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Abstract

Finding a subset of users to statistically represent the
original social network is a fundamental issue in Social
Network Analysis (SNA). The problem has not been
extensively studied in existing literature. In this paper,
we present a formal definition of the problem of sam-
pling representative users from social network. We
propose two sampling models and theoretically prove
their NP-hardness. To efficiently solve the two models,
we present an efficient algorithm with provable approxi-
mation guarantees. Experimental results on two datasets
show that the proposed models for sampling representa-
tive users significantly outperform (+6%-23% in terms
of Precision@100) several alternative methods using
authority or structure information only. The proposed
algorithms are also effective in terms of time complex-
ity. Only a few seconds are needed to sampling 300
representative users from a network of 100,000 users.
All data and codes are publicly available.1

Introduction
In social networks, a small subset of users (e.g., opin-
ion leaders) usually plays an important role in influenc-
ing the social dynamics (behavior and structure). For ex-
ample, in HCI, for conducting surveys and collecting user
feedbacks, selecting representative users is always a key is-
sue (Landauer 1997). On the other hand, in a social network,
users may have different representative degrees from differ-
ent aspects (topics). For example, iPhone fans may have a
high representative degree on some fashion products, while
housewives have a high representative degree on cooking or
children’s products. One interesting question is: can we de-
sign an algorithm to automatically sampling representative
users for different topics from large social networks?

Despite several relevant studies, such as those on so-
cial influence analysis (Anagnostopoulos, Kumar, and Mah-
dian 2008; Crandall et al. 2008; Singla and Richardson
2008; Tang et al. 2009), influence maximization (Kempe,
Kleinberg, and Tardos 2003; Chen, Wang, and Yang 2009;
Scripps, Tan, and Esfahanian 2009), and opinion leader find-
ing (Goyal, Bonchi, and Lakshmanan 2008), there are few
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theoretical studies on the problem of sampling representa-
tive users (SRU). Unlike influence maximization, in which
the goal is to find a set of nodes (users) in a social network
who can maximize the spread of influence (Richardson and
Domingos 2002; Kempe, Kleinberg, and Tardos 2003), the
objective of sampling representative users is to identify a
few “average” users who can statistically represent the char-
acteristics of all users (Landauer 1997). Another type of re-
lated work is social influence analysis. Anagnostopoulos et
al. (2008) and Singla and Richardson (2008) propose meth-
ods to qualitatively measure the existence of influence. Cran-
dall et al. (2008) studies the correlation between social simi-
larity and influence. Tang et al. (2009) presents a method for
measuring the strength of such influence. The problem of
sampling representative users from social networks is also
relevant to graph sampling (Leskovec and Faloutsos 2006;
Maiya and Berger-Wolf 2010; 2011; Ugander et al. 2013).
However, most existing works focus on studying the net-
work topology and ignore the topic information. Sun et
al. (2013) aims to find representative users from the infor-
mation spreading perspective and Ahmed et al. (2013) stud-
ies the network sampling problem in the dynamic environ-
ment. Papagelis et al. (2013) presents a sampling-based al-
gorithm to efficiently explore a user’s ego network respect-
ing its structure and to quickly approximate quantities of
interest. However, the problem itself is different from that
sampling representative users for the whole network.

Problem and Our Solution. We use an example from a
coauthor network to clearly demonstrate the motivation of
this work. In Figure 1, the left figure shows a coauthor net-
work and attributes (or interests) of each researcher. For ex-
ample, George has a higher interest degree (0.9) on topic
“database” than the degree (0.1) on “data mining”. The right
figure shows the output of topic-based representative users,
highlighted with rectangles, where “Ada” and “Frank” are
identified as the representative authors on topic “data min-
ing” and “George” and “Eve” are representative users on the
“database” topic. The weighted directed edge between the
representative user and another user indicates how likely the
selected user represents the other user. For example, on topic
“data mining”, “Ada” has a higher representative degree for
“Eve” than “Bob”. The problem of sampling representative
users from large networks is fundamental for many social
network mining tasks. For example, in existing literature,
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Figure 1: Example of sampling representative users from the
coauthor network.

analytic/mining tasks were usually evaluated on a random
sampled network. How reliable is the result? It is necessary
to design a principled approach to solve the problem.

