
An EBMC-Based Approach to Selecting Types for Entity Filtering

Jiwei Ding, Wentao Ding, Wei Hu and Yuzhong Qu
National Key Laboratory for Novel Software Technology,

Nanjing University, Nanjing 210023, China
{jiweiding,wentaoding}@outlook.com, {whu,yzqu}@nju.edu.cn

Abstract
The quantity of entities in the Linked Data is increasing
rapidly. For entity search and browsing systems, filter-
ing is very useful for users to find entities that they are
interested in. Type is a kind of widely-used facet and
can be easily obtained from knowledge bases, which
enables to create filters by selecting at most K types of
an entity collection. However, existing approaches of-
ten fail to select high-quality type filters due to com-
plex overlap between types. In this paper, we propose
a novel type selection approach based upon Budgeted
Maximum Coverage (BMC), which can achieve integral
optimization for the coverage quality of type filters. Fur-
thermore, we define a new optimization problem called
Extended Budgeted Maximum Coverage (EBMC) and
propose an EBMC-based approach, which enhances the
BMC-based approach by incorporating the relevance
between entities and types, so as to create sensible type
filters. Our experimental results show that the EBMC-
based approach performs best comparing with several
representative approaches.

Introduction
Along with the rapid growth of the Linked Data, many Web
search and browsing activities are centered on entities. Gen-
eral users often use entity search or browsing systems, such
as Libra Academic Search (Nie et al. 2007) and Falcons
(Cheng and Qu 2009), to look for entities that they are inter-
ested in. However, it might be difficult for users to find the
entities they want when search results contain large amount
of entities. Therefore, entity filtering is demanded by users
to ease their tasks.

Faceted search systems provide filters in different facets
for interactive search and browsing (Sah and Wade 2013).
Since type can be seen as an important facet (Tonon et al.
2013), a group of filters can be created by selecting values
in this facet. In many publicly-accessible knowledge bases
such as DBpedia and Yago, entities are associated with mul-
tiple types. The number of types related to the whole entity
collection can be very large, while the number of filters in
a group is limited to a positive integer K. How to select at
most K types to make up a group of filters in entity search
or browsing systems is worth studying.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Let us take an answer set to the question “chess players
who died in the same place they were born in” as an ex-
ample. The resulted entity collection consists of 45 chess
players, each of which has at least 13 Yago types.

To the best of our knowledge, the most commonly used
approach in faceted search is to count values in terms of
their occurrence frequency, which means to rank types by
their coverage rate in our problem. The following list shows
a group of filters generated by this approach.

ChessPlayer (44)
Contestant (44)
Player (44)
Rival (19)
Intellectual (18)
However, we argue that this group of filters are not good

enough. Although it covers most of entities in the collection,
some types like “Player” is not suitable for filtering, since it
covers too many entities. Furthermore, the overlap between
types is not considered in this approach, e.g., “Contestant”
and “Player”, which is another main cause to this drawback.

Some approaches are proposed to reduce the overlap be-
tween selected types, such as Maximum Marginal Relevance
(MMR) (Carbonell and Goldstein 1998), but they still can-
not avoid selecting types like “ChessPlayer”, which cov-
ers almost all of the entities. Some other approaches (Hearst
2006; Cheng and Qu 2009) also provide their solutions, but
all of them suffer from a serious drawback, that is, they can-
not provide sensible types, in other words, users cannot de-
cide how close in perception the entity they want is relevant
to a type. For example, the filter “ChessOlympiadCompeti-
tors (16)” is more sensible than “Intellectual (18)”.

In this paper, we use the Budgeted Maximum Coverage
(BMC) model (Khuller, Moss, and Naor 1999) to achieve
an integral optimization for the coverage quality of selected
types, which increases the coverage rate and reduces the
overlap at the same time. To decrease the influence of the
selected types covering too many or too few entities, we de-
sign a cost function on candidate types based on the cov-
erage rates of types. Furthermore, we define the Extended
Budgeted Maximum Coverage (EBMC) optimization prob-
lem and propose an EBMC-based approach, which enhances
the BMC-based approach by incorporating the relevance be-
tween entities and types. In our implemented method, we
leverage the type hierarchy to measure the relevance of an

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

88

entity with its associated types. Our experimental results
show that the EBMC-based approach performs best in over-
all comparing with other methods. For the “chess players”
example, the type filters selected by the EBMC-based ap-
proach are shown below. This group of types is much more
sensible than the previous one.

