing lower and upper
bounds and then checking the answers in the gap as hy-
brid approach. Since performing many consistency checks
is unlikely to work well in practice, Zhou et al. also pro-
pose optimizations such as extracting relevant fragments of
the ontology for checking a potential answer and an adap-
tation of the summarization technique (Dolby et al. 2009;
2007).

In this paper, we also follow the hybrid approach, but we
significantly extend the form of allowed queries. Further-
more, we present a way of using the knowledge in the on-
tology to extend the query such that the additionally added
parts allow for better query planning and an overall faster
query evaluation. Compared to query evaluation with stan-
dard static query planning (Kollia and Glimm 2013) our em-
pirical analysis with a prototypical implementation shows an
improvement of up to four orders of magnitude in the query
execution times due to the proposed optimizations.

The idea of modifying the query for better query planning
and evaluation has been presented before in the database

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

109

community. However, the proposed methods do not involve
background knowledge, they rather present query approx-
imations that are based on query forms with better com-
plexity characteristics for query evaluation (like acyclicity,
bounded treewidth, etc.) (Barceló, Libkin, and Romero
2012), or on queries expressed in less expressive query lan-
guages (for example without self-joins) (Fink and Olteanu
2011), or on queries for which the answers have been
pre-computed (views) (Halevy 2001). On the other hand,
there is a lot of work for query extension using semantic
data descriptions, but mainly in the area of information re-
trieval focusing more on the representation of the query con-
text for query expansion and refinement, and not on faster
query evaluation (Bhogal, Macfarlane, and Smith 2007;
Munir, Odeh, and McClatchey 2012; Luna, Revoredo, and
Cozman 2010; Grootjen and van der Weide 2006).

Preliminaries
SPARQL’s basic building blocks are so-called basic graph
patterns (BGPs), which can then be combined using oper-
ators such as UNION or filters using the FILTER keyword.
While the evaluation of BGPs is performed over the queried
ontology, all other operators simply combine solutions ob-
tained by evaluating the BGPs. Hence, we focus on the eval-
uation of BGPs in this paper. In the context of the OWL Di-
rect Semantics Entailment Regime of SPARQL 1.1 (Glimm
and Ogbuji 2013), BGPs correspond to “extended” OWL
ontologies/KBs, where one can use variables in place of
concept names (unary predicates), role names (binary pred-
icates) or individual names (constants), which is why we
next define the syntax of “extended” KBs in the DL ALC
of which standardALC KBs are a subset.

Definition 1 (Syntax). The syntax of an extended ALC
knowledge base or query is defined using a signature
(TC,TR,TI), consisting of countably infinite disjoint sets TC
of concept terms, TR of role terms, and TI of individual
terms. The set TC (TR, TI) consists of the disjoint union of
countably infinite sets of concept (role, individual) names
NC (NR, NI) and concept (role, individual) variables VC (VR,
VI). We further allow for the two special concepts > and ⊥.
Complex concept templates can be composed from these ba-
sic elements by using negation (¬C), conjunction (C1 uC2),
disjunction (C1 tC2), or by quantification over a role (∀r.C
and ∃r.C) with C(i) ∈ TC and r ∈ TR. An axiom template
(short: template) has the form C v D, C(t), or r(t, t′) with
C,D concept templates, r a role term, and t, t′ individual
terms. If a concept template or an axiom template does not
contain any variable, we call it ground or simply a concept
or an axiom.

An extended knowledge base K = T ∪A is a finite set of
axiom templates, where T is an extended TBox consisting
of axiom templates of the form C v D andA is an extended
ABox consisting of the remaining axiom templates. A (stan-
dard) knowledge base (short: KB) is an extended knowledge
base that does not contain variables, that is, a set of axioms.

A query q is a set of templates and the size |q| of q is the
number of templates in q. If q contains only templates of the
form A(t) or r(t, t′) with A ∈ NC, r ∈ NR, and t, t′ ∈ TI , we

K = T ∪A,where
T = { B v A tC, ∃r.B v C}
A = {A(a), B(b), r(a, b), A(d)}
q = {A(x),∃r.Y(x),Y v B}

r ∈ NR, {A, B,C} ⊆ NC, {a, b, c, d} ⊆ NI , Y ∈ VC, x ∈ VI

Figure 1: The (standard) knowledge base K and the query q
used in the examples of this paper.

call q a conjunctive instance query. We denote by vars(q) the
set of all (concept, role, and individual) variables occurring
in q. If vars(q) = ∅, we call q a ground or Boolean query.

Note that the above definition can easily be extended to
allow for more expressive Description Logics constructors
such as nominals (concepts defined as an enumeration of
individuals), role chains (e.g., for expressing transitivity),
or (qualified) cardinality constraints (counting quantifiers in
First-Order Logic) (Horrocks, Kutz, and Sattler 2006). We
omit the introduction of these features for brevity, but the
presented results are straightforwardly applicable.

