
A Probabilistic Model for Bursty Topic Discovery in Microblogs

Xiaohui Yan, Jiafeng Guo, Yanyan Lan, Jun Xu, Xueqi Cheng
Institute of Computing Technology, Chinese Academy of Science

No.6 Kexueyuan South Road, Haidian District
Beijing, China 100190

Abstract

Bursty topics discovery in microblogs is important for
people to grasp essential and valuable information.
However, the task is challenging since microblog posts
are particularly short and noisy. This work develops a
novel probabilistic model, namely Bursty Biterm Topic
Model (BBTM), to deal with the task. BBTM extends
the Biterm Topic Model (BTM) by incorporating the
burstiness of biterms as prior knowledge for bursty topic
modeling, which enjoys the following merits: 1) It can
well solve the data sparsity problem in topic modeling
over short texts as the same as BTM; 2) It can automat-
ical discover high quality bursty topics in microblogs
in a principled and efficient way. Extensive experiments
on a standard Twitter dataset show that our approach
outperforms the state-of-the-art baselines significantly.

Introduction
Nowadays microblog services have become an important
platform for people to share and access information. In Twit-
ter, about 58 million posts are produced every day, involv-
ing various topics such as daily chatting, business promo-
tions, and news stories. Among them, there are always many
novel topics emerging and attracting wide interest, referred
as bursty topics. These topics are often related to some im-
portant events or issues in either cyber or physical space.
Thus discovering bursty topics can provide people essential
and valuable information, and consequently benefit many re-
lated applications such as public opinion analysis, business
intelligence, and news clues tracking.

However, bursty topic discovery in microblogs is chal-
lenging. First, the posts in microblogs are particularly short.
How to distill high quality topics from short texts is a non-
trivial problem. Second, posts are particularly diverse and
noisy, with a large proportion of common and meaningless
subjects such as pointless babbles and daily chatting (Ana-
lytics 2009). These posts overwhelm in microblogs, making
it difficult to distinguish bursty topics from non-bursty con-
tent.

In previous studies, a typical way for this task is to de-
tect bursty features (e.g., words or phrases) and then clus-
ter them (Mathioudakis and Koudas 2010; Cataldi, Di Caro,
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and Schifanella 2010; Li, Sun, and Datta 2012). However,
there are two drawbacks within these methods. First, they
require cumbersome and complicated heuristic tuning and
post-processing, since the bursty features detected are noisy
and ambiguous, which are not easy to cluster. Second, rep-
resenting the topics only by bursty features will lose much
information, making them difficult to read and understand.

Another attempt is to discover bursty topics via topic
models, a widely used tool for topic discovery in text col-
lections (Hofmann 1999; Blei, Ng, and Jordan 2003). How-
ever, conventional topic models are designed to reveal the
main topics in a collection (Blei 2012), not directly applica-
ble for bursty topic discovery in microblogs. Although some
post-processing techniques can be used to detect bursty
topics from the learned topics of conventional topic mod-
els (Lau, Collier, and Baldwin 2012), it is not economical
since most of the discovered topics might not be bursty. To
amend this problem, some researchers tried to introduce the
temporal information into topic models (Diao et al. 2012;
Yin et al. 2013). Unfortunately, they still rely on post-
processing steps or heuristic techniques to distill bursty
topics. Furthermore, all of these above methods use topic
models designed for normal texts (e.g., LDA), which have
been shown not effective for short texts such as microblog
posts (Hong and Davison 2010; Yan et al. 2013).

In this paper, we focus on the problem of discovering
bursty topics in a microblog stream divided by certain time
slices (e.g., day). Formally, a topic is considered to be bursty
in a time slice if it is heavily discussed in that time slice, but
not in most of other time slices. We propose to discover such
bursty topics in a principled way via a novel probabilistic
model, namely Bursty Biterm Topic Model (BBTM). Our
work is based on a recently introduced Biterm Topic Model
(BTM) (Yan et al. 2013), which models biterms (i.e., word
pairs) rather than words for effective topic modeling in short
texts. The key idea of our approach is to exploit the bursti-
ness of biterms as prior knowledge to incorporate into BTM
for bursty topic modeling. BBTM enjoys two substantial
merits over the previous methods. First, it well solves the
data sparsity problem in topic modeling over short texts, as
compared with those methods based on conventional topic
models. Second, it can learn bursty topics in a principled and
efficient way without any heuristic post-processing steps.