ChessOlympiadCompetitors (16)
ChessTheoreticians (15)
SovietChessPlayers (14)
GermanChessPlayers (4)
EnglishChessPlayers (5)
The rest of this paper is structured as follows. Section 2

reviews related work. In Section 3, we propose an approach
based on BMC. In Section 4, we define EBMC and propose
an approximation algorithm to solve it. Also, an EBMC-
based approach is proposed. In Section 5, we evaluate the
two proposed approaches by comparing them with three
others on various entity collections. Finally, Section 6 con-
cludes the paper with future work.

Related Work
Our work is related to faceted search since type is often con-
sidered as an important kind of facets. To the best of our
knowledge, the most commonly used approach for selecting
values in a facet is based on occurrence frequency. However,
this approach is not suitable for selecting types since there
often exists high overlap between different types.

MMR (Carbonell and Goldstein 1998) is a diversity-based
re-ranking approach, which is mainly used for re-ranking
search results or summarizing documents. We may use this
approach here to minimize overlap and increase the cover-
age at the same time. However, this approach still does not
work well because it cannot avoid types that covers too gen-
erally or too specifically.

Falcons Object Search (Cheng and Qu 2009) is a search
engine for objects in the Linked Data. It gives a simple so-
lution to this problem, which selects types according to cov-
erage rate mainly, and ensures that class inclusion relation
never holds between any pair of selected types. However,
this approach may lead to a low coverage percentage when
the number of selected types is limited to K, and sometimes
suffers from providing inadequate types.

An alternative solution to this problem is “hierarchi-
cal faceted category”, since types form a hierarchy nat-
urally. However, the type hierarchy is sometimes too de-
tailed, which means it may cost users too many clicks be-
fore they get the filtering condition they want. In the “chess
player” example, at least 4 clicks are needed between the
type “Player” and a specific type “EnglishChessPlayers”.

Another line of related work is entity type ranking. TRank
(Tonon et al. 2013) proposes different kinds of ranking ap-
proaches and evaluates the efficiency, but these approaches
cannot be applied to entity collection directly.

Besides, our work is also related to tag recommendation
if we broadly treat types as tags. Xu et al. exploit collabora-
tive tagging information to recommend tags (Xu et al. 2006).
Their recommendation algorithm attempts to minimize the
overlap among the recommended tags to allow for high cov-
erage of multiple facets. However, this algorithm can only

be used for a single entity and needs much user tagging in-
formation.

Selecting Types Based on BMC
In this section, we firstly introduce the well-known BMC op-
timization problem and its approximation algorithm. Then,
we transform our problem to the BMC form, and mainly fo-
cus on how to assign costs to different types.

Budgeted Maximum Coverage Problem
Notice that our problem can be seen as selecting at most
K types to cover most of the entities in the collection, we
can formalize our type selection problem by the BMC opti-
mization problem (Khuller, Moss, and Naor 1999), which is
defined as follows:
Definition 1 (The Budgeted Maximum Coverage Prob-
lem). A collection of sets S = {S1, S2, . . . , Sm} with asso-
ciated costs {ci}mi=1 is defined over a domain of elements
X = {x1, x2, . . . , xn} with associated weights {wi}ni=1.
The goal is to find a collection of sets S′ ⊆ S, such that the
total cost of elements in S′ does not exceed a given budgetL,
and the total weight of elements covered by S′ is maximized.

Although BMC is an NP-hard problem, several efficient
approximation algorithms have been developed. By compar-
ing the approximation ratio and the time complexity of these
algorithms, we consider the (1 − 1√

e
) approximation algo-

rithm with time complexity O(m2n) provided by (Khuller,
Moss, and Naor 1999) to be best for our work.