Example 1. Figure 1 gives an example of a standard knowl-
edge baseK and a query q. The knowledge baseK = T ∪A
consists of two TBox axioms and four ABox axioms. The
query q consists of three axiom templates containing vari-
ables vars(q) = {x,Y}, where x is an individual variable,
and Y is a concept variable.

The query answers are then mappings such that the query
instantiated by the mappings yields axioms that are entailed
by the queried knowledge base. To make this more precise,
we next define the semantics of (extended) KBs and queries.

Definition 2 (Semantics). An interpretation I = (∆I, ·I)
consists of a non-empty set ∆I, the domain of I, and an
interpretation function ·I, that assigns to each A ∈ NC a
subset AI ⊆ ∆I, to each r ∈ NR a binary relation rI ⊆
∆I ×∆I, and to each a ∈ NI an element aI ∈ ∆I. We further
have >I = ∆I and ⊥I = ∅. The interpretation is extended
to (ground) complex concepts as follows: (¬C)I = ∆I \CI,
(C u D)I = CI ∩ DI, (C t D)I = CI ∪ DI, (∀r.C)I = {δ ∈
∆I | 〈δ, δ′〉 ∈ rI → δ′ ∈ CI}, (∃r.C)I = {δ ∈ ∆I | ∃δ′ ∈ CI :
〈δ, δ′〉 ∈ rI}.

An interpretation I satisfies a (ground) axiom α (nota-
tion: I |= α) as follows: I |= C v D if CI ⊆ DI, I |= C(a)
if aI ∈ CI, and I |= r(a, b) if 〈aI, bI〉 ∈ rI. I is a model of
a (standard) knowledge base K (notation: I |= K) if I |= α
for every axiom α ∈ K . If such a model for K exists, we
say that K is consistent. K entails an axiom α (notation:
K |= α) if I |= α for every model I of K .

A mapping is a (partial) function µ : VC ∪ VR ∪ VI →

NC∪NR∪NI such that µ(x) ∈ NC for each x ∈ VC, µ(x) ∈ NR
for each x ∈ VR, and µ(x) ∈ NI for each x ∈ VI . We use
dom(µ) to denote the domain of a function µ. Two mappings
µ1 and µ2 are compatible if µ1(x) = µ2(x) for every x ∈
dom(µ1) ∩ dom(µ2). In this case, the union of µ1 and µ2 is
the mapping µ = µ1 ∪ µ2 with dom(µ) = dom(µ1) ∪ dom(µ2)

110

defined by µ(x) = µ1(x) for x ∈ dom(µ1) and µ(x) = µ2(x)
for x ∈ dom(µ2). If M1 and M2 are two sets of mappings then
the join of M1 and M2 is the set of mappings M1 ./ M2 =
{µ1 ∪ µ2 | µ1 ∈ M1, µ2 ∈ M2, µ1 and µ2 are compatible}.

Given a query q, we denote with µ(q) the result of re-
placing each variable x ∈ dom(µ) with µ(x). If vars(q) ⊆
dom(µ), we write I, µ |= q if I satisfies every (ground) ax-
iom template of µ(q). A mapping µ is a certain answer for
a query q over a (standard) KB K , written K , µ |= q, if
I, µ |= q for each I such that I |= K . We set ans(K , q) =
{µ | K , µ |= q, dom(µ) = vars(q)}. Queries q1 and q2 are
equivalent w.r.t. K if ans(K , q1) = ans(K , q2).

Note that if q = q1 ∪ q2 then ans(K , q) = ans(K , q1) ./
ans(K , q2).
Example 2. It is easy to check that the KB K in Figure 1
has a model I = (∆I, ·I) with ∆I = {d1, d2, d3, d4}, aI = d1,
bI = d2, cI = d3, dI = d4, AI = {d1, d2, d4}, BI = {d2},
CI = {d1}, and rI = {〈d1, d2〉}. Note that I |= A(a) but
I 6|= B(a). Hence, K 6|= A v B. Thus, for the map-
ping µ with µ(Y) = A, we have K , µ 6|= {Y v B}. The
same also holds for every µ with µ(Y) ∈ {C,>}. Thus,
ans(K , {Y v B}) = {⊥, B}. Similarly, one can show that
ans(K , {A(x)}) = {µ | µ(x) ∈ {a, d}} since K |= A(a),
K |= A(d), but K 6|= A(b) and K 6|= A(c), and that
ans(K , {∃r.Y(x)}) = {µ | µ(x) = a, µ(Y) ∈ {B,>}} sinceK |=
∃r.B(a) and K |= ∃r.>(a), but K 6|= ∃r.A(a), K 6|= ∃r.B(b),
etc. Hence, for q = {A(x), ∃r.Y(x), Y v B} in Figure 1 we
obtain ans(K , q) = ans(K , {A(x)}) ./ ans(K , {∃r.Y(x)}) ./
ans(K , {Y v B}) = {µ | µ(x) = a, µ(Y) = B}.