We have conducted extensive experiments over a stan-
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dard Twitter dataset. The experimental results demonstrate
that our approach achieves substantial improvement over the
state-of-the-art methods.

Biterm Topic Model
For completeness, we first briefly review the biterm topic
model (i.e., BTM) (Yan et al. 2013; Cheng et al. 2014),
a recently proposed probabilistic topic model for short
texts. Before BTM, most conventional topic models, such
as PLSA (Hofmann 1999) and LDA (Blei, Ng, and Jor-
dan 2003), model each document as a mixture of top-
ics, and thus suffer from the data sparsity problem when
documents are extremely short (Hong and Davison 2010;
Tang et al. 2014). Instead, BTM learns topics by modeling
the generation of biterms (i.e., unordered co-occurring word
pairs) in the collection, whose effectiveness are not affected
by the length of documents, making it more appropriate for
short texts.

The intuition of BTM is that if two words co-occur more
frequently, they are more likely to belong to a same topic.
Based on this idea, BTM models each biterm as two words
draw from a same topic, while a topic is drawn from a
mixture of topics over the whole collection. Specifically,
given a short text collection, suppose it containsNB biterms
B= {b1, ..., bNB

} where bi = (wi,1, wi,2), and K topics ex-
pressed over W unique words, the generative process de-
scribed by BTM is as follows:

1. For the collection,

• draw a topic distribution θ ∼ Dir(α)

2. For each topic z,

• draw a word distribution φz ∼ Dir(β)

3. For each biterm bi ∈ B,

• draw a topic assignment z ∼ Multi(θ)

• draw two words wi,1, wi,2 ∼ Mulit(φz)

where θ defines a K-dimensional multinomial distribution
over topics, and φz defines a W -dimensional multinomial
distribution over words. The graphical representation of
BTM is illustrated in Figure 1 (a).

Bursty Topic Modeling
BTM is an effective topic model over short texts but not
designed for bursty topic discovery. In other words, each
biterm occurrence contributes equally in BTM, but in mi-
croblogs a large proportion of biterms in microblogs are
about common topics such as daily life and chatting. Con-
sequently, BTM tends to discover common topics in mi-
croblogs.

To discover bursty topics through BTM, it is important to
emphasize those biterms relevant to bursty topics and make
the model focus on these observations. Therefore, we intro-
duce and quantify the burstiness of biterms and incorporate
it as prior knowledge into BTM for bursty topic discovery.

Bursty Probability of Biterm
Intuitively, when a bursty topic breaks out, relevant biterms
can be observed more frequently than usual. For instance,
the biterms such as “world cup”, “football brazil” became
much more popular than usual in Twitter when World Cup
2014 took place. Such biterms provide us crucial clues for
bursty topic discovery. Based on the above observation, we
introduce a probability measurement, called bursty proba-
bility, to quantify the burstiness of biterms, which can be
estimated from the temporal frequencies of the biterms.

Suppose a biterm b occurred n(t)b times in the posts pub-
lished in time slice t. Since a biterm might be observed ei-
ther in normal usage (e.g., daily chatting) or in some bursty
topic, we decompose n(t)b into two parts: n(t)b,0 is the count of

biterm b occurred in normal usage, while n(t)b,1 is the count

of b occurred in bursty topics, with n(t)b,0+n
(t)
b,1 = n

(t)
b . Note

that both n(t)b,0 and n(t)b,1 are not observed, however, we can
determine their value approximately based on the temporal
frequencies of b.