The BMC-Based Approach
To formalize our problem, entities can be regarded as ele-
ments in BMC. Set Si is defined as a set of entities that are
associated with typei, and we may simply represent this set
by typei. Without loss of generality, we set budget L to 1 to
simplify the formalization. The weight of each entity can be
set by its popularity, its relevance to the query, or simply 1
so that all entities are treated equally.

As for the cost of a type, it should be set by how appro-
priate it is to be selected as a filter, which can be inferred
from the coverage rate of the type filter. In our problem, a
good group of filters consists at most K types with similar
coverage rate and little overlap between each other. A type
with huge coverage rate may be too vague and leads to a
large overlap with other selected types, while a type with lit-
tle coverage rate may not contain the entity wanted by the
users. So in the ideal case, the K type filters are orthogonal,
each of which covers 1

K entities. Since the overlap between
types cannot be avoided in practice, it is suggested that the
ideal coverage rate R can be chosen between 1

K and 2
K . A

power function is considered to be the punishment for the
types covering too many or too few entities. Lastly, we set

1
K+1 as a lower bound of the cost for each type, which en-
sures that no more than K types would be selected by the
approach. On the whole, the cost function can be defined as
follows: ∣∣∣ |Si||S| −R∣∣∣α +

1

K + 1
, (1)

89

Figure 1: An example of cost function

where R is the ideal coverage rate for each type that can be
set by application developers, and α is a parameter varying
from differentK or different datasets, which can be tuned by
training. An example of cost function is shown in Figure 1.

Selecting Types Based on EBMC
In this section, we firstly analyze the drawback of the BMC-
based approach. Then, we give a formal definition of the
EBMC optimization problem and propose a (1 − 1√

e
)-

approximation algorithm. Finally, a type selection approach
based on EBMC is presented.

Drawback of the BMC-Based Approach
By transforming the type selection problem to the BMC
problem, we can decrease the effect of selecting types that
cover too many or too few entities. However, this approach
can still be improved since the binary type coverage function
does not characterize how relevant a type is to an entity, e.g.,
the weight of covering “VasilySmyslov” by “SovietChess-
Players” is the same as covering it by “Player” in BMC. If
these two types cover similar entities in an entity collection,
the BMC-based approach would choose either of them. But
the type “SovietChessPlayers” is more informative and also
easy to understand, which means it is more suitable for be-
ing a filter. To realize this improvement, we generalize the
set in BMC to fuzzy set, which leads to the EBMC problem.

Extended Budgeted Maximum Coverage Problem
Now, we define the EBMC problem as follows:
Definition 2 (The Extended Budgeted Maximum Cov-
erage Problem). Let S = {S1, S2, . . . , Sm} be a collec-
tion of fuzzy sets defined over a domain of elements X =
{x1, x2, . . . , xn}. Each fuzzy set has a cost {ci}mi=1 while
each element has a weight {wi}ni=1. f(Si, xj) is defined as
the grade of membership of xj in Si. The goal is to find a
collection of fuzzy sets S′ ⊆ S, such that the total cost of S′,
denoted by c(S′), does not exceed a given budget L, while
the total weight w(S′) is maximized.

Where c(S′) and w(S′) are defined by the following for-
mulae, respectively.

c(S′) =
∑
Si∈S′

ci (2)

w(S′) =
n∑
j=1

(
wj ·max{f(P, xj)|P ∈ S′}

)
. (3)

Obviously, the EBMC problem is a generalization of
BMC. EBMC can also be treated as a specific case of the
Generalized Maximum Coverage problem (GMC) (Cohen
and Katzir 2008). However, the GMC problem is so com-
plex that even the simplest algorithm mentioned in that paper
has a high time complexity of O(m2n · f(n, ε)) and a non-
constant approximation ratio of e−1

2e−1 − ε, where O(f(n, ε))
is the time complexity of an FPTAS approximation algo-
rithm of the knapsack problem of n items. Our evaluation
with GMC shows that it does not work for real-time appli-
cations when n and m reach 100.

An Approximation Algorithm for the EBMC
Problem
Following the idea of the approximation algorithm for solv-
ing BMC, we give an approximation algorithm for EBMC,
as shown in Algorithm 1.

