
High-Performance Distributed ML at Scale
through Parameter Server Consistency Models

Wei Dai, Abhimanu Kumar, Jinliang Wei, Qirong Ho*, Garth Gibson and Eric P. Xing
School of Computer Science, Carnegie Mellon University

*Institute for Infocomm Research, A*STAR
twdai,abhimank,jinlianw,garth,epxing@cs.cmu.edu, hoqirong@gmail.com

Abstract

As Machine Learning (ML) applications embrace
greater data size and model complexity, practition-
ers turn to distributed clusters to satisfy the increased
computational and memory demands. Effective use of
clusters for ML programs requires considerable exper-
tise in writing distributed code, but existing highly-
abstracted frameworks like Hadoop that pose low bar-
riers to distributed-programming have not, in practice,
matched the performance seen in highly specialized and
advanced ML implementations. The recent Parameter
Server (PS) paradigm is a middle ground between these
extremes, allowing easy conversion of single-machine
parallel ML programs into distributed ones, while main-
taining high throughput through relaxed “consistency
models” that allow asynchronous (and, hence, inconsis-
tent) parameter reads. However, due to insufficient the-
oretical study, it is not clear which of these consistency
models can really ensure correct ML algorithm out-
put; at the same time, there remain many theoretically-
motivated but undiscovered opportunities to maximize
computational throughput. Inspired by this challenge,
we study both the theoretical guarantees and empirical
behavior of iterative-convergent ML algorithms in ex-
isting PS consistency models. We then use the gleaned
insights to improve a consistency model using an “ea-
ger” PS communication mechanism, and implement it
as a new PS system that enables ML programs to reach
their solution more quickly.

Introduction
The surging data volumes generated by internet activity and
scientific research (Dean et al. 2012) put tremendous pres-
sure on Machine Learning (ML) methods to scale beyond
the computation and memory limit of a single machine.
With very large data sizes (Big Data), a single machine
would require too much time to process complex ML mod-
els (Ahmed et al. 2012; Ho et al. 2013; Cipar et al. 2013;
Cui et al. 2014; Li et al. 2014), and this motivates or even
necessitates distributed-parallel computation over a clus-
ter of machines. A popular approach is data parallelism,
in which the data is partitioned and distributed across dif-
ferent machines, which then train the (shared) ML model

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

using their local data. One of the primary challenges in
data parallelism is designing software systems to share the
ML model across a cluster of commodity machines, in a
manner that is theoretically well-justified, empirically high-
performance, and easy-to-program all at the same time —
and a highly promising solution is the titular ”Parameter
Server” (PS) paradigm, which ML practitioners have been
turning to in recent years (Ahmed et al. 2012; Ho et al. 2013;
Cipar et al. 2013; Cui et al. 2014; Li et al. 2014).

Many general-purpose Parameter Server (PS) sys-
tems (Ho et al. 2013; Cipar et al. 2013; Cui et al. 2014)
provide a Distributed Shared Memory (DSM) solution to the
issue of Big Data in ML computation. DSM allows ML pro-
grammers to treat the entire cluster as a single memory pool,
where every machine can read/write to any model parameter
via a simple programming interface; this greatly facilitates
the implementation of distributed ML programs, because
programmers may treat a cluster like a “supercomputer” that
can run thousands of computational threads, without wor-
rying about low-level communication between machines. It
should be noted that not all PS systems provide a DSM in-
terface; some espouse an arguably less-convenient push/pull
interface that requires users to explicitly decide which parts
of the ML model need to be communicated (Li et al. 2014),
in exchange for potentially more aggressive efficiency gains.

A major motivation behind the parameter server architec-
ture is the opportunities it offers — without forcing users
to use complicated distributed programming tools — to
explore various relaxed consistency models for controlled
asynchronous parallel execution of machine learning pro-
grams, in an effort to improve overall system efficiency.
Central to the legitimacy of employing such inconsistent
models — which in theory would cause erroneous out-
comes — is the iterative-convergent nature of ML pro-
grams, which presents unique opportunities and challenges
that do not manifest in traditional database applications.
One of the most interesting opportunities is that iterative-
convergent ML programs exhibit limited error-tolerance in
the parameter states, a point that is confirmed by the the-
oretical and empirical success of stochastic subsampling
(e.g. minibatch methods) or randomized algorithms, which
are prominently represented in the large-scale ML litera-
ture (Ahmed et al. 2012; Ho et al. 2013; Gemulla et al. 2011;
Kumar et al. 2014). The key challenge is to determine why

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

79

error tolerance allows inconsistent execution models to ac-
celerate distributed-parallel execution of ML algorithms on
Big Data (while still producing correct answers), which in
turn teaches us how to construct better execution models that
not only have superior theoretical properties, but also enable
more efficient systems designs.

Recent works (Niu et al. 2011; Ho et al. 2013; Kumar
et al. 2014) have introduced relaxed consistency models to
trade off between parameter read accuracy and read through-
put, and show promising speedups over fully-consistent
models. Their success is underpinned by the aforementioned
error-tolerant nature of ML, that “plays nicely” with relaxed
synchronization guarantees — and in turn, relaxed synchro-
nization allows system designers to achieve higher through-
put, compared to fully-consistent models. These progresses
notwithstanding, we still possess limited understanding of
(1) how relaxed consistency affects the convergence rate
and stability of distributed ML algorithms, and (2) what op-
portunities remain undiscovered or unexploited to seek bet-
ter trade-offs between the performance of the distributed
ML algorithm (how much progress it makes per iteration,
which can be compromised by relaxed consistency), and
the throughput of the PS system (how many iterations can
be executed per second, which increases with relaxed con-
sistency). Contemporary PS literature has focused most on
system optimizations for PSes, using various heuristics like
async relaxation (Chilimbi et al. 2014) and uneven update
propagation based on parameter values (Li et al. 2014),
but lacks a thorough formal analysis of such trade-offs. In
this paper, we investigate these issues from an ML-theoretic
standpoint, and provide principled insights on how system
behaviors influence algorithmic outcomes, as well as in-
sights on how to improve PS design thereupon. Concretely,
we examine the theoretical and empirical behavior of PS
consistency models from several interesting angles, such as
the distribution of stale reads and the impact of staleness on
solution stability. We then apply the learnt insights to design
a more efficient consistency model and, accordingly, a new
PS system that outperforms its predecessors.