Specifically, for a large collection it is reasonable to as-
sume that the normal usage of a biterm is stable during a
period of time. In other words, n(t)b,0 is supposed to almost

be constant over time. Conversely, n(t)b,1 may change signifi-
cantly across different time slices. When some bursty topic
relevant to bi breaks out, n(t)b,1 might rise steeply. while in
most other time slices, there is no such bursty topic taking
place, n(t)b,1 will be close to 0. Based on the above analy-

sis, we estimate n(t)b,0 by the mean of n(t)b in the last S time

slices, i.e., n̄(t)b = 1
S

∑S
s=1 n

(t−s)
b . Consequently, we can ob-

tain n̂(t)b,1 = (n
(t)
b − n̄

(t)
b )+, where (x)+ = max(x, ε), and ε

is a small positive number to avoid zero probability. In our
experiments, we set S=10, ε=0.01 after some preliminary
experiments.

With n(t)b and n̂(t)b,1 in hand, it is straightforward to mea-
sure the possibility of b generated from a bursty topic in time
slice t as:

η
(t)
b =

(n
(t)
b − n̄

(t)
b )+

n
(t)
b

. (1)

We refer η(t)b as the bursty probability of biterm b in time
slice t. The calculation of η(t)b implies that a biterm occurred
much more frequently in a time slice than other time slices
will be more likely to be generated from bursty topics 1.

Bursty Biterm Topic Models
We now describe our approach for bursty topic modeling in
microblogs, i.e., Bursty Biterm Topic Model (BBTM). In the
following, since we focus on data in a single time slice, we

1In our experiments, we found η(t)b in Eq. (1) might be overes-
timated for rare biterms whose n̄(t)

b issmall. Since the rare biterms
are more likely to be generated by random factors rather than bursty
topics, we set η(t)b to ε/n(t)

b if n̄(t)
b < 5.
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Figure 1: Graphical representation of (a) the biterm topic model, and (b) the bursty biterm topic model.

will not specify the time slice in the notations. For instance,
we write η(t)b as ηb for simplification.

As we suppose that a biterm might be observed either
in normal usage or in some bursty topic, the basic idea of
BBTM is to distinguish the occurrences of biterms from the
two parts to learn bursty topics. Specifically, we define a bi-
nary variable ei to denote the source of an occurrence of
biterm bi. ei = 0 indicates bi is generated by normal us-
age, while ei =1 indicates bi is generated from some bursty
topic. Recall that the bursty probability of a biterm encodes
our prior knowledge of how likely the biterm is generated
from a bursty topic, we thus define a Bernoulli distribution
with parameter ηbi as the prior distribution of ei. Moreover,
we introduce K multinomial distributions over the words
(i.e., {φk|k∈ [1,K]}) to denote the bursty topics in the col-
lection, and a background word distribution φ0 to denote the
normal usage. The generative process of the biterm set B in
the time slice in BBTM is then defined as follows:

1. For the collection,
• draw a bursty topic distribution θ ∼ Dir(α)

• draw a background word distribution φ0 ∼ Dir(β)

2. For each bursty topic k ∈ [1,K],
• draw a word distribution φk ∼ Dir(β)

3. For each biterm bi ∈ B
• draw ei ∼ Bern(ηbi)

• If ei = 0,
– draw two words wi,1, wi,2 ∼ Multi(φ0)

• If ei = 1,
– draw a bursty topic z ∼ Multi(θ)
– draw two words wi,1, wi,2 ∼ Multi(φz)

Its graphical representation is shown in Figure 1 (b), where
B denotes the number of distinct biterms in B.

Discussion
In BBTM, the prior distribution ηb indicates how likely a
biterm b is generated by bursty topics, which plays a key
role in guiding the model to distinguish whether a biterm b
is generated from burst topics or not. Previous work mea-
suring word burstiness with statistical testing (Swan and
Allan 1999; Lijffijt 2013) or sigmoid mapping of the vari-
ance of temporal frequencies of words (Fung et al. 2005;

Li, Sun, and Datta 2012) can only determine whether a
biterm is bursty or not, rather than the probability of a biterm
generated from bursty topics. Therefore, using them as the
prior will lead to inferior results, as shown in our preliminary
experiments.

The background word distribution introduced by BBTM
is used to filter out biterms not related to bursty topics. In
(Mei and Zhai 2005), a background word distribution is also
introduced into a topic model to distill temporal themes from
a text stream. However, the background word distribution is
simply set to the empirical word distribution that contributes
equally on the generation of each word. In BBTM, the back-
ground word distribution is learned from the data. Its impact
on the generation of biterms is different due to the biterm-
wise prior ηb.