Bounds for Queries and Subqueries
Since entailment checking is the standardized reasoning task
for OWL reasoners, a naive way to evaluate queries is to
instantiate the query with all possible query mappings and
check entailment of the resulting axioms using an OWL rea-
soner. Since the number of possible mappings can be very
large, this method is not efficient even with small queries.
Therefore, practical algorithms try to reduce the number
of entailment tests by determining using other techniques,
which mappings can or cannot satisfy the query. We present
this general idea using the notion of a query bound.
Definition 3 (Query Bound). Let K be a knowledge base
and q a query. A bound for q w.r.t. K is a pair of sets [L;U]
of mappings such that L ⊆ ans(K , q) ⊆ U. We call L the
lower and U the upper bound for q over K . The bound
[L;U] is exact if L = U (and hence = ans(K , q)).

We usually assume thatK is fixed and refer to bounds for
queries without mentioning K .
Example 3. Consider again the KB K in Figure 1. Since
{A(a), A(d)} ⊆ K we have K |= A(a) and K |= A(d). Hence
ans(K , {A(x)}) contains at least all µ such that µ(x) ∈ {a, d}.
That is, we can find the lower bound L = {µ | µ(x) ∈ {a, d}}
for the query {A(x)} over K without performing any tests.

To find an upper bound for {A(x)}, consider the model I
constructed in Example 2. Note that I 6|= A(c). Thus, from
this model alone one can conclude thatK 6|= A(c) and hence
that ans(K , {A(x)}) ⊆ {µ | µ(x) ∈ {a, b, d}}. Thus, the set

U = {µ | µ(x) ∈ {a, b, d}} provides an upper bound for the
query {A(x)} over K .

Although the model I can be similarly used for finding
an upper bound for complex templates, such as {∃r.Y(x)}, in
general it can only be found by iterating over all possible
mappings for x and Y and checking which instances of this
template are entailed by the model. Therefore, in practice,
one does not compute the bounds for complex templates.

The bounds for the query {Y v B} can be computed by
classifying the knowledge base and retrieving subsumption
relationships with concept B. Since for classification one
usually needs to consider just the (relatively small) TBox T ,
the bounds for this query can be computed exactly. That is,
in our example we have L = U = {⊥, B}.

Query bounds can be also extracted by weakening and
strengthening of the knowledge bases in tractable fragments
(Zhou et al. 2014). Lower query bounds for simple instance
queries can also be obtained by inspecting which assertions
are derived deterministically when testing satisfiability ofK
using (hyper-)tableau procedures (Kollia and Glimm 2012).
Using the computed bounds for simple queries, one can de-
rive the bounds for more complex queries as follows.

Lemma 1. Let q = q1∪q2, [L1;U1] be a query bound for q1
and [L2;U2] a query bound for q2. Then [L1 ./ L2;U1 ./
U2] is a query bound for q1 ∪ q2.

Proof. It is easy to show that if M1 ⊆ M′1 and M2 ⊆ M′2
are sets of mappings then M1 ./ M2 ⊆ M′1 ./ M′2. Since
ans(K , q1 ∪ q2) = ans(K , q1) ./ ans(K , q2), from L1 ⊆

ans(K , q1) ⊆ U1 and L2 ⊆ ans(K , q2) ⊆ U2 we obtain
L1 ./ L2 ⊆ ans(K , q1 ∪ q2) ⊆ U1 ./ U2. �

The above lemma gives rise to a query answering algo-
rithm that first retrieves the query bounds for each axiom
template in the query. Second, the join of all query bounds
is computed. Third, the mappings that are in the upper but
not in the lower bound are checked using an OWL reasoner.
Since computing a join of (potentially large) sets of map-
pings can be expensive, one can instead try to reduce the
bounds for axiom templates using other parts of the query.

Definition 4 (Subquery Bound). If q = q1 ∪ q2, then we
say that q1 is a subquery of q. The pair of sets [L1;U1] is a
subquery bound for q1 in q overK ifL1 ⊆ (ans(K , q1)∩U1)
and ans(K , q) = (ans(K , q1) ∩U1) ./ ans(K , q2).

Intuitively, a subquery bound provides a range for those
answers of the subquery q1 that are sufficient to evaluate the
query q. If the query q = q1 ∪ q2 is clear from the context,
we usually call [L1;U1] a subquery bound of q1 without
mentioning q (and K as for query bounds). Clearly, if q =
q1 ∪ q2 and [L1;U1] is a query bound for q1, then it is also
subquery bound for q1 in q. The converse property does not
hold as shown in the next example.

Example 4. ConsiderK from Figure 1 and q = q1∪q2 with
q1 = {A(x)} and q2 = {∃r.Y(x)}. As shown in Example 2,
ans(K , q1) = {µ | µ(x) ∈ {a, d}} and ans(K , q2) = {µ |
µ(x) = a, µ(Y) ∈ {B, >}}. It is easy to see that ans(K , q) =
ans(K , q1) ./ ans(K , q2) = ans(K , q2).