We begin with an in-depth examination of a Value-
Bounded Asynchronous Parallel (VAP) model, which we
formulated to encapsulate an appealing idea that can be
shown to represent an ideal, gold-standard parallelization
strategy in terms of theoretical behavior (high progress per
ML algorithm iteration). Unfortunately, although the basic
idea of VAP was attempted in (Li et al. 2013), mathemati-
cally the VAP principle can be only approximated, because
bounding the value of in-transit updates amounts to tight
synchronization. Without well-defined system guarantees,
theses system artifacts built on approximate VAP are dif-
ficult to formally characterize. We then propose an Eager
Stale Synchronous Parallel (ESSP) model, a variant of the
Stale Synchronous Parallel (SSP, a bounded-iteration model
that is fundamentally different from VAP) model introduced
in (Ho et al. 2013), and formally show that ESSP offers a
comparable guarantee to that of the ideal VAP, but repre-
sents a practical and easily realizable PS scheme for data-
parallelization. Specifically, we establish expectation and
variance bounds for both ESSP and VAP, and show that

ESSP attains qualitatively the same guarantees as VAP, but
with an arguably easier-to-control parameter (staleness ver-
sus value-bound), and significantly stronger guarantees than
that of the original SSP. The variance bounds in particular
provide a deeper characterization of convergence (particu-
larly solution stability) under SSP and VAP, which is not
possible with existing PS theory that is focused only on
expectation bounds (Ho et al. 2013). Upon this new the-
ory, we develop an efficient implementation of ESSP and
shows that it outperforms SSP in convergence (both real
time and per iteration) by reducing the average staleness,
consistent with our theoretical results. This ESSP implemen-
tation will be made available soon as part of the Petuum
project (www.petuum.org), an open-source framework for
distributed Machine Learning.

Taking a broader view of recent large-scale ML ef-
forts, we see our work as complementing model-parallel ef-
forts (Lee et al. 2014; Kumar et al. 2014) that directly parti-
tion ML parameters for parallel updates (as opposed to PS-
supported data-parallellism, where every data partition up-
dates the whole parameter state). While the theoretical un-
derpinnings of model-parallelism seem quite different from
the data-parallel analysis espoused in this paper, we conjec-
ture that the two types of parallelism are in fact compati-
ble, and can be practically applied, as well as theoretically
analyzed, in tandem. Since data-parallelism solves the is-
sue of large data, while model-parallelism addresses massive
ML model sizes, it seems only natural that their combina-
tion should yield a highly-promising solution to the Big ML
challenge, where both data and model sizes greatly exceed
the computational and memory capacity of a single machine.
We expect the results presented in this paper will provide a
desirable theoretical and systems paradigm for studying this
promising direction in future work.

Parameter Server and Data Parallelism
We now make precise the data-parallel computation model
and the parameter server (PS) abstraction that facilitates
large-scale data-parallel computation. In data-parallel ML
the data set D is pre-partitioned or naturally stored on
worker machines, indexed by p = 1, ..., P (Fig. 1a). Let Dp

be the p-th data partition, A(t) be the model parameters at
clock t, the data-parallel computation executes the follow-
ing update equation until some convergence criteria is met:

A(t) = F (A(t−1),
P∑
p=1

∆(A(t−1), Dp))

where ∆() performs computation using full model state
A(t−1) on data partition Dp. The sum of intermediate re-
sults from ∆() and current model state A(t−1) are aggre-
gated by F () to generate the next model state. For stochastic
gradient (SGD) algorithms like the one used in this paper
for matrix factorization, ∆() computes the gradient and the
update is A(t) = A(t−1) + η

∑P
p=1 ∆(A(t−1), Dp) with η

being the step size. The second example application in this
paper is topic model (LDA) using collapsed Gibbs sampling.
In this case ∆() increments and decrements the sufficient

80

Figure 1: (a) Illustration of data parallelism. (b) Parameter
server topology. Servers and clients interact via a bipartite
topology. Note that this is the logical topology; physically
the servers can collocate with the clients to utilize CPU on
all machines.

statistics (“word-topic” counts) according to the sampled
topic assignments. This update equation can also express
variational EM algorithms A(t) =

∑P
p=1 ∆(A(t−1), Dp).

To achieve data-parallel ML computation, we need to (1)
make model state A available to all workers, and (2) ac-
cumulate the ∆ updates from workers. A Parameter Server
(PS) serves these needs by providing a distributed shared
memory interface (a shared key-value store using a central-
ized storage model). The model parameters A are stored on
the server, which can be distributed and thus not limited by
a single machine’s memory (Fig. 1b). The worker machines
access the entire model state on servers via a key-value in-
terface. This distributed shared memory provided by the PS
can be easily retrofitted to existing single-machine multi-
threaded ML programs, by simply replacing reads/updates
to the model parameters with read/update calls to the PS.
Because inter-machine communication over networks is sev-
eral orders of magnitude slower than CPU-memory commu-
nication in both bandwidth and latency, one challenge in im-
plementing an efficient PS is to design consistency models
for efficient reads/updates of model parameters.

Consistency Models for Parameter Servers
A key idea for large-scale distributed ML is to carefully
trade off parameter consistency for increased parameter read
throughput (and thus faster algorithm execution), in a man-
ner that guarantees the final output of an ML algorithm
is still “correct” (meaning that it has reached a locally-
optimal answer). This is possible because ML algorithms
are iterative-convergent and error-tolerant: ML algorithms
will converge to a local optimum even when there are errors
in the algorithmic procedure itself (such as stochasticity in
randomized methods).