Parameter Estimation

In BBTM, the parameter set need to estimate is Θ =
{θ,φ0, ...,φK}, if given the hyperparameters α and β. It
is not hard to write out the likelihood of the biterm set B:

P (B) =

NB∏
i=1

∫ (
φ0,wi,1

φ0,wi,2
(1− ηbi) +

K∑
k=1

θkφk,wi,1
φk,wi,2

ηbi

)
dΘ. (2)

Since the parameters in Θ are coupled in Eq. (2), it is in-
tractable to determine them exactly. Following (Griffiths and
Steyvers 2004), we use the collapsed Gibbs sampling algo-
rithm for approximate estimation.

The basic idea is to estimate the parameters alternatively
using samples drawn from the posterior distributions of la-
tent variables sequentially conditioned on the current val-
ues of all other variables and the data. In BBTM, there are
two types of latent variables, i.e., ei and zi. We draw them
jointly according to the following conditional distribution
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Algorithm 1: Gibbs sampling algorithm for BBTM
Input: K, α, β, B
Output: {φk}Kk=0,θ
Randomly initialize e and z
for iter = 1 to Niter do

foreach bi = (wi,1, wi,2) ∈ B do
Draw ei, k from Eqs.(3-4)
if ei = 0 then

Update the counts n0,wi,1 , n0,wi,2

else
Update the counts nk, nk,wi,1 , nk,wi,2

Compute the parameters by Eqs. (5-6)

(the derivation is provided in the supplemental material):
P (ei = 0|e¬i, z¬i,B, α, β,η) ∝

(1− ηbi) ·
(n¬i0,wi,1

+ β)(n¬i0,wi,2
+ β)

(n¬i0,· +Wβ)(n¬i0,· + 1 +Wβ)
, (3)

P (ei = 1, zi = k|e¬i, z¬i,B, α, β,η) ∝

ηbi ·
(n¬ik + α)

(n¬i· +Kα)
·

(n¬ik,wi,1
+ β)(n¬ik,wi,2

+ β)

(n¬ik,· +Wβ)(n¬ik,· + 1 +Wβ)
, (4)

where e = {ei}NB
i=0, z = {zi}NB

i=0, η = {ηb}Bb=0, n0,w is
the number of times that word w is assigned to the back-
ground word distribution, n0,· =

∑W
w=1 n0,w is the total

number of words assigned to the background word distri-
bution, nk is the number of biterms assigned to bursty topic
k, n· =

∑K
k=1 nk is the total number of biterms assigned

to bursty topics, nk,w is the number of times that word w
is assigned to bursty topic k, nk,·=

∑W
w=1 nk,w is the total

number of words assigned to bursty topic k, and ¬i means
ignoring biterm bi.

The Gibbs sampling algorithm of BBTM is outlined in Al-
gorithm 1. First, we randomly initialize the latent variables.
Then, we iteratively draw samples of the latent variables for
each biterm according to Eqs. (3-4). After a sufficient num-
ber of iterations, we collect the counts nk and nk,w to esti-
mate the parameters by:

φ̂k,w =
nk,w + β

nk,· +Wβ
, (5)

θ̂k =
nk + α

n· +Kα
. (6)

Runtime Analysis. Recall that the time complexity of
BTM is O(NiterKNB) and the memory complexity is
K(1+W )+NB (Yan et al. 2013), where NB is the number
of biterms in B. Compared with BTM, BBTM introduces an
additional topic, namely the background word distribution,
thus its time complexity is O(Niter(K + 1)NB). Moreover,
it need to maintain η in memory, so its memory complexity
is (K+1)(1+W )+NB+B.

Experiments
In this section, we empirically verify the performance of
BBTM on bursty topic discovery in microblogs both quanti-

tatively and qualitatively.

Experimental Settings
Dataset. We use a standard microblog dataset, i.e., the
Tweets2011 collection published in TREC 2011 microblog
track2. The dataset contains approximately 16 million tweets
sampled in 17 days from Jan. 23 to Feb. 8, 2011. We prepro-
cessed the raw data in the same way as (Yan et al. 2013).
Furthermore, we filtered biterms occurred only one time in
the collection to save computational cost since most of them
are meaningless.