In this paper, we aim to systematically investigate the
problem of sampling representative users from social net-
works. We formally define the and by linking it to the Dom-
inating Set Problem, we prove that the problem is NP-hard
(Cf. Section 3). We design a quality function Q to evaluate
the set of sampled users and develop two instantiation mod-
els for estimating the Q function. To approximate the opti-
mal solution, we present efficient algorithms to solve the two
models with provable approximation guarantees. Finally, we
conduct extensive experiments to demonstrate the effective-
ness and efficiency of the proposed models on one coauthor
dataset and another microblog dataset.

Problem Formulation
Consider a social network G = (V,E), where V is the set
of users and E ⊂ V × V is the set of directed/undirected
links between users. Let Xi = [xik]k=1···d denote a set of
attributes (topics) associated with the user vi ∈ V , where d
is the number of attributes and xik records the value of the
kth attribute of user vi. For each edge eij ∈ E, we associate
a weight wij .

Given this, we can define a function to indicate the rep-
resentative degree of a subset of users T . More precisely,
for any subset T ⊆ V and a user vi ∈ V , we define the
representative degree of T for vi on a specific attribute aj
to be R(T, vi, aj) with a score ranging in [0, 1]. We say T
perfectly represents vi on attribute aj if R(T, vi, aj) = 1.
For T = ∅, we have R(T, vi, aj) = 0. If T contains only
one user v, R(T, vi, aj) is the degree that v represents vi
on attribute aj . This score is determined by the input net-
working data and the way to compute the function R. This
formulation is very flexible and can easily incorporate other
information. For example, to incorporate the network infor-
mation, a straightforward method is to treat each node in the

network as an attribute and define a neighbor group for each
node, i.e., T is equivalent to the set of neighbors for a given
user vi.

Without loss of generality, there are often two types of at-
tributes. The first type is the numeric attribute. For example,
in a coauthor network, an attribute can be the interest degree
of a user on a topic. Those people with a higher value are
more representative. The second type is the non-comparable
attribute, for example, the job title. Intuitively, it is better to
select users with different job titles (to cover all values of
the attribute). To do this, one idea is to divide all people into
different groups according to the attribute value. Then the
problem is cast as selecting users to represent each group.

Based on this idea, we can define a group of people with
attribute value ajk as Vk ⊆ V . We refer to such a group to-
gether with the corresponding attribute as an attribute group.
We use t to denote the number of attribute groups and G to
denote the set of all groups, thus

G = {(V1, aj1), (V2, aj2), . . . , (Vt, ajt)}.

Now we give the definition of representative degree for
each attribute group as follows.

Definition 1. Attribute group representative degree. For an
attribute group (Vl, ajl) (1 ≤ l ≤ t), let

P (T, l) =
∑
vi∈Vl

R(T, vi, ajl)

be the representative degree of T for attribute group
(Vl, ajl). We say the attribute group (Vl, ajl) is represented
if all people in Vl are perfectly represented on attribute ajl .

In practice, it might be difficult to find a perfect repre-
sentation. The representative degree P (T, l) then quantifies
how likely the subset T can represent all people in Vl on
attribute ajl .

Our goal in this paper is to find the representative set T so
that it has the highest representative degree P (T, l) for all at-
tributes. In general, given a social network G, the attributes
distributions X , the attribute groups G and the representa-
tive set T , we can formally define the following problem:

Problem 1. Sampling Representative Users. Given (1) a
social network G = (V,E), where V is the set of users and
E is the set of directed edges, (2) d attributes associated with
each user, a desirable number k of users to be selected, (3)
t attribute groups to be represented, (4) a quality function
Q, how to find the set T of k representative users with max-
imal quality? Formally, we have the following optimization
problem:

argmax
T⊆V,|T |=k

Q(G,X,G, T ).