111

Now, consider L1 = U1 = {µ | µ(x) = a}. Clearly, L1 ⊆

ans(K , q1) ∩ U1. Also, (ans(K , q1) ∩ U1) ./ ans(K , q2) =
U1 ./ ans(K , q2) = ans(K , q2) = ans(K , q). Hence
[L1;U1] is a subquery bound for q1 in q. It is, however,
not a query bound for q1 since ans(K , q1) * U1.
Lemma 2. Let q = q1 ∪ q2 ∪ q3 and let [L1;U1], [L2;U2]
be subquery bounds for q1 and q2 w.r.t. q, respectively. Then
ans(K , q) = (ans(K , q1) ∩ U1) ./ (ans(K , q2) ∩ U2) ./
ans(K , q3).

Proof. Clearly, (ans(K , q1) ∩ U1) ./ (ans(K , q2) ∩ U2) ./
ans(K , q3) ⊆ ans(K , q1) ./ ans(K , q2) ./ ans(K , q3) =
ans(K , q), so it remains to show the converse ans(K , q) ⊆
(ans(K , q1) ∩U1) ./ (ans(K , q2) ∩U2) ./ ans(K , q3).

Since [L1;U1] is a subquery bound for q1, ans(K , q) =
(ans(K , q1)∩U1) ./ ans(K , q2∪q3) = (ans(K , q1)∩U1) ./
ans(K , q2) ./ ans(K , q3). Hence, for every µ ∈ ans(K , q)
there exist µ1 ∈ ans(K , q1)∩U1, µ2 ∈ ans(K , q2), and µ3 ∈

ans(K , q3) that are compatible such that µ = µ1 ∪ µ2 ∪ µ3.
Likewise, since [L2;U2] is a subquery bound for q2, there
exist µ′1 ∈ ans(K , q1), µ′2 ∈ ans(K , q2) ∩ U2, and µ′3 ∈
ans(K , q3) that are compatible such that µ = µ′1 ∪ µ

′
2 ∪ µ

′
3.

Since dom(µi) = vars(qi) = dom(µ′i) (1 ≤ i ≤ 3), from
µ1 ∪ µ2 ∪ µ3 = µ′1 ∪ µ

′
2 ∪ µ

′
3 we obtain µ1 = µ′1, µ2 = µ′2, and

µ3 = µ′3. In particular µ = µ1∪µ
′
2∪µ3 ∈ (ans(K , q1)∩U1) ./

(ans(K , q2)∩U2) ./ ans(K , q3), which proves ans(K , q) ⊆
(ans(K , q1) ∩U1) ./ (ans(K , q2) ∩U2) ./ ans(K , q3). �

Theorem 1 illustrates how the bound of one subquery (q1)
can be reduced using the bound of another subquery (q2).
Note that the subqueries q1 and q2 can be arbitrary, e.g.,
empty, singleton templates or sets of possibly overlapping
templates.
Theorem 1. Let q = q1 ∪ q2 ∪ q3, let [L1;U1], [L2;U2] be
subquery bounds for q1 and q2 w.r.t. q, respectively, and let
M1 ⊆ U1 be such that M1 ./ U2 = ∅. Then [L1 \ M1;U1 \

M1] is also a subquery bound for q1.

Proof. Clearly, if L1 ⊆ (ans(K , q1) ∩ U1) then L1 \ M1 ⊆

(ans(K , q1) ∩ (U1 \ M1)). It remains, therefore, to show
that ans(K , q) = (ans(K , q1) ∩ (U1 \ M1)) ./ ans(K , q2) ./
ans(K , q3). By Lemma 2, ans(K , q) = (ans(K , q1)∩U1) ./
(ans(K , q2) ∩ U2) ./ ans(K , q3) = (ans(K , q1) ∩ (U1 \

M1)) ./ (ans(K , q2) ∩ U2) ./ ans(K , q3) ∪ (ans(K , q1) ∩
M1) ./ (ans(K , q2) ∩ U2) ./ ans(K , q3) = (ans(K , q1) ∩
(U1 \ M1)) ./ (ans(K , q2) ∩ U2) ./ ans(K , q3) since
(ans(K , q1) ∩ M1) ./ (ans(K , q2) ∩ U2) ./ ans(K , q3) ⊆
M1 ./ U2 ./ ans(K , q3) = ∅. �

Example 5. Consider the knowledge base K and the query
q = {∃r.Y(x), A(x), Y v B} from Figure 1. Assume that
we have found the query bound [L2;U2] for q2 = {A(x)}
as in Example 3, namely, L2 = {µ | µ(x) ∈ {a, d}} and
U2 = {µ | µ(x) ∈ {a, b, d}}. As mentioned before, [L2;U2] is
also a subquery bound for q2 in q. Let [L1;U1] be the triv-
ial subquery bound for q1 = {∃r.Y(x)} in q, i.e., L1 = ∅ and
U1 = {µ | µ(x) ∈ {a, b, c, d}, µ(Y) ∈ {⊥, A, B,C,>}}. Fur-
thermore, let M1 = {µ | µ(x) = c}. Clearly, M1 ./ U2 = ∅.
Hence, by Theorem 1, [L1 \ M1;U1 \ M1] = [∅; {µ |
µ(x) ∈ {a, b, d}, µ(Y) ∈ {⊥, A, B,C,>}}] is also a subquery

bound for q1 in q. Similarly, using the (exact) query bound
[L3;U3] for q3 = {Y v B} with L3 = U3 = {µ | µ(Y) ∈
{⊥, B}}, one can further reduce the upper bound for q1 to
{µ | µ(x) ∈ {a, b, d}, µ(Y) ∈ {⊥, B}}.