Baseline Methods. We compare our approach against the
following baseline methods: 1) Twevent (Li, Sun, and Datta
2012) first detects bursty tweet segments and then clustering
them to obtain bursty topics. To make a fair comparison, we
simply used individual words as segments, and did not ex-
ploit Wikipedia to filter the final clusters. 2) OLDA (Lau,
Collier, and Baldwin 2012) uses online LDA (AlSumait,
Barbará, and Domeniconi 2008) to learn topics in each
time slice, and then detects bursty topics by measuring the
Jensen-Shannon divergence between the words distribution
before and after an update of the topics. 3) UTM (User-
Temporal Mixture model) (Yin et al. 2013) supposes the
temporal topics follow a time-dependent topic distribution,
and the non-bursty topics follow a user-dependent topic dis-
tribution. To ensure the temporal topics discovered to be
bursty, the authors heuristically boosted the probability of
bursty words in the temporal topics. 4) IBTM trains individ-
ual BTM (Yan et al. 2013) for each time slice. To distinguish
between bursty topics and non-bursty topics, we first greed-
ily matched the topics in two adjacent time slices accord-
ing their cosine similarity, and then used the post-processing
step in OLDA to detect bursty topics. 5) BBTM-S is a sim-
plified version BBTM. In BBTM-S, for each occurrence of
biterm bi, we directly draw ei from a Bernoulli distribution
with parameter ηbi , rather than take it as a latent variable.
If ei = 1, bi is selected into the training set, otherwise it is
discarded. Finally, we simply train a BTM over the selected
biterms to learn the bursty topics.

Parameter Setting. In our experiments, the length of a
time slice is set to a day, a typical setting in the litera-
ture (Lau, Collier, and Baldwin 2012; Li, Sun, and Datta
2012). Following the convention in BTM (Yan et al. 2013),
we set α = 50/K and β = 0.01 in BBTM. The number of
bursty topics K are varied from 10 to 50. The other param-
eters of the baseline methods are set by their default values
in their papers.

Accuracy of Bursty Topics Discovered
First of all, we evaluate the accuracy of the bursty top-
ics discovered by different methods. We asked 5 volun-
teers to manually label the bursty topics discovered by all
of these methods. To ensure unbiased judgment, all the top-
ics generated are randomly mixed before labeling. For each
bursty topic, we provided the volunteers its 50 most prob-
able words and time slice information, and external tools,
such as Google and Twitter search, to help their judgement.

2http://trec.nist.gov/data/tweets/
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Method P@10 P@30 P@50
Twevent 0.592 0.681 0.636

UTM 0.565 0.488 0.453
OLDA 0.231 0.217 0.185
IBTM 0.300 0.325 0.297

BBTM-S 0.785 0.832 0.790
BBTM 0.810 0.865 0.842

Table 1: Accuracy of the bursty topics discovered (measured
by Precision@K).

If the bursty topic presented is both meaningful and bursty
in its time slice, it gets 1 point; Otherwise, it gets 0 point. A
bursty topic is correctly detected if more than half of judges
assigned 1 point to it. The comparison of different methods
are then based on the average precision at K (P@K), i.e.,
the proportion of correctly detected busty topics among the
learned K bursty topics.

Table 1 lists the precisions of all the methods with dif-
ferent settings of bursty topic number K. We find that 1)
BBTM always achieves a high precision over 0.8, which is
substantially better than other methods. 2) The simplified
version of BBTM, i.e., BBTM-S, falls behind BBTM but
works much better than other baselines. We analyze the rea-
son why BBTM-S is worse than BBTM. We find that the
biterm sampling process simply using the prior distribution
may throw away some potential bursty biterms with mod-
erate busty probability. Meanwhile, from Eq. (4) we can
see that the topic assignment of bi is actually affected by
two factors simultaneously. One is the prior knowledge en-
coded by bursty probability, and the other is co-occurrence
patterns with other biterms in the time slice. By preserving
all the biterms and modeling the two parts jointly, BBTM
thus can better capture the bursty topics. 3) Twevent out-
performs other baseline methods that based on topic models
(i.e., OLDA, UTM and IBTM). Further examination shows
that many topics discovered by these topic model based
methods are still about common subjects such as sentiment
and life. 4) Moveover, we also find that IBTM outperforms
OLDA though they use the same post-processing step, in-
dicating that BTM can better model topics over short texts
than LDA.