Algorithm 1: Approximation algorithm for EBMC
G← ∅; C ← 0; U ← S
repeat

Select Si ∈ U that maximizes (w(G∪{Si})−w(G))
ci

;
if C + ci ≤ L then

G← G ∪ {Si};
C ← C + ci;
U ← U \ {Si};

until U = ∅;
Select a fuzzy set T that maximizes w({T}) over S;
if w(G) ≥ w({T}) then

return G;
else

return {T};

We give a brief result to show that the main properties
of the BMC problem still holds after introducing the con-
cept of fuzzy set, and the time complexity of Algorithm 1
is still O(m2n). We proved that the algorithm is (1 − 1√

e
)-

approximate. The detailed version of proof is provided in
Appendix A.

Here, we give two properties of the EBMC model, which
form the basis of the proof.

Lemma 1. For any two collections of fuzzy sets A and B:

w(A) + w(B) ≥ w(A ∪B). (4)

90

Lemma 2. For any two collections of fuzzy sets A and B:

w(A)− w(B) ≤
∑

P∈A\B

(w(B ∪ {P})− w(B)). (5)

Let l be the number of fuzzy sets in G, and SGi
be the ith

fuzzy set added intoG. SGl+1
is defined as the first fuzzy set

from an optimal solution OPT selected but not added to G
by the algorithm. In the following two lemmas we present
some properties of the greedy approach.
Lemma 3. After each iteration i = 1, . . . , l,

w(Gi)− w(Gi−1) ≥
c({SGi

})
L

·
(
w(OPT)− w(Gi−1)

)
.

(6)

Lemma 4. After each iteration i = 1, . . . , l,

w(Gi) ≥
(
1−

i∏
k=1

(
1− c({SGk

})
L

))
· w(OPT). (7)

Now we can prove the approximation ratio and the time
complexity of the algorithm.
Theorem 1. Algorithm 1 achieves an approximation factor
of (1− 1√

e
) ≈ 0.393469.

Theorem 2. The time complexity of Algorithm 1 isO(m2n),
where m = |S| and n = |X|.

The EBMC-Based Approach
The cost for types and the weight for entities can be set the
same as in the BMC-based approach. By the modeling ca-
pability of EBMC, we can use the membership function to
describe the relevance between the set and elements, which
is different from the binary value in BMC.

To describe the relevance between types and entities, the
hierarchy of types should be considered. Notice that the
types and their hierarchy form a directed acyclic graph,
which can be converted to a Hasse diagram since the hier-
archy of types is a partially ordered relation. Then, we add
the entities as vertices to the graph. For each entity added
in, only minimal types of the entity are considered adjacent
to it. Now the distance between an entity and a type can
be defined as the distance of their corresponding vertices in
this graph, denoted by dist(typei, entityj) (If typei cannot
reach entityj , dist(typei, entityj) = ∞). The larger dis-
tance between a type and an entity is, the less relevant they
are. So, we formalize the relevance function as follows:

f(Si, xj) = rel(typei, entityj)

=
(1
2

)dist(typei,entityj)−1
. (8)

As an example, the relevance of an entity with its
types is depicted in Fig.2. The membership value of
f(SovietChessPlayers,VasilySmyslov) is 1 since they are di-
rected adjacent, and f(Player,VasilySmyslov) = 1

4 since
the length of shortest directed path between them is 3.
f(AmericanChessPlayers,VasilySmyslov) = 0 because that
there is no directed path from entity “VasilySmyslov” to type
“AmericanChessPlayers”.

Figure 2: The relevance of an entity with its types

There are many other state-of-the-art approaches that can
assess the relevance of an entity with respect to a type (or
a facet), such as (Vandic, Frasincar, and Kaymak 2013) and
(Liberman and Lempel 2012). We are going to incorporate
these approaches in the future.

Evaluation
In this section, we report our evaluation of the proposed ap-
proaches, which is conducted on a PC with an Intel Xeon
3.2GHz CPU and 2GB JVM.