Improving Bounds via Query Extension
As seen from the previous section, subquery bounds can be
improved using bounds of other subqueries of this query.
Thus, if a query q can be extended to an equivalent query
q∪q′, the number of reasoner calls performed for evaluating
the axiom templates in q can be reduced using q′. In this sec-
tion we consider a method by which one can extend queries
based on a ground version of q together with axioms from
the queried knowledge base. The proposed query extension
method is similar to the method for deciding containment
between conjunctive queries (Calvanese, De Giacomo, and
Lenzerini 2008), with the main difference (apart from al-
lowing concept and role variables) that instead of checking
query containment, we construct a query contained in the
given query ourselves.

Theorem 2 (Query Extension). Let K be a knowledge
base, q a query, and µ a mapping with dom(µ) = vars(q)
such that for each x ∈ dom(µ), µ(x) does not occur in K
and for each x, y ∈ dom(µ), x , y implies µ(x) , µ(y).
Then for every query q′ such that vars(q′) ⊆ dom(µ) and
K ∪ µ(q) |= µ(q′), we have ans(K , q) = ans(K , q ∪ q′).

Proof. Clearly, ans(K , q ∪ q′) ⊆ ans(K , q), so it remains
to show that ans(K , q) ⊆ ans(K , q ∪ q′). Take any µ′ ∈
ans(K , q), i.e.,K |= µ′(q). To prove that µ′ ∈ ans(K , q∪q′),
we need to show that K |= µ′(q ∪ q′). Since K |= µ′(q),
it is left to prove that K |= µ′(q′). Let ρ be such that
µ′(x) = ρ(µ(x)) for every x ∈ vars(q) = dom(µ). That is,
ρ replaces each value of µ(x) with the corresponding value
of µ′(x). Since µ(x) , µ(y) for each x , y, x, y ∈ dom(µ),
such function ρ always exists. Then K ∪ µ(q) |= µ(q′) im-
plies ρ(K ∪ µ(q)) |= ρ(µ(q′)) = µ′(q′). Since ρ(K ∪ µ(q)) =
ρ(K)∪ρ(µ(q)), ρ(K) = K (because µ(x) does not occur inK
for every x ∈ dom(µ)) and K |= µ′(q) = ρ(µ(q)), we obtain
K |= µ′(q′) what was required to show. �

Example 6. For the KB K = T ∪ A and query q =
{A(x), ∃r.Y(x), Y v B} in Figure 1, consider a mapping µ
such that µ(x) = ax, µ(Y) = AY with ax ∈ NI , AY ∈ NC.
Clearly the conditions of Theorem 2 are satisfied. Note that
T ∪ µ(q) = {B v A t C,∃r.B v C, A(ax),∃r.AY (ax), AY v

B} |= C(ax). Thus, for q′ = {C(x)}, we have K ∪ µ(q) |=
C(ax) = µ(q′), and by Theorem 2, the query q has the
same answers for K as the extended query q ∪ q′ =
{A(x), ∃r.Y(x), Y v B, C(x)}.

Using Theorem 2, the improved algorithm for evaluating
a query q over a knowledge baseK can now be described as
follows:

1. Replace every (concept, role, individual) variable in q
with a fresh distinct (concept, role, individual) name. Let
µ be the mapping that performs this replacement.

2. Add the resulting axioms µ(q) to K and perform mate-
rialization, i.e., compute all concept assertions A(a), role

112

assertions r(a, b), and subsumptions A v B with atomic
concepts and roles entailed by K ∪ µ(q). Let K ′ be the
resulting set of such entailed axioms.

3. Apply the reversed mapping q−1 to K ′, i.e., replace each
µ(x) (freshly introduced in Step 1) inK ′ with x. Let q′ be
the query obtained by this replacement, i.e., µ(q′) = K ′.

4. Compute the query bounds for the templates in q′ and use
them to improve the subquery bounds for the templates in
q using Theorem 1 for q ∪ q′.

5. Evaluate q using the improved subquery bounds.

Note that in the above procedure, instead of computing the
materialization ofK∪µ(q) one can alternatively compute the
materialization for K1 ∪ µ(q) for some K1 ⊆ K . Indeed, for
the query q′ obtained in this way, we haveK1∪µ(q) |= µ(q′),
which implies K ∪ µ(q) |= µ(q′), and thus q is equivalent
to q ∪ q′ w.r.t. K by Theorem 2. In practice, to improve
performance of query extension one could take K1 to be the
TBox T of K (like in Example 6), or even a subset of T
consisting of axioms that fall into some tractable fragment.