For qualitative analysis, in Table 2 we show 5 bursty top-
ics (represented by the most probable words) discovered by
BBTM along with the corresponding topic probability, i.e.,
θ̂k. To help us better understand the results, we also present a
news title for each topic obtained by searching its keywords
and date in Google. We can see that the 5 bursty topics co-
incide well with the real-world events reported by the news
titles, suggesting the good detection accuracy and potential
value of our approach on event detection and summarization.

Coherence of Bursty Topics Discovered
Next, we evaluate the interpretability of the learned bursty
topics based on the coherence measure. One popular metric
is the PMI-Score (Newman et al. 2010), which calculates
the average Pointwise Mutual Information (PMI) between
the most probable words in each topic using the large-scale
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Figure 2: Coherence of the bursty topics discovered (mea-
sured by PMI-Score).

Wikipedia data. A larger PMI-Score indicates the topic is
more coherent.

The result is shown in Figure 2. We have the following
observations. 1) The PMI-Score of BBTM is comparable to
IBTM and almost always the highest, indicating good co-
herence of the learned bursty topics from microblogs. 2)
BBTM-S achieves a comparable PMI-Score with OLDA
which is substantially higher than UTM and Twevent. How-
ever, BBTM-S is lower than BBTM, since it loses a large
part of useful word co-occurrence information by filtering
the biterms. 3) The PMI-Score of Twevent is always the low-
est, indicating that topics obtained by simply clustering the
bursty words might be noisy and less coherent. 4) The PMI-
Score of UTM is lower than the other topic model based
methods. An explanation is that UTM heuristically boosts
the probability of bursty words in the temporal topics, which
might disturb the topic learning process and degrade the
quality of the learned topics.

For qualitative analysis, we chose a hot bursty topic by
selecting a hashtag with high bursty probability estimated
by Eq.(1). The hashtag is “#ntas” occurred in Jan. 26, 2011,
which denotes NTA (National Television Awards), a promi-
nent ceremony in British held on that day. For compari-
son, we first calculate the empirical word distribution in the
tweets containing the hashtag. Then for each method, we
select the bursty topic closest to the empirical word distribu-
tion of the hashtag under the cosine similarity, and list the
results in Table 3.

From Table 3, we can see that: 1) The bursty topics dis-
covered by BBTM is the closest to NTA, and even better
explains NTA than the empirical word distribution by rank-
ing some common words such as “morning” and “doctor”
in lower position. 2) The bursty discovered BBTM-S is also
clearly about NTA, but slightly less readable than BBTM. 3)
The bursty topic discovered by Twevent is not well readable,
though the words are bursty in the data. UTM seems to have
the same problem of Twevent, since it boosts the probabil-
ity of burst words in each topic in a heuristic way. 4) The
topics discovered by OLDA and BTM are relevant to NTA,
but they contain many common words such as “year” and
“good”, suggesting that it is a common issue of the standard
topic models.
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k The 10 most probable words θ̂k

2
police officers shot shooting detroit twitter adam suspect year revenue 0.036(Two St. Petersburg police officers were shot and killed)

11
airport moscow police news killed people dead blast suicide explosion 0.057(Deadly suicide bombing hits Moscow’s Domodedovo airport)

15
open #ausopen nadal australian murray mike tomlin cloud #cloud avril 0.015(Australian Open Tennis Championships 2011)

25
jack lalanne fitness 96 dies guru rip died age dead 0.044(Jack LaLanne: US fitness guru who last ate dessert in 1929 dies aged 96)

26
court emanuel rahm chicago ballot mayor mayoral run appellate rules 0.024(Court tosses Emanuel off Chicago mayoral ballot)

Table 2: Bursty topics discovered by BBTM on Jan. 24, 2011. The sentences in parenthesis are news titles corresponding to
these topics obtained by querying the most probable words and its date in Google.