In a distributed-parallel environment, multiple workers
must simultaneously generate updates to shared global pa-
rameters. Hence, enforcing strong consistency (parame-
ters updates are immediately reflected) quickly leads to
frequent, time-consuming synchronization and thus very
limited speed up from parallelization. One must there-
fore define a relaxed consistency model that enables low-
synchronization parallelism while closely approximating the

strong consistency of sequential execution. The insight is
that, to an iterative-convergent ML algorithm, inconsistent
parameter reads have essentially the same effect as errors
due to the algorithmic procedure — implying that conver-
gence to local optima can still happen even under incon-
sistent reads, provided the degree of inconsistency is care-
fully controlled. We now explain two possible PS consis-
tency models, and the trade-offs they introduce.

The ideal but hard-to-realize Value-bounded
Asynchronous Parallel (VAP) model
We first introduce Value-bounded Asynchronous Parallel
(VAP), an ideal model that directly approximates strong con-
sistency (e.g. in the sequential setting) by bounding the dif-
ference in magnitude between the strongly consistent view
of values (i.e. values under the single-thread model) and the
actual parameter views on the workers. Formally, let x rep-
resent all model parameters, and assume that each worker in
the ML algorithm produces additive updates (x ← x + u,
where u is the update)1. Given P workers, we say that an
update u is in transit if u has been seen by P − 1 or fewer
workers — in other words, it is yet visible by all workers.
Update u is no longer in transit once seen by all workers.
The VAP requires the following condition:

VAP condition: Let up,i be the updates from worker p
that are in transit, and up :=

∑
i up,i. VAP requires that,

whenever any worker performs a computation involving the
model variables x, the condition ||up||∞ ≤ vthr holds for
a specified (time-varying) value bound parameter vthr. In
other words, the aggregated in-transit updates from all work-
ers cannot be too large.

To analyze VAP, we must identify algorithmic proper-
ties common to ML algorithms. Broadly speaking, most
ML algorithms are either optimization-based or sampling-
based. Within the former, many Big Data ML algorithms are
stochastic gradient descent-based (SGD), because SGD al-
lows each worker to operate on its own data partition (i.e. no
need to transfer data between workers), while the algorithm
parameters are globally shared (hence a PS is necessary).
SGD’s popularity makes it a good choice for grounding our
analysis — in later section, we show that VAP approximates
strong consistency well in these senses: (1) SGD with VAP
errors converges in expectation to an optimum; (2) the pa-
rameter variance decreases in successive iterations, guaran-
teeing the quality and stability of the final result.

While being theoretically attractive, the VAP condition is
too strong to be implemented efficiently in practice: before
any worker can perform computation on x, it must ensure
that the in-transit updates from all other workers sum to at
most vthr component-wise due to the max-norm. This poses
a chicken-and-egg conundrum: for a worker to ensure the
VAP condition holds, it needs to know the updates from
all other workers — which, in general, requires the same
amount of communication as strong consistency, defeating
the purpose of VAP. While it may be possible to relax the

1This is common in algorithms such as gradient descent (u be-
ing the gradient) and sampling methods.

81

Figure 2: Left: Empirical staleness distribution from matrix
factorization. X-axis is (parameter age - local clock), y-axis
is the normalized observation count. Note that on Bulk Syn-
chronous Parallel (BSP) system such as Map-Reduce, the
staleness is always −1. We use rank 100 for matrix factor-
ization, and each clock is 1% minibatch. The experiment is
run on a 64 node cluster. Right: Communication and Com-
putation breakdown for LDA. The lower part of the bars are
computation, and the upper part is communication.

VAP condition for specific problem structures, in general,
value-bounds are difficult to achieve for a generic PS.

Eager Stale Synchronous Parallel (ESSP)
To design a consistency model that is practically efficient
while providing correctness guarantees, we consider an
iteration-based consistency model called Stale Synchronous
Parallel (SSP) (Ho et al. 2013) that can be efficiently imple-
mented in PS. At a high level, SSP imposes bounds on clock,
which represents some unit of work in an ML algorithm,
akin to iteration. Given P workers, SSP assigns each worker
a clock cp that is initially zero. Then, each worker repeats the
following operations: (1) perform computation using shared
parameters x stored in the PS, (2) make additive updates u
to the PS, and (3) advance its own clock cp by 1. The SSP
model limits fast workers’ progress so that the clock differ-
ence between the fastest and slowest worker is ≤ s, s being
a specified staleness parameter. This is achieved via:

SSP Condition (informal): Let c be the clock of the
fastest workers. They may not make further progress until
all other workers’ updates up that were made at clocks at or
before c− s− 1 become visible.

We present the formal condition in the next section. Cru-
cially, there are multiple update communication strategies
that can meet the SSP condition. We present Eager SSP
(ESSP) as a class of implementations that eagerly propagate
the updates to reduce empirical staleness beyond required
by SSP. ESSP does not provide new guarantees beyond SSP,
but we show that by reducing the average staleness ESSP
achieves faster convergence theoretically and empirically.

To show that ESSP reduces the staleness of parameter
read, we can empirically measure the staleness of parame-
ter reads during PS algorithm execution. Fig. 2 (left) shows
the distribution of parameter staleness observed in matrix
factorization implemented on SSP and ESSP. Our measure
of staleness is a “clock differential”: when a worker reads
a parameter, the read parameters reflect updates from other

worker 0 or more clocks behind. Clock differential sim-
ply measures this clock difference. Under SSP, the distri-
bution of clock differentials is nearly uniform, because SSP
“waits until the last minute” to update the local parameter
cache. On the other hand, ESSP frequently updates the lo-
cal parameter caches via its eager communication, which
reduces the negative tail in clock differential distribution —
this improved staleness profile is ESSP’s most salient advan-
tage over SSP. In the sequel, we will show that better stal-
eness profiles lead to faster ML algorithm convergence, by
proving new, stronger convergence bounds based on average
staleness and the staleness distributions (unlike the simpler
worst-case bounds in (Ho et al. 2013)).