Similarly, not all of the computed axioms of the materi-
alization K ′ should necessarily be converted to axiom tem-
plates of q′. For example, if K1 |= A v B and K ′ contains
A(µ(x)), then K ′ will also contain B(µ(x)). However, the
template B(x) is less useful than A(x) in the query extension
since ans(K , {A(x)}) ⊆ ans(K , {B(x)}), and thus the query
bound for B(x) is likely to be worse than the query bounds
for A(x). That is, B(x) is unlikely to further reduce the sub-
query bounds for the templates of q after A(x). Thus, in
practice, we use only direct instance and subsumption rela-
tions of K ′ for the query extension q′.

Example 7. Consider the extended query q ∪ q′ =
{A(x), ∃r.Y(x), Y v B, C(x)} computed in Example 6. Us-
ing the model I for K from Example 2, since I |= C(a),
but I 6|= C(b), I 6|= C(c), and I 6|= C(d), we can derive
the upper bound U = {µ | µ(x) = a} for the query {C(x)}.
Using this upper bound, it is now possible to reduce the up-
per bound for the subquery {A(x)} to U. Since U was a
subset of the lower bound for {A(x)} (see Example 2), this
subquery can be evaluated without performing any further
entailment tests. The new upper bound U can be also used
to further reduce the upper bound for the subquery {∃r.Y(x)}
to {µ | µ(x) = a, µ(Y) ∈ {⊥, B}}. After this reduction, this
subquery can be evaluated using just two entailment tests.

Evaluation
The proposed method has been implemented and evaluated
over a set of well-known benchmarking ontologies and rel-
evant datasets, for several forms of queries. Although it
can be used, in general, for improving the performance of
most hybrid query answering systems, here the evaluation
is based on the system described in Kollia et al. (Kollia and
Glimm 2013), which, to the best of our knowledge, is the
only system that supports the evaluation of complex queries
over OWL 2 DL ontologies under the OWL Direct Seman-
tics entailment regime of SPARQL 1.1.

Kollia et al. (Kollia and Glimm 2013) propose a method
(referred to as evalStatic) for computing bounds for query
templates using the HermiT reasoner (Glimm et al. 2014).

In particular, the classified concept hierarchy and the pre-
model that HermiT constructs are used to compute lower
and upper query template bounds as described in Example 3.
Using these bounds a sophisticated ordering of the axiom
templates in the query is performed. Then, query evaluation
starts with the first template, retrieves the mappings from
the lower bound and checks all remaining mappings from
the upper bound using either dedicated reasoner methods or
entailment checks. While the former is quite cheap, involv-
ing only memory look-ups, the latter is usually significantly
more expensive, involving reasoning procedures. For the
next axiom template, the evaluation is analogous with the
difference that the join variables of the current template with
the previous templates are taken into account.

In our implemented method (referred to as evalExt) we
improve the subquery bounds computed in evalStatic using
the Algorithm of the previous section. Afterwards, we per-
form the ordering and evaluation methods of Kollia et al.
using the improved subquery bounds. As we will show this
improvement of subquery bounds leads to a significant re-
duction in the query execution times compared to evalStatic.

We evaluated evalStatic and evalExt over the Lehigh Uni-
versity Benchmark (LUBM) (Guo, Pan, and Heflin 2005),
the University Ontology Benchmark (UOBM) (Ma et al.
2006), and the Semintec ontology from the Oxford ontology
library.1 We used a range of custom queries since the queries
provided for LUBM and UOBM are only simple conjunctive
instance queries. Additionally, since the above ontologies
do not involve many complex, non-deterministic axioms,
we added some complex terminological axioms, in order to
show the improvement in cases where most expensive rea-
soning procedures are involved. All experiments were per-
formed on a Mac OS X Lion machine with a 2.53 GHz Intel
Core i7 processor and Java 1.6 allowing 1GB of Java heap
space. The ontologies and all code required to perform the
experiments are available online.2

The evaluation results are shown in Table 1. Column 1
shows the query and extension templates, columns 2 and
3 show the query answering times and the number of per-
formed entailment checks for evalStatic, respectively, and
columns 4 and 5 show the respective numbers for evalExt.
In all queries the time spent for query extension is negligible
compared to the time spent for query evaluation.

For LUBM, we used the first three departments of
LUBM(1,0), which consist of 3, 883 individuals. For all
queries, additional extension templates were derived, which
have significantly better query bounds than the complex
templates of the queries. This directly translates to a signif-
icantly lower number of entailment checks for evalExt and,
hence, a reduction in execution times.