Proposed Models
In this section, we first perform a theoretical investigation
of the problem of sampling representative users from a so-
cial network. We link this problem to the Dominating Set
Problem and prove its NP-hardness. Then we develop two
instantiation models for the problem.
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Theoretical Basic
Given a predefined quality function Q(G,X,G, T ), the
problem of sampling the representative set with maximal
quality is referred to as a Q-evaluated Representative Users
Sampling Problem (shortly Q-SRU). For any specified Q,
the Q-evaluated representative users sampling problem is
a subproblem of the original representative users sampling
problem. The following theorem shows the NP-hardness of
this problem.

Theorem 1. For any fixed Q, the Q-evaluated Representa-
tive Users Sampling problem is NP-hard.

Proof. We prove the theorem by a reduction to the Domi-
nating Set Problem (Garey and Johnson 1979; Karp 1972).
We construct an instance of the Q-SRU problem as follows:

Consider in a networkG, if there is only one attribute (i.e.,
a1) and only one attribute group (V, a1). For vi 6= vi′ ∈ V ,
assign R({vi′}, vi, a1) = 1 if edge ei,i′ ∈ E; assign
R({vi′}, vi, a1) = 0 otherwise. For every vi ∈ V , we also
assign R({vi′}, vi, a1) = 1. We can see that for a given sub-
set of V , a person is perfectly represented if and only if the
corresponding vertex is dominated. Therefore the Dominat-
ing Set Problem is equivalent to the problem of evaluating
whether there exists a k-element representative set to repre-
sent all users perfectly.

Regarding the quality function, Q can be rewritten as a
t-variable function f taking P (T, l) (1 ≤ l ≤ t) as parame-
ters. When every P (T, l) reaches its maximal value |Vl|, the
value of f is maximized, and this must be the only maxi-
mal point of f (distinguishable). If we can find the maximal
value of Q, we can accordingly determine whether f (equal
to Q) reaches the maximal value, which allows us to further
determine whether there exist a k-element dominating set.
Based on this analysis, we can conclude that the Q-evaluated
Representative Users Sampling problem is NP-hard.

Two Sampling Models
In social science, two basic principles to select represen-
tative users are synecdoche (in which a specific instance
stands for the general case) and metonymy (in which a spe-
cific concept stands for another related or broader concept)
(Landauer 1997). In effect, we treat one user as being a
synecdochic representative of all users, and we treat one
measurement on that user as being a metonymic indicator
of all of the relevant attributes of that user and all users.
Based on the above principles, we can consider many differ-
ent methods to choose the representative user, such as statis-
tics (Landauer 1997), grounded theory (Strauss and Corbin
1990), political theory (Schuler and Namioka 1993), and de-
sign practice. Here, we develop two practical instantiation
models: Statistical Stratified Sample (S3) and Strategic Sam-
pling for Diversity (SSD) models.
Model 1: Statistical Stratified Sample (S3) Maximizing
the representative degree of all attribute groups is infeasible
in practice. Some trade-offs should be considered as we may
need to choose some less representative users on some at-
tributes in order to increase the global representative degree
on all attributes groups.

For each attribute group (Vl, ajl) ∈ G, we assign a score
ml (ml > 0) to indicate the “importance” of this group. Usu-
ally we can choose ml to be related with the size of Vl. The
groups with a higher ml value should be better represented.
We do not want to finally have an attribute group with only
one single user. It is preferable to have some “bias” to se-
lect user who can represent large attribute groups. We use a
value β ∈ (0, 1] to denote this bias, and give the following
quality function:

Q(G,X,G, T ) =
∑

(Vl,ajl )∈G

ml{P (T, l)}β . (1)

To explain the “bias” clearly, we consider an extreme
but intuitive case: The attribute groups have no intersec-
tion (Vl1 ∩ Vl2 = ∅ for all l1, l2), and R(T, vi, aj) = 1 if
vi ∈ T , R(T, vi, aj) = 0 otherwise. Then for each group
1 ≤ l ≤ t, the representative degree P (T, l) is exactly the
number of users in both T and Vl. Therefore the summation
of all P (T, l) is the fixed value |T | = k.