Entity Collections
We select the entity collections from Task 1 of the Question
Answering over Linked Data campaign (QALD-4).1 There
are 250 questions in total, in which 181 have answer type
“Resource”. All the resources can be found in DBpdeia 3.9,
so do their Yago types as well. Resources without any Yago
types or questions having less than 20 answers are removed.
The answer lists for the remaining 29 questions are used as
entity collections in our evaluation. In average, a collection
contains 180 entities (at least 20 entities and at most 1,125
entities), with 8,928 associated types in total. We randomly
choose 4 entity collections for parameter tuning, while the
rest ones are used for testing.2

Task
Given a collection of entities and their types, each partic-
ipating approach selects no more than K types, which are
considered as a group of filters for the given collection. We
set K = 5 and K = 8 in our evaluation. For smaller K, it
is not sufficient for filtering, while larger K is difficult for
humans to judge its accuracy.

Comparative Approaches
In our evaluation, we compare the BMC-based and EBMC-
based approaches, together with 3 alternatives: the CR-based
approach, the MMR-based approach, and the one used in
Falcons. We briefly introduce them as follows.

1http://greententacle.techfak.uni-bielefeld.de/∼cunger/qald/
2Detailed information about these collections is available at

http://ws.nju.edu.cn/ebmc/

91

The CR-based approach is widely used in faceted search,
which selects types in terms of the descending order of their
coverage rates. This approach is considered as the baseline
in our evaluation.

The MMR-based approach is an improvement of selecting
types by coverage rate. It uses a diversity-based re-ranking
technique to increase coverage rate and decrease overlap si-
multaneously. Let U be the set of all types, S be the set of
selected types, and λ be the weighting factor to balance the
coverage rate and overlap, MMR can be calculated by the
following equation:

MMR =argmax
Ti∈U\S

[
λ ·
(
CoverageRate(Ti)

− (1− λ) ·max
Tj∈S

Overlap(Ti, Tj)
)]
, (9)

where CoverageRate(Ti) computes the coverage rate of
type Ti, while Overlap(Ti, Tj) computes the Jaccard co-
efficient of two entity sets covered by types Ti and Tj , re-
spectively. Therefore, MMR maximizes the coverage rate
when λ approaches 1, and minimizes the overlap when λ
approaches 0. We test λ = 0.1, 0.3, 0.5, 0.7, 0.9 and set it to
0.3, since it achieves the best performance in our evaluation.

The approach used in Falcons selects types one by one
in terms of their coverage rates, and skips a type if it is a
subclass of any selected types. If a user had already selected
some types as a previous filtering condition, only the sub-
classes of these types can be further selected. In our evalua-
tion, there is no previous filtering condition so that all types
are involved in the candidate list.

The BMC-based and EBMC-based approaches are imple-
mented just as we described in the previous sections. We
simply set the ideal coverage rate R = 1.5/K, and test pa-
rameter α from 1.00 to 3.00, step by 0.25, for various K.
Considering the performance of the two approaches on the
entity collections, we set α = 2.00 forK = 5, and α = 2.50
for K = 8 in this evaluation.

Measurement
Since there are too many types in the candidate type list, it
is too hard for human to select K types for each entity col-
lection. Instead, we invite 10 judges who are all CS graduate
students to evaluate the quality of the filters generated by
different approaches. Each judge is presented with a collec-
tion of entities and their types, and is asked to assess filters
on 20 entity collections, so that each entity collection with
certain K is assessed by 4 judges. They score 1 point to 5
point on the following 5 dimensions:

• Coverage rate (1 = low, 5 = high)

• Overlap ratio (1 = high, 5 = low)

• No. of types (1 = too few, 5 = almost matches K)

• Sensibility (1 = non-sensible, 5 = sensible)

• Overall (1 = bad, 5 = good)

The dimension “Coverage rate” and “Overlap ratio” are
generally considered by almost all the approaches. Since

Table 1: Average scores of the approaches (K = 5)

CR MMR Falcons BMC EBMC
Coverage

rate
4.37

(0.37)
4.57

(0.33)
4.63

(0.35)
4.37

(0.44)
3.95

(0.48)
Overlap

ratio
1.95

(0.42)
2.09

(0.40)
2.68

(0.55)
3.12

(0.50)
3.39

(0.49)

No. of types 4.18
(0.18)