The Semintec ontology is more challenging than LUBM
since more individuals are involved, in total 17,941. The
use of evalStatic leads to a timeout for all queries, which
is not very surprising given the large number of individuals
and the consequently higher number of required entailment
checks. The higher number of required entailment checks

1http://www.cs.ox.ac.uk/isg/ontologies/lib/
2http://www.image.ece.ntua.gr/∼ilianna/AAAI2015.zip

113

Table 1: Query answering times in seconds (n/a indicates a timeout, > 30 min) and number of performed entailment checks for
LUBM(1,0) with the three first departments, Semintec, and UOBM with the first department using evalStatic and evalExt. The
extension templates for each query qi used in evalExt is given in q′i (1 ≤ i ≤ 15).

evalStatic evalExt
LUBM time #entail time #entail
q1 = {∃worksFor.Organization(x)}, q′1 = {Employee(x)} 452.55 1,398 22.41 217
q2 = {X v ∃headOf.College,∃isTaughtBy.X(y)},

q′2 = {X v Dean,CourseTaughtByDean(y)}
634.43 1,714 0.26 0

q3 = {X v Course u ∀isTakenBy.GraduateStudent, ∃teachingAssistantOf.X(y)},
q′3 = {X v GraduateCourse,TeachingAssistantOfGraduateCourse(y)}

614.55 1,635 23.76 158

Semintec
q4 = {∃hasOwner.Man(x)}, q′4 = {AccountWithAtLeastOneManOwner(x)} n/a 588.99 2,292
q5 = {∃hasCreditCard.Gold(x)}, q′5 = {OwnerOfAtLeastOneGoldCreditCard(x)} n/a 23.16 88
q6 = {X v Client u ∀hasSexValue.FemaleSex,∃isCreditCardOf.X(y)},

q′6 = {X v Woman,CreditCardHeldByWoman(y)}
n/a 1,043.28 846

q7 = {X v Finished u ∀hasLoanStatusValue.OKStatus, ∃hasLoan.X(y)},
q′7 = {X v NoProblemsFinishedLoan,AccountWithOkFinishedLoan(y)}

n/a 410.59 406

UOBM
q8 = {isAdvisedBy(x, y),GraduateStudent(x),Woman(y)}, q′8 = {Professor(y)} 20.84 47 10.54 19
q9 = {isTaughtBy(x, y),GraduateCourse(x),Woman(y)}, q′9 = {Faculty(y)} 21.63 51 12.06 26

q10 = {teachingAssistantOf(x, y),GraduateCourse(y),Woman(x)},
q′10 = {TeachingAssistant(x)}

12.78 32 5.60 12

q11 = {∃takesCourse.>(x),∀takesCourse.GraduateCourse(x)},
q′11 = {GraduateStudent(x)}

569.06 1,694 256.77 1,332

q12 = {∃worksFor.Organization(x),Woman(x)}, q′12 = {Employee(x)} n/a 18.36 135
q13 = {X v ∃isHeadOf.Department,∃isTaughtBy.X(y)},

q′13 = {X v Chair,CourseTaughtByChair(y)}
n/a 1.99 4

q14 = {X v ∃isHeadOf.College,∃isTaughtBy.X(y)},
q′14 = {X v Dean,CourseTaughtByDean(y)}

n/a 0.17 0

q15 = {X v ∃isHeadOf.College,∃isAdvisedBy.X(y),
q′15 = {X v Dean,PersonAdvisedByDean(y)}

n/a 0.21 0

also affected evalExt, but all queries could be evaluated in
the given time limit since the extension templates lead to
a significant reduction in the number of possible answers.
Note that X v Client is not an extension template for q6,
although this might be expected from the axiom template
X v Clientu∀hasSexValue.FemaleSex. The axiom template
is, however, omitted since we also obtain the extension tem-
plate X v Woman, Semintec contains Woman v Client, and
we only use the direct subsumption relations in evalExt.

In our last evaluation scenario, we used the UOBM bench-
mark, which contains an ontology that is an extension of
the LUBM ontology in terms of expressivity, involving non-
determinism. In order to reduce the reasoning time, we re-
moved the nominals that are very hard to deal with and we
used the first department of UOBM containing 3,043 in-
dividuals. The queries are particularly constructed to use
the non-determinism, i.e., our aim is to inspect cases where
the lower and the upper bounds do not coincide, which is
the case for GraduateStudent, Woman and GraduateCourse.
As before, evalExt finds extension templates for all queries,
which considerably reduce the subquery bounds for other
templates resulting in a significantly reduced number of en-
tailment checks in comparison to evalStatic and, hence, re-
duced query answering times. For UOBM, we observe the
most significant reduction in query answering times, which

is up to four orders of magnitude.

Conclusions
In the current paper, we presented an approach for exploit-
ing lower and upper bounds computed for SPARQL queries
which are evaluated under the OWL Direct Semantics en-
tailment regime. In particular, we showed how we can
build equivalent queries with additional extension templates,
whose bounds can be used to restrict the bounds of templates
of the initial query. Through our experimental evaluation we
showed that the use of these extension templates can lead to
a significant reduction in query answering time, which can
be up to four orders of magnitude.

Acknowledgments
The presented work was partially supported by the Greek
Strategic Reference Framework 2007-2013 Operational Pro-
gramme ‘Competitiveness and Entrepreneurship’ under the
contract ‘DARIAH-ATTIKH: Developing a Greek Research
Infrastructure for the Humanities’. Ilianna Kollia and Gior-
gos Stamou are funded by the Hellenic General Secretariat
for Research and Technology (Call 103/2012).