For 0 < β < 1, by the concave property of function
xβ , Q reaches the maximal value if and only if P (T, l1) :

P (T, l2) = m
1

1−β
l1

: m
1

1−β
l2

for any 1 ≤ l, l′ ≤ t. If we se-
lect ml = |Vl|1−β , the proportion of the selected users from
each group tends to be the same. For β → 0, the bias is
linear in the sense that for every 1 ≤ l ≤ t, the number of
representative users for (Vl, ajl) is the same proportion of
ml. For β = 1, the bias tends to infinity in the sense that
all the selected users represent the most important attribute
group.

Model 2: Strategic Sampling for Diversity (SSD) In this
model our goal is the diversification of delegates. When k is
small, diversity means to find some users to cover (having a
non-zero representative degree) as many groups as possible.
We would ignore this case here, because the users to be se-
lected are usually more than the number of attribute groups
so that we can pick one user for each group to insure all
groups are covered. Assume that there is a representative set
T such that P (T, l) > 0 for every 1 ≤ l ≤ t. “Diversity”
here means that we want to sample users such that we have
a balanced P (T, l) for all attributes (by avoiding extremely
large or small P (T, l)).

In practice, the size of attribute groups may vary signifi-
cantly. For a large group Vl, P (T, l) should be also relatively
large. The objective is that all these values can be balanced.
For example, an extreme case is that all the values are iden-
tical or the size of each group is the same. Simply requiring
the distribution is not However, the practical case is much
more complex. Consider the case that every attribute group
has the same size and we want all P (T, l) to be identical. In
this case, any representative set is no better than the empty
set, which represents every group with a same degree. This
is not useful to solve the problem. We still require every at-
tribute group to be well represented, thus we give the fol-
lowing quality function:

Q(G,X,G, T ) = min
(Vl,ajl )∈G

{λl · P (T, l)}, (2)
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Input: The set of users V ; the set of attributes A; the attributes
values X; the values R(T, vi, aj) for every |T | = 1
and vi ∈ V , aj ∈ A; the number of users to find k.

Output: A set T of k representative users.
T = ∅;
while |T | < k do

max = −1;
foreach vi /∈ T do

foreach (Vl, ajl) ∈ G that vi can contribute do
foreach vi′ ∈ Vl that R({vi}, vi′ , ajl) > 0 do

Compute the increment of R(T, vi′ , ajl);
end
Compute the total increment of P (T, l);

end
Compute the increment of quality by adding vi;
if increment > max then

v = vi;
Update max;

end
end
T = T ∪ {v};
Update the values R(T, vi′ , aj) and P (T, l);

end
return T ;

Algorithm 1: Approximate algorithm for S3 model.

where λl is a positive constant associated with the attribute
group (Vl, ajl). Usually we choose λl = |Vl|−1. We call the
attribute group with smallest λl · P (T, l) the poorest group.
The quality function depends on the performance of T for
the poorest group.

Approximate Algorithms
In this section, we present efficient algorithms with provable
approximation guarantee to solve the proposed models.

Approximate Algorithm for S3 Model
We give a greedy heuristic algorithm. Each time we traverse
all users and find the one that mostly increases the quality
function Q. We use arrays to store how each user is rep-
resented on each attribute, and how each attribute group is
represented. For the increase in quality achieved by adding
a user vi ∈ V , we only need to consider the attribute groups
that vi can contribute to (at most t) and vi’s neighbors (we
say vi′ is vi’s neighbor if R({vi}, vi′ , aj) > 0 for some
aj ∈ A