Our analyses and experiments show that ESSP combines
the strengths of VAP and SSP: (1) ESSP achieves strong the-
oretical properties comparable to VAP; (2) ESSP can be effi-
ciently implemented, with excellent empirical performance
on two ML algorithms: matrix completion using SGD, and
topic modeling using sampling. We also show that ESSP
achieves higher throughput than SSP, thanks to system opti-
mizations exploiting ESSP’s aggressive scheduling.

Theoretical Analysis
In this section, we theoretically analyze VAP and ESSP, and
show how they affect ML algorithm convergence. For space
reasons, all proofs are placed in the appendix. We ground
our analysis on ML algorithms in the stochastic gradient de-
scent (SGD) family (due to its high popularity for Big Data),
and prove the convergence of SGD under VAP and ESSP.
We now explain SGD in the context of a matrix completion
problem.

SGD for Low Rank Matrix Factorization
Matrix completion involves decomposing an N ×M matrix
D into two low rank matrices L ∈ RN×K and R ∈ RK×M
such that LR ≈ D gives the prediction of missing entries in
D, where K << min{M,N} is a user-specified rank. The
`2-penalized optimization problem is:

min
L,R

∑
(i,j)∈Dobs

||Dij −
K∑
k=1

LikRkj ||2 + λ(||L||2F + ||R||2F)

where || · ||F is the Frobenius norm and λ is the regular-
ization parameter. The stochastic gradient updates for each
observed entry Dij ∈ Dobs are

Li∗ ← Li∗ + γ(eijR
>
∗j − λLi∗)

R>∗j ← R∗j + γ(eijL
>
i∗ − λR∗j)

where Li∗, R∗j are row and column of L,R respectively,
andLi∗R∗j is the vector product. eij = Dij−Li∗R∗j . Since
L,R are being updated by each gradient, we put them in the
parameter server to allow all workers access them and make
additive updates. The data Dobs are partitioned into worker
nodes and stored locally.

VAP We formally introduce the VAP computation model:
given P workers that produce updates at regular intervals

82

which we call “clocks”, let up,c ∈ Rn be the update from
worker p at clock c applied to the system state x ∈ Rn via
x ← x + up,c. Consider the update sequence ût that orders
the updates based on the global time-stamp they are gener-
ated. We can define “real-time sequence” x̂t as

x̂t := x0 +
t∑

t′=1

ût′

assuming all workers start from the agreed-upon initial state
x0. (Note that x̂t is different from the parameter server view
as the updates from different workers can arrive the server
in a different order due to network.) Let x̆t be the noisy view
some worker w sees when generating update ût, i.e., ût :=
G(x̆t) for some function G. The VAP condition guarantees

||x̆t − x̂t||∞ ≤ vt =
v0√
t

(1)

where we require the value bound vt to shrink over time
from the initial bound v0. Notice that x̆t − x̂t is exactly the
updates in transit w.r.t. worker w. We make mild assump-
tions to avoid pathological cases.2

Theorem 1 (SGD under VAP, convergence in expectation)
Given convex function f(x) =

∑T
t=1 ft(x) such that com-

ponents ft are also convex. We search for minimizer x∗ via
gradient descent on each component ∇ft with step-size η̆t
close to ηt = η√

t
such that the update ût = −η̆t∇ft(x̆t) is

computed on noisy view x̆t. The VAP bound follows the de-
creasing vt described above. Under suitable conditions (ft
are L-Lipschitz and bounded diameter D(x‖x′) ≤ F 2),

R[X] :=

T∑
t=1

ft(x̆t)− f(x∗) = O(
√
T)

and thus R[X]
T → 0 as T →∞.

Theorem 1 implies that the worker’s noisy VAP view x̆t
converges to the global optimum x∗, as measured by f , in
expectation at the rate O(T−1/2). The analysis is similar
to (Ho et al. 2013), but we use the real-time sequence x̂t as
our reference sequence and VAP condition instead of SSP.
Loosely speaking, Theorem 1 shows that VAP execution is
unbiased. We now present a new bound on the variance.
Theorem 2 (SGD under VAP, bounded variance) Assum-
ing f(x), η̆t, and vt similar to theorem 1 above, and f(x)
has bounded and invertible Hessian, Ω∗ defined at optimal
point x∗. Let Var t := E[x̆2

t] − E[x̆t]2 (Var t is the sum of
component-wise variance3), and ğt = ∇ft(x̆t) is the gradi-
ent, then:

Var t+1 = Var t − 2cov(x̂t,E∆t [ğt]) +O(δt) (2)

+O(η̆2
t ρ

2
t) +O∗δt (3)

2To avoid pathological cases where a worker is delayed indef-
initely, we assume that each worker’s updates are finitely apart in
sequence ût. In other words, all workers generate updates with suf-
ficient frequency. For SGD, we further assume that each worker
updates its step-sizes sufficiently often that the local step-size
η̆t = η√

t−r for some bounded drift r ≥ 0 and thus η̆t is close
to the global step size schedule ηt = η√

t
.

3Var t =
∑d
i=1 E[x̆2ti] − E[x̆ti]

2

near the optima x∗. The covariance cov(a, b) := E[aT b]−
E[aT]E[b] uses inner product. δt = ||δt||∞ and δt = x̆t−x̂t.
ρt = ||x̆t − x∗||. ∆t is a random variable capturing the
randomness of update ût = −ηtğt conditioned on x̂t (see
appendix).
cov(x̂t,E∆t [ğt]) ≥ 0 in general as the change in xt and av-
erage gradient E∆t [ğt] are of the same direction. Theorem 2
implies that under VAP the variance decreases in successive
iterations for sufficiently small δt, which can be controlled
via VAP threshold vt. However, the VAP condition requires
tight synchronization as δt → 0. This motivates our follow-
ing analysis of the SSP model.