4.20
(0.16)

3.79
(0.44)

2.78
(0.57)

3.46
(0.47)

Sensibility 2.75
(0.71)

2.74
(0.60)

2.77
(0.54)

2.63
(0.42)

3.71
(0.38)

Overall 2.84
(0.45)

2.80
(0.56)

2.96
(0.53)

2.60
(0.40)

3.55
(0.29)

Table 2: Average scores of the approaches (K = 8)
CR MMR Falcons BMC EBMC

Coverage
rate

4.32
(0.43)

4.54
(0.41)

4.51
(0.32)

4.33
(0.38)

3.87
(0.40)

Overlap
ratio

1.96
(0.49)

2.08
(0.52)

2.80
(0.74)

3.62
(0.61)

4.00
(0.46)

No. of types 4.43
(0.18)

4.43
(0.17)

3.41
(0.56)

3.41
(0.62)

4.11
(0.55)

Sensibility 2.64
(0.66)

2.77
(0.74)

2.73
(0.85)

3.12
(0.58)

4.14
(0.42)

Overall 2.64
(0.60)

2.73
(0.54)

2.71
(0.67)

3.11
(0.49)

4.06
(0.41)

some approaches could select too few types, the dimen-
sion “No. of types” is added. The dimension “Sensibility”
is particularly designed to assess the difference between the
EBMC-based approach and others. A type is sensible if its
meaning is accurate, concrete and easy to be understood by
humans, which is important to the usefulness of filters. Ad-
ditionally, we add the “Overall” dimension to achieve com-
prehensive assessment of the filters.

Results
Table 1 shows the average scores of the five approaches
on different dimensions in the case of K = 5, and Table
2 shows the scores for K = 8. The average of the stan-
dard deviations among different judges for different entity
collections is also shown in the table with parentheses. We
observe that the results for K = 5 and K = 8 are quite
consistent, and our EBMC-based approach performs best in
general among all the five approaches.

By comparing these type selection approaches, we find
that the CR-based approach has a high coverage rate, and
can provide enough types in most cases. However, it does
not consider the problem of overlap, which severely af-
fect the quality of the filters. The MMR-based approach in-
creases the coverage rate and decreases the overlap compar-
ing with the CR-based one, but it still does not work well be-
cause it cannot avoid selecting types covering too many enti-
ties. The approach in Falcons decreases the overlap to some
extent and keeps a relatively high coverage rate, but it fails to
select enough types sometimes. Our BMC-based approach
decreases the overlap ratio successfully and has a better per-
formance when more types are selected. The EBMC-based
approach improves a lot on giving more sensible types with

92

less overlap, but costs a small loss on coverage rate.
The standard deviations show that the scores given by

different judges for the same task are quite similar, which
means the judges reach an agreement on each dimension to
some extent. Furthermore, Repeated Measures ANOVA in-
dicates that the differences between the EBMC and other
approaches in overall are statistically significant (p < 0.03)
both for K = 5 and 8. Additionally, the EBMC-based ap-
proach can generate filters per case within 1 second, which
demonstrates its efficiency.

We also tried to evaluate different approaches with DBpe-
dia types. Generally speaking, for a large number of entity
collections, DBpedia has only less than 10 (even duplicated)
types, and most of them cover almost the whole entity col-
lection, which led to similar results between all participating
approaches, and it might be unnecessary to select types for
filtering in this situation. We are going to consider other type
sources for testing our approach in the future.

In overall, the EBMC-based approach is shown as the best
to select type filters in our evaluation.

Conclusion

In this paper, we studied how to select types for entity filter-
ing. Our main contributions are as follows:

• We modeled the K type selection problem as the BMC
problem, which pursues integral optimization for the cov-
erage quality of type filters. Accordingly, we proposed
a cost function on candidate types, which increases the
chance of selecting types with appropriate coverage rates.

• We defined a new model, EBMC, which extends the capa-
bility of BMC by incorporating fuzzy set. Moreover, we
designed an approximation algorithm for EBMC, which
achieves the same approximation ratio and time complex-
ity as those of BMC.