Empirical Twevent UTM OLDA IBTM BBTM-S BBTM
#ntas #thegame #thegame amazing award award #ntas
win malik malik vote shorty win award
love ant sitting award nominate bell awards

award melanie standing movie oscar taco win
matt eastenders cut year awards high #nta

morning derwin empty listen #ntas shortly national
watching #ntas pres awesome film speed love

doctor tosh reform film win nominate tv
lacey nta remind king love #ntas television
cardle corrie ai music good rail nta

Table 3: The bursty topic discovered by each method mostly relates to “#ntas” on Jan.26, 2011. The first column list the most
frequent words in the tweets with hashtag “#ntas”.

Novelty of Bursty Topics Discovered
In microblogs, we know that the content of bursty topics
change continually. We would like to compare the sensitiv-
ity of these methods on discovering novel bursty topics by
evaluating the novelty of the learned bursty topics across dif-
ferent time slice 3. Specifically, given a topic set sequence
{Z(0), ...,Z(t)}, we collect the T most probable words of
each topic in Z(t) to construct a topical word set W(t) for
each time slice. Then, we define the novelty of Z(t) as the
ratio of novel words in the topical word set, compared to the
last time slice. Formally:

Novelty(Z(t)) =
|W(t)| − |W(t) ∩W(t−1)|

T ∗K
,

where | · | denotes the number of elements of a set. In our
experiments, we chose T =10.

In Figures 3, we plot the change of the novelty of the
bursty topics as a function of the bursty topic number K.
We observe that 1) Both BBTM and BBTM-S significantly
outperform OLDA and IBTM, especially when K is large,
implying these two bursty oriented methods are more sensi-
tive to bursty topics in microblogs than the temporal topic
models. 2) Twevent obtains a very high novelty when K
is small, since it summarizes burst topics only with bursty

3Since UTM is a retrospective topic detection model that mod-
els topics as static over time, we do not compare it here.
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Figure 3: Novelty of the bursty topic discovered.

words. However, the novelty decreases fast with the increase
of topic number K. Further investigation found that the rea-
son is that many small-sized clusters (e.g., with 2 or 3 words)
are discovered by Twevent.

Efficiency Comparison
Finally, we compare the training time of the methods based
on topic models. The experiments are conducted on a per-
sonal computer with two Dual-core 2.6GHz Intel processors
and 4 GB of RAM, and all the codes are implemented in
C++. We summarize the average runtime of per iteration
over microblog posts in a single day in Table 4. It is not
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K UTM OLDA IBTM BBTM-S BBTM
10 4.24 1.84 4.66 0.03 1.57
20 6.02 2.61 5.97 0.06 2.89
30 7.84 3.28 7.24 0.09 4.40
40 9.79 4.02 8.54 0.13 5.71
50 11.63 4.83 9.99 0.17 7.24

Table 4: Time cost (second) per iteration.

surprising that BBTM-S costs much less time than other
methods, since it only used a subset of biterms for training.
We also find that BBTM is much efficient than IBTM and
UTM, since it focuses on learning busty topics and spends
much less time on learning non-bursty topics. Note that both
BBTM and BBTM-S do not require any post-processing
steps as OLDA and IBTM, which will cost additional time.

Conclusions & Future Work
We study the problem of bursty topics discovery in mi-
croblogs, which is challenging due to the microblog posts
are particularly short and noisy. To tackle this problem, we
develop a novel bursty biterm topic model (i.e., BBTM)
based on the recently introduced short text topic model
(i.e., BTM). The key idea is to exploit the burstiness of
biterms as the prior knowledge and incorporate it into BTM
in a principled way for bursty topic modeling. Our ap-
proach can not only well solve the data sparsity problem
in topic modeling over short texts, but also automatically
learn bursty topics in a efficient way. Experimental results
demonstrate the substantial superiority of our approach over
the state-of-the-art methods.

For the future work, we would like to further improve the
estimation of bursty probability by including more informa-
tion of the biterms. It would also be interesting to investi-
gate how to model the microblog streams together with other
streaming data, like news streams, to better detect and rep-
resent bursty topics.
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