SSP We return to the (p, c) index. Under the SSP worker p
at clock c only has access to a noisy view x̃p,c of the system
state (x̃ is different from the noisy view in VAP x̆). Update
up,c = G(x̃p,c) is computed on the noisy view x̃p,c for some
function G(). Assuming all workers start from the agreed-
upon initial state x0, the SSP condition is:

SSP Bounded-Staleness (formal): For a fixed staleness s,
the noisy state x̃p,c is equal to

x̃p,c = x0 +

c−s−1∑
c′=1

P∑
p′=1

up′,c′

︸ ︷︷ ︸

guaranteed pre-window updates

+

 ∑
(p′,c′)∈Sp,c

up′,c′

︸ ︷︷ ︸

best-effort in-window updates

,

for some Sp,c ⊆ Wp,c = {1, ..., P} × {c− s, ..., c+ s− 1}
which is some subset of updates in the 2s window issued by
all P workers during clock c−s to c+s−1. The noisy view
consists of (1) guaranteed pre-window updates for clock 1 to
c − s − 1, and (2) best-effort updates indexed by Sp,c.4 We
introduce a clock-major index t:

x̃t := x̃(t mod P),bt/Pc ut := u(t mod P),bt/Pc

and analogously for St and Wt. We can now define a ref-
erence sequence (distinct from x̂t in VAP) which we infor-
mally refers to as the “true” sequence:

xt = x0 +
t∑

t′=0

ut′ (4)

The sum loops over workers (t mod P) and clocks bt/P c .
Notice that this sequence is unrelated to the server view.
Theorem 3 (SGD under SSP, convergence in expecta-
tion (Ho et al. 2013), Theorem 1) Given convex func-
tion f(x) =

∑T
t=1 ft(x) with suitable conditions as in

Theorem 1, we use gradient descent with updates ut =
−ηt∇ft(x̃t) generated from noisy view x̃t and ηt = η√

t
.

Then

R[X] :=
T∑
t=1

ft(x̃t)− f(x∗) = O(
√
T)

and thus R[X]
T → 0 as T →∞.

4In contrast to (Ho et al. 2013), we do not assume read-my-
write.

83

Theorem 3 is the SSP-counterpart of Theorem 1. The
analysis of Theorem 3 only uses the worst-case SSP bounds.
However, in practice many updates are much less stale than
the SSP bound. In Fig 2 (left) both implementations have
only a small portion of updates with maximum staleness.

We now use moment statistics to further characterize
the convergence. We begin by decomposing x̃t. Let ūt :=

1
P (2s+1)

∑
t′∈Wt

||ut′ ||2 be the average of `2 of the updates.
We can write the noisy view x̃t as

x̃t = xt + ūtγt (5)

where γt ∈ Rd is a vector of random variables whose ran-
domness lies in the network communication. Note that the
decomposition in eq. 5 is always possible since ūt = 0 iff
ut′ = 0 for all updates ut′ in the 2s window. Using SSP we
can bound ūt and γt:

Lemma 4 ūt ≤ η√
t
L and γt := ||γt||2 ≤ P (2s+ 1).

Therefore µγ = E[γt] and σγ = var(γt) are well-defined.
We now provide an exponential tail-bound characterizing
convergence in finite steps.

Theorem 5 (SGD under SSP, convergence in probability)
Given convex function f(x) =

∑T
t=1 ft(x) such that compo-

nents ft are also convex. We search for minimizer x∗ via gra-
dient descent on each component ∇ft under SSP with stal-
eness parameter s and P workers. Let ut := −ηt∇tft(x̃t)
with ηt = η√

t
. Under suitable conditions (ft are L-Lipschitz

and bounded divergence D(x||x′) ≤ F 2), we have

P

[
R [X]

T
− 1√

T

(
ηL2 +

F 2

η
+ 2ηL2µγ

)
≥ τ

]
≤ exp

{
−Tτ2

2η̄Tσγ + 2
3ηL

2(2s+ 1)Pτ

}
where R[X] :=

∑T
t=1 ft(x̃t) − f(x∗), and η̄T =

η2L4(lnT+1)
T = o(T).

This means that R[X]
T converges to O(T−1/2) in probability

with an exponential tail-bound. Also note that the conver-
gence is faster for smaller µγ and σγ .

We need a few mild assumptions on the staleness γt in
order to derive variance bound:

Assumption 1 γt are i.i.d. random variable with well-
defined mean µγ and variance σγ .

Assumption 2 γt is independent of xt and ut.

Assumption 1 is satisfied by Lemma 4, while Assumption 2
is valid since γt are only influenced by the computational
load and network bandwidth at each machine, which are
themselves independent of the actual values of the computa-
tion (ut and xt). We now present an SSP variance bound.

Theorem 6 (SGD under SSP, decreasing variance) Given
the setup in Theorem 5 and assumption 1-2. Further assume
that f(x) has bounded and invertible Hessian Ω∗ at opti-
mum x∗ and γt is bounded. Let Var t := E[x̃2

t] − E[x̃t]2,

gt = ∇ft(x̃t) then for x̃t near the optima x∗ such that
ρt = ||x̃t − x∗|| and ξt = ||gt|| − ||gt+1|| are small:

Var t+1 = Var t − 2ηtcov(xt,E∆t [gt]) +O(ηtξt) (6)

+O(η2
t ρ

2
t) +O∗γt (7)

where covariance cov(a, b) := E[aT b] − E[aT]E[b] uses
inner product. O∗γt

are high order (≥ 5th) terms involving
γt = ||γt||∞. ∆t is a random variable capturing the ran-
domness of update ut conditioned on xt (see appendix).