114

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P., eds. 2007. The Description Logic Hand-
book: Theory, Implementation, and Applications. Cam-
bridge University Press, second edition.
Barceló, P.; Libkin, L.; and Romero, M. 2012. Efficient
approximations of conjunctive queries. In Proceedings of
the 31st Symposium on Principles of Database Systems,
PODS’12, 249–260. ACM.
Bhogal, J.; Macfarlane, A.; and Smith, P. 2007. A review
of ontology based query expansion. Information Processing
and Management 43(4):866 – 886.
Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 2008.
Conjunctive query containment and answering under de-
scription logics constraints. ACM Transactions on Compu-
tational Logic 9(3).
Dolby, J.; Fokoue, A.; Kalyanpur, A.; Kershenbaum, A.;
Schonberg, E.; Srinivas, K.; and Ma, L. 2007. Scalable se-
mantic retrieval through summarization and refinement. In
Proceedings of the 22nd AAAI Conference on Artificial In-
telligence (AAAI’07), 299–304.
Dolby, J.; Fokoue, A.; Kalyanpur, A.; Schonberg, E.; and
Srinivas, K. 2009. Scalable highly expressive reasoner
(SHER). Journal of Web Semantics 7(4):357–361.
Fink, R., and Olteanu, D. 2011. On the optimal approx-
imation of queries using tractable propositional languages.
In Proceedings of the 14th International Conference on
Database Theory, ICDT’11, 174–185. ACM.
Glimm, B., and Ogbuji, C., eds. 2013. SPARQL 1.1 En-
tailment Regimes. W3C Recommendation. Available at
http://www.w3.org/TR/sparql11-entailment/.
Glimm, B.; Horrocks, I.; Motik, B.; Stoilos, G.; and Wang,
Z. 2014. Hermit: An OWL 2 reasoner. Journal of Automated
Reasoning 53:245–269.
Grootjen, F., and van der Weide, T. 2006. Conceptual query
expansion. Data and Knowledge Engineering 56(2):174 –
193.
Guo, Y.; Pan, Z.; and Heflin, J. 2005. LUBM: A benchmark
for OWL knowledge base systems. Journal of Web Seman-
tics 3(2-3):158–182.
Halevy, A. Y. 2001. Answering queries using views: A
survey. The VLDB Journal 10(4):270–294.
Harris, S., and Seaborne, A., eds. 2013. SPARQL 1.1 Query
Language. W3C Recommendation. Available at http://www.
w3.org/TR/sparql11-query/.
Horrocks, I.; Kutz, O.; and Sattler, U. 2006. The even more
irresistible SROIQ. In Proceedings of the 10th Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning (KR’06), 57–67.
Kollia, I., and Glimm, B. 2012. Cost based query ordering
over OWL ontologies. In Proceedings of the 11th Interna-
tional Semantic Web Conference (ISWC 2012), volume 7649
of Lecture Notes in Computer Science, 231–246. Springer.
Kollia, I., and Glimm, B. 2013. Optimizing SPARQL Query
Answering over OWL Ontologies. Journal of Artificial In-
telligence Research 48:253–303.

Luna, J. E. O.; Revoredo, K.; and Cozman, F. G. 2010.
Semantic query extension through probabilistic description
logics. In Proceedings of the 6th International Workshop
on Uncertainty Reasoning for the Semantic Web (URSW
2010), volume 654 of CEUR Workshop Proceedings, 49–60.
CEUR-WS.org.
Ma, L.; Yang, Y.; Qiu, Z.; Xie, G.; Pan, Y.; and Liu, S. 2006.
Towards a complete OWL ontology benchmark. In The Se-
mantic Web: Research and Applications, Lecture Notes in
Computer Science. Springer. 125–139.
Motik, B.; Patel-Schneider, P. F.; and Parsia, B., eds.
2009. OWL 2 Web Ontology Language: Structural Speci-
fication and Functional-Style Syntax. W3C Recommenda-
tion. Available at http://www.w3.org/TR/owl2-syntax/.
Munir, K.; Odeh, M.; and McClatchey, R. 2012. Ontology-
driven relational query formulation using the semantic and
assertional capabilities of OWL-DL. Knowledge-Based Sys-
tems 35:144–159.
Pan, J. Z.; Thomas, E.; and Zhao, Y. 2009. Completeness
guaranteed approximation for OWL-DL query answering.
In Proceedings of the 22nd International Workshop on De-
scription Logics (DL’09), volume 477 of CEUR Workshop
Proceedings. CEUR-WS.org.
Ren, Y.; Pan, J. Z.; and Zhao, Y. 2010. Soundness pre-
serving approximation for TBox reasoning. In Proceedings
of the 25th National Conference on Artificial Intelligence
(AAAI’10). AAAI Press.
Zhou, Y.; Nenov, Y.; Grau, B. C.; and Horrocks, I. 2014.
Pay-as-you-go OWL query answering using a triple store. In
Proceedings of the 28th Conference on Artificial Intelligence
(AAAI’14), 1142–1148.

115