• We proposed an EBMC-based approach to selecting type
filters, which incorporates the relevance between entities
and types by leveraging type hierarchy. Our evaluation re-
sults show that the EBMC-based approach tends to select
sensible types with superior quality.

In future work, we look forward to applying EBMC to
other problems such as entity summarization. We also want
to design new algorithms for EBMC with a higher approxi-
mation ratio while keeping an acceptable time complexity.

Acknowledgments

This work is supported in part by the National Natural
Science Foundation of China (NSFC) under Grant Nos.
61170068, 61223003 and 61370019. We would like to thank
Dr. Gong Cheng for his valuable suggestion on the design of
our experiments, and Yong Wang for his help on evaluation.
We are also grateful to all participants in the evaluation for
their time and effort.

Appendix A: Proof of Approximation Ratio
and Running Time of Algorithm 1

Proof of Lemma 1.

w(A ∪B) =
n∑
j=1

(
wj ·max{f(P, xj) | P ∈ A ∪B}

)
≤

n∑
j=1

(
wj ·max{f(P, xj) | P ∈ A}

)
+

n∑
j=1

(
wj ·max{f(P, xj) | P ∈ B}

)
= w(A) + w(B).

Proof of Lemma 2.

w(A)− w(B)

=

n∑
j=1

(
wj ·

(
max
Q∈A

f(Q, xj)−max
Q∈B

f(Q, xj)
))

≤
n∑
j=1

(
wj ·

∑
P∈A\B

(
max

Q∈B∪{P}
f(Q, xj)−max

Q∈B
f(Q, xj)

))
=

∑
P∈A\B

(
w(B ∪ {P})− w(B)

)
.

Proof of Lemma 3.
According to Lemma 2, we have w(OPT) − w(Gi−1) ≤∑
P∈OPT\Gi−1

(
w(Gi−1 ∪ {P}) − w(Gi−1)

)
. Because

SGi
is selected by the greedy strategy, we have

w(Gi−1∪{P})−w(Gi−1)
c({P}) ≤ w(Gi)−w(Gi−1)

c({SGi
}) for each P ∈

OPT \Gi−1. Thus,

w(Gi)− w(Gi−1)

=
c({SGi})
c(OPT)

·
∑

P∈OPT c({P})
c({SGi})

·
(
w(Gi)− w(Gi−1)

)
≥c({SGi})

L
·

∑
P∈OPT\Gi−1

(c({P})
c({SGi})

·
(
w(Gi)− w(Gi−1)

))
≥c({SGi})

L
·

∑
P∈OPT\Gi−1

(
w(Gi−1 ∪ {P})− w(Gi−1)

)
≥c({SGi})

L
·
(
w(OPT)− w(Gi−1)

)
.

Proof of Lemma 4.
Basis. When i = 1, w({SG1

}) ≥ c({SG1
})

L · w(OPT),
because the ratio w({SG1

})
c(G1)

is maximum over all sets.

Inductive hypothesis. For i = 1, . . . , p − 1, we have
w(Gi) ≥

(
1−

∏i
k=1

(
1− c({SGk

})
L

))
· w(OPT).

93

Inductive step. When i = p,

w(Gp) = w(Gp−1) +
(
w(Gp)− w(Gp−1)

)
≥w(Gp−1) +

c({SGp
})

L
·
(
w(OPT)− w(Gp−1)

)
=
(
1−

c({SGp})
L

)
· w(Gp−1) +

c({SGp})
L

· w(OPT)

≥
(
1−

c({SGp})
L

)(
1−

p−1∏
k=1

(
1− c({SGk

})
L

))
· w(OPT)

+
c({SGp})

L
· w(OPT)

=
(
1−

p∏
k=1

(
1− c({SGk

})
L

))
· w(OPT).

Thus,w(Gi) ≥
(
1−
∏i
k=1

(
1− c({SGk

})
L

))
·w(OPT).

Proof of Theorem 1.
Case 1. For some Sk ∈ S, w({Sk}) ≥ 1

2 · w(OPT). We
have w({T})

w(OPT) ≥
w({Sk})
w(OPT) ≥

1
2 .

Case 2. For all Sk ∈ S, w({Sk}) < 1
2 · w(OPT).