As argued before, cov(xt,E∆t [gt]) ≥ 0 in general. There-
fore the theorem implies that Var t monotonically decreases
over time when SGD is close to an optima.

Comparison of VAP and ESSP
From Theorem 2 and 6 we see that both VAP and (E)SSP de-
crease the variance of the model parameters. However, VAP
convergence is much more sensitive to its tuning parameter
(the VAP threshold) than (E)SSP, whose tuning parameter
is the staleness s. This is evident from the O(δt) term in
Eq. 3, which is bounded by the VAP threshold. In contrast,
(E)SSP’s variance only involves staleness γt in high order
terms O∗γt (Eq. 7), where γt is bounded by staleness. This
implies that staleness-induced variance vanishes quickly in
(E)SSP. The main reason for (E)SSP’s weak dependency
on staleness is because it “factors in” the SGD step size:
as the algorithm approaches an optimum, the updates au-
tomatically become more fine-grained (i.e. their magnitude
decreases), which is conducive for lowering variance. On the
other hand, the VAP threshold forces a minimum size on up-
dates, and without adjusting this threshold, the VAP updates
cannot become more fine-grained.

An intuitive analogy is that of postmen: VAP is like a
postman who only ever delivers mail above a certain weight
threshold δ. (E)SSP is like a postman who delivers mail late,
but no later than s days. Intuitively, the (E)SSP postman is
more reliable than the VAP postman due to his regularity.
The only way for the VAP postman to be reliable, is to de-
crease the weight threshold. This is important when the algo-
rithm approaches convergence, because the algorithm’s up-
dates become diminishingly small. However, there are two
drawbacks to decreasing δ: first, much like step-size tun-
ing, it must be done at a carefully controlled rate — this re-
quires either specific knowledge about the ML problem, or a
sophisticated, automatic scheme (that may also be domain-
specific). Second, as δ decreases, VAP produces more fre-
quent communication and reduces the throughput.

In contrast to VAP, ESSP does not suffer as much from
these drawbacks, because: (1) the SSP family has a weaker
theoretical dependency on the staleness threshold (than VAP
does on its value-bound threshold), thus it is usually unnec-
essary to decrease the staleness as the ML algorithm ap-
proaches convergence. This is evidenced by (Ho et al. 2013),
which achieved stable convergence even though they did not
decrease staleness gradually during ML algorithm execu-
tion. (2) Because ESSP proactively pushes out fresh param-
eter values, the distribution of stale reads is usually close
to zero-staleness, regardless of the actual staleness threshold

84

used (see Fig. 2) — hence, fine-grained tuning of the stale-
ness threshold is rarely necessary under ESSP.

ESSPTable: An efficient ESSP System
Our theory suggests that an ESSP implementation using ea-
ger parameter updates should outperform a SSP implemen-
tation using stalest parameters, when network bandwidth is
sufficient. To verify this, we implement ESSP in Parameter
Server (PS), which we call ESSPTable.

PS Interface: ESSPTable organizes the model parameters
as tables, where each parameter is assigned with a row ID
and column ID. Rows are the unit of parameter commu-
nication between servers and clients; ML applications can
use one of the default types or customize the row data-
structure for maximal flexibility. For example, in LDA, rows
are word-topic vectors. In MF, rows in a table are rows in the
factor matrices.

In ESSPTable each computation thread is regarded as
a worker by the system. The computation threads execute
application logic and access the global parameters stored
in ESSPTable through a key-value store interface—read a
table-row via GET and write via INC (increment, i.e. ad-
dition). Once a computation thread completes a clock tick,
it notifies the system via CLOCK, which increments the
worker’s clock by 1. As required by the SSP consistency ,
a READ issued by a worker at clock c is guaranteed to ob-
serve all updates generated in clock [0, c − s − 1], where s
is the user-defined staleness threshold.

Ensuring Consistency: The ESSPTable client library
caches previously accessed parameters. When a computa-
tion thread issues a GET request, it first checks the local
cache for the requested parameters. If the requested param-
eter is not found in local cache, a read request is sent to the
server and a call-back is registered at the server.

Each parameter in the client local cache is associated with
a clock ci. ci = t means that all updates from all workers
generated before clock t have already been applied to this
parameter. ci is compared with the worker’s clock cp. Only
if ci > cp − s, the requested parameter is returned to the
worker. Otherwise, the reader thread is blocked until an up-
to-date parameter is received from the server.

Communication Protocol: The updates generated by
computation threads are coalesced since they are commu-
tative and associative. These updates are sent to the server
at the end of each clock tick. The server sends updated pa-
rameters to the client through call-backs. When a client re-
quest a table-row for the first time, it registers a call-back
on the server. This is the only time the client makes read
request to the server. Subsequently, when a server table’s
clock advances from getting the clock tick from all clients, it
pushes out the table-rows to the respective registered clients.
This differs from the SSPTable in (Ho et al. 2013) where
the server passively sends out updates upon client’s read re-
quest (which happens each time a client’s local cache be-
comes too stale). The call-back mechanism exploits the fact

that computation threads often revisit the same parameters in
iterative-convergent algorithms, and thus the server can push
out table-rows to registered clients without clients’ explicit
request. Our server-push model causes more eager commu-
nication and thus lower empirical staleness than SSPTable
in (Ho et al. 2013) as shown in Fig. 2 (left).

We empirically observed that the time needed to commu-
nicate the coalesced updates accumulated in one clock is
usually less than the computation time. Thus computation
threads usually observe parameters with staleness 1 regard-
less of the user-specified staleness threshold s. That relieves
the burden of staleness tuning. Also, since the server pushes
out updated parameters to registered clients in batches, it re-
duces the overall latency from sending each parameter sepa-
rately upon clients’ requests (which is the case in SSPTable).
This improvement is shown in our experiments.

Experiments
We show that ESSP improves the speed and quality of con-
vergence (versus SSP) for collapsed gibbs sampling in topic
model and stochastic gradient descent (SGD) in matrix fac-
torization. Furthermore, ESSP is robust against the staleness
setting, relieving the user from worrying about an additional
tuning parameter. The experimental setups are:
• ML Models and algorithms: LDA topic modeling (using

a sparsified collapsed Gibbs sampling in (Yao, Mimno,
and McCallum 2009)) and Matrix Factorization (using
stochastic gradient descent (Koren 2009)). Both algo-
rithms are implemented using ESSPTable’s interface. For
LDA we use 50% minibatch in each Clock() call, and
we use log-likelihood as measure of training quality. For
MF we use 1% and 10% minibatch in each Clock() and
record the squared loss instead of the `2-penalized objec-
tive. The step size for MF is chosen to be large while the
algorithm still converges with staleness 0.

• Datasets Topic model: New York Times (N = 100m
tokens, V = 100k vocabularies, and K = 100 topics).
Matrix factorization: Netflix dataset (480k by 18k matrix
with 100m nonzeros.) Unless stated otherwise, we use
rank K = 100 and regularization parameter λ = 0.1.
• Compute cluster Matrix factorization experiments were

run on 64 nodes, each with 2 cores and 16GB RAM,
connected via 1Gbps ethernet. LDA experiments were
run on 8 nodes, each with 64 cores and 128GB memory,
connected via 1Gbps ethernet.

Speed of Convergence: Figure 3 shows the objective over
iteration and time for LDA and matrix factorization. In both
cases ESSP converges faster or comparable to SSP with re-
spect to iteration and run time. The speed up over iteration
is due to the reduced staleness as shown in the staleness
profile (Figure 2, left). This is consistent with the fact that
in SSP, computation making use of fresh data makes more
progress (Ho et al. 2013). Also it is worth pointing out that
large staleness values help SSP substantially but much less
so for ESSP because ESSP is less sensitive to staleness.

Robustness to Staleness: One important tuning knob in
SGD-type of algorithms are the step size. Step sizes that
are too small leads to slow convergence, while step sizes

85

Figure 3: Experimental Results. The convergence speed per
iteration and per second for LDA and MF.

that are too large cause divergence. The problem of step
size tuning is aggravated in the distributed settings, where
staleness could aggregate the updates in a non-deterministic
manner, causing unpredictable performance (dependent on
network congestion and the machine speeds). In the case
of MF, SSP diverges under high staleness, as staleness ef-
fectively increases the step size. However, ESSP is robust
across all investigated staleness values due to the concen-
trated staleness profile (Fig. 2, left). For some high SSP stal-
eness, the convergence is “shaky” due to the variance intro-
duced by staleness. ESSP produces lower variance for all
staleness settings, consistent with our theoretical analyses.
This improvement largely reduced the need for user to tune
the staleness parameter introduced in SSP.

System Opportunity In addition to faster convergence
per iteration, ESSP provides opportunities for system to
optimize the communication. By sending updates preemp-
tively, ESSP not only reduces the staleness but also reduces
the chance of client threads being blocked to wait for up-
dates; in essence, ESSP is a more “pipelined” version of SSP.
Figure 2 (right) shows the breakdown of communication and
compuation time for varying staleness. This contributes to
the overall convergence per second in Figure 3, where ESSP
has larger margin of speed gain over SSP than the conver-

gence per iteration.

Related Work and Discussion
Existing software that is tailored towards distributed (rather
than merely single-machine parallel), scalable ML can be
roughly grouped into two categories: general-purpose, pro-
grammable libraries or frameworks such as GraphLab (Low
et al. 2010) and Parameter Servers (PSes) (Ho et al. 2013;
Li et al. 2013), or special-purpose solvers tailored to spe-
cific categories of ML applications: CCD++ (Yu et al.
2012) for Matrix Factorization, Vowpal Wabbit for re-
gression/classification problems via stochastic optimiza-
tion (Langford, Li, and Strehl 2007), and Yahoo LDA as well
as Google plda for topic modeling (Wang et al. 2009).

The primary differences between the general-purpose
frameworks (including this work) and the special-purpose
solvers are (1) the former are user-programmable and can be
extended to handle arbitrary ML applications, while the lat-
ter are non-programmable and restricted to predefined ML
applications; (2) because the former must support arbitrary
ML programs, their focus is on improving the “systems”
code (notably, communication and synchronization proto-
cols) to increase the efficiency of all ML algorithms, par-
ticularly through the careful design of consistency models
(graph consistency in GraphLab; iteration/value-bounded
consistency in PSes) — in contrast, the special-purpose sys-
tems combine both systems code improvements and algo-
rithmic (i.e. mathematical) improvements tailor-made for
their specific category of ML applications.

As a paper about general-purpose distributed ML, we fo-
cus on consistency models and systems code, and we de-
liberately use (relatively) simple algorithms for our bench-
mark applications, for two reasons: (1) to provide a fair com-
parison, we must match the code/algorithmic complexity of
the benchmarks for other frameworks like GraphLab and
SSP PS (Ho et al. 2013) (2) a general-purpose ML frame-
work should not depend on highly-specialized algorithmic
techniques tailored only to specific ML categories. General-
purpose frameworks should democratize distributed ML in a
way that special-purpose solvers cannot, by enabling those
ML applications that have been under-served by the dis-
tributed ML research community to benefit from cluster
computing. Since our benchmark applications are kept al-
gorithmically simple, they are unlikely to beat the special-
purpose solvers in running time — but we note that many
algorithmic techniques featured in those solvers can be ap-
plied to our benchmark applications due to the general-
purpose nature of PS programming.