Case 2.1 c(G) < L
2 . Then ∀Sk /∈ G. ck > L

2 , implying
that there is at most one fuzzy set in OPT \ G because
of c(OPT) ≤ L. We have w(G) ≥ w(OPT ∩ G) ≥
w(OPT)− w(OPT \G) > 1

2 · w(OPT).

Case 2.2 c(G) ≥ L
2 . According to Lemma 4, we have

w(Gi) ≥
(
1−

∏i
k=1

(
1− c({SGk

})
L

))
·w(OPT). Because

c(G) =
∑l
i=1 c({SGi

}) ≥ L
2 . We have

(
1 −

∏l
k=1

(
1 −

c({SGk
})

L

))
≥
(
1−

(
1− 1

2l

)l)
, which implies

w(Gl) ≥
(
1−

l∏
k=1

(
1− c({SGk

})
L

))
· w(OPT)

≥
(
1−

(
1− 1

2l

)l)
· w(OPT)

≥
(
1− 1√

e

)
· w(OPT).

So, the weight of the collection generated by Algorithm 1
is proved to be at least

(
1 − 1√

e
) · w(OPT) in each of the

cases.

Proof of Theorem 2.
In each iteration, we need to check all the fuzzy sets in U
to get SGi , which means no more than m fuzzy sets will
be checked. Regarding the time complexity of adding a new
fuzzy set P into S′, the addition weightw(S′∪{P})−w(S′)
can be calculated by

∑n
j=1

(
wj ·max

{
f(Q, xj) | Q ∈ (S′∪

{P})
})
−
∑n
j=1

(
wj · max

{
f(Q, xj) | Q ∈ S′

})
, which

can be done inO(n) time. Thus, each iteration takesO(mn)
time, and the running time in total is O(m2n) since U will
be empty after m iterations.

References
Carbonell, J., and Goldstein, J. 1998. The use of MMR,
diversity-based reranking for reordering documents and pro-
ducing summaries. In Proceedings of 21st Annual Interna-
tional ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 335–336. ACM Press.
Cheng, G., and Qu, Y. 2009. Searching linked objects with
Falcons: Approach, implementation and evaluation. Inter-
national Journal on Semantic Web and Information Systems
5(3):49–70.
Cohen, R., and Katzir, L. 2008. The generalized max-
imum coverage problem. Information Processing Letters
108(1):15–22.
Hearst, M. A. 2006. Clustering versus faceted categories
for information exploration. Communications of the ACM
49(4):59–61.
Khuller, S.; Moss, A.; and Naor, J. 1999. The budgeted
maximum coverage problem. Information Processing Let-
ters 70(1):39–45.
Liberman, S., and Lempel, R. 2012. Approximately optimal
facet selection. In Proceedings of the ACM Symposium on
Applied Computing, SAC 2012, Riva, Trento, Italy, March
26-30, 2012, 702–708.
Nie, Z.; Ma, Y.; Shi, S.; Wen, J.; and Ma, W. 2007. Web
object retrieval. In Proceedings of 16th International World
Wide Web Conference, 81–90. ACM Press.
Sah, M., and Wade, V. 2013. Personalized concept-based
search and exploration on the web of data using results cat-
egorization. In Proceedings of 10th Extended Semantic Web
Conference, 532–547. Springer.
Tonon, A.; Catasta, M.; Demartini, G.; Cudre-Mauroux, P.;
and Aberer, K. 2013. TRank: Ranking entity types using the
web of data. In Proceedings of 12th International Semantic
Web Conference, 640–656. Springer.
Vandic, D.; Frasincar, F.; and Kaymak, U. 2013. Facet selec-
tion algorithms for web product search. In 22nd ACM Inter-
national Conference on Information and Knowledge Man-
agement, CIKM’13, San Francisco, CA, USA, October 27 -
November 1, 2013, 2327–2332.
Xu, Z.; Fu, Y.; Mao, J.; and Su, D. 2006. Towards the se-
mantic web: Collaborative tag suggestions. In Proceedings
of WWW 2006 Workshop on Collaborative Web Tagging.

94