In (Li et al. 2013), the authors propose and implement a
PS consistency model that has similar theoretical guarantees
to the ideal VAP model presented herein. However, we note
that their implementation does not strictly enforce the condi-
tions of their consistency model. Their implementation im-
plicitly assumes zero latency for transmission over network,
while in a real cluster, there could be arbitrarily long net-
work delay. In their system, reads do not wait for delayed
updates, so a worker may compute with highly inconsistent
parameters in the case of congested network.

86

On the wider subject of Big Data, Hadoop (Borthakur
2007) and Spark (Zaharia et al. 2010) are popular program-
ming frameworks which ML applications have been devel-
oped on. To our knowledge, there is no work showing that
Hadoop or Spark have superior ML algorithm performance
compared to frameworks designed for ML like GraphLab
and PSes (let alone the special-purpose solvers). The main
difference is that Hadoop/Spark only feature strict consis-
tency, and do not support flexible consistency models like
graph- or bounded-consistency; but Hadoop and Spark en-
sure program portability, reliability and fault tolerance at a
level that GraphLab and PSes have yet to match.

Acknowledgement
This work is supported by DARPA XDATA FA87501220324, NSF
IIS1447676, and ONR N000141410684.

References
Ahmed, A.; Aly, M.; Gonzalez, J.; Narayanamurthy, S.; and
Smola, A. J. 2012. Scalable inference in latent variable
models. In WSDM, 123–132.
Borthakur, D. 2007. The hadoop distributed file system:
Architecture and design. Hadoop Project Website 11:21.
Chilimbi, T.; Suzue, Y.; Apacible, J.; and Kalyanaraman, K.
2014. Project adam: Building an efficient and scalable deep
learning training system. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14),
571–582. Broomfield, CO: USENIX Association.
Cipar, J.; Ho, Q.; Kim, J. K.; Lee, S.; Ganger, G. R.; Gibson,
G.; Keeton, K.; and Xing, E. 2013. Solving the straggler
problem with bounded staleness. In HotOS ’13. Usenix.
Cui, H.; Cipar, J.; Ho, Q.; Kim, J. K.; Lee, S.; Kumar, A.;
Wei, J.; Dai, W.; Ganger, G. R.; Gibbons, P. B.; Gibson,
G. A.; and Xing, E. P. 2014. Exploiting bounded staleness to
speed up big data analytics. In 2014 USENIX Annual Tech-
nical Conference (USENIX ATC 14), 37–48. Philadelphia,
PA: USENIX Association.
Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Le,
Q.; Mao, M.; Ranzato, M.; Senior, A.; Tucker, P.; Yang, K.;
and Ng, A. 2012. Large scale distributed deep networks. In
NIPS 2012.
Gemulla, R.; Nijkamp, E.; Haas, P. J.; and Sismanis, Y.
2011. Large-scale matrix factorization with distributed
stochastic gradient descent. In KDD, 69–77. ACM.
Ho, Q.; Cipar, J.; Cui, H.; Kim, J.-K.; Lee, S.; Gibbons, P. B.;
Gibson, G.; Ganger, G. R.; and Xing, E. P. 2013. More effec-
tive distributed ml via a stale synchronous parallel parameter
server. In NIPS.
Koren, Y. 2009. Matrix factorization techniques for recom-
mender systems. IEEE Computer 42(8):30–37.
Kumar, A.; Beutel, A.; Ho, Q.; and Xing, E. P. 2014. Fugue:
Slow-worker-agnostic distributed learning for big models on
big data. In Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics, 531–
539.

Langford, J.; Li, L.; and Strehl, A. 2007. Vowpal wabbit
online learning project.
Lee, S.; Kim, J. K.; Zheng, X.; Ho, Q.; Gibson, G. A.; and
Xing, E. P. 2014. Primitives for dynamic big model paral-
lelism. In Advances in Neural Information Processing Sys-
tems (NIPS).
Li, M.; Yang, L. Z. Z.; Xia, A. L. F.; Andersen, D. G.; and
Smola, A. 2013. Parameter server for distributed machine
learning. NIPS workshop.
Li, M.; Andersen, D. G.; Park, J. W.; Smola, A. J.; Ahmed,
A.; Josifovski, V.; Long, J.; Shekita, E. J.; and Su, B.-Y.
2014. Scaling distributed machine learning with the parame-
ter server. In Operating Systems Design and Implementation
(OSDI).
Low, Y.; Gonzalez, J.; Kyrola, A.; Bickson, D.; Guestrin, C.;
and Hellerstein, J. M. 2010. Graphlab: A new parallel frame-
work for machine learning. In Conference on Uncertainty in
Artificial Intelligence (UAI).
Niu, F.; Recht, B.; Ré, C.; and Wright, S. J. 2011. Hogwild!:
A lock-free approach to parallelizing stochastic gradient de-
scent. In NIPS.
Wang, Y.; Bai, H.; Stanton, M.; Chen, W.-Y.; and Chang,
E. Y. 2009. Plda: Parallel latent dirichlet allocation for
large-scale applications. In Proceedings of the 5th Inter-
national Conference on Algorithmic Aspects in Information
and Management, AAIM ’09, 301–314. Berlin, Heidelberg:
Springer-Verlag.
Yao, L.; Mimno, D.; and McCallum, A. 2009. Efficient
methods for topic model inference on streaming document
collections. In Proceedings of the 15th ACM SIGKDD inter-
national conference on Knowledge discovery and data min-
ing, KDD ’09, 937–946. New York, NY, USA: ACM.
Yu, H.-F.; Hsieh, C.-J.; Si, S.; and Dhillon, I. S. 2012. Scal-
able coordinate descent approaches to parallel matrix factor-
ization for recommender systems. In ICDM, 765–774.
Zaharia, M.; Chowdhury, N. M. M.; Franklin, M.; Shenker,
S.; and Stoica, I. 2010. Spark: Cluster computing with work-
ing sets. Technical Report UCB/EECS-2010-53, EECS De-
partment, University of California, Berkeley.

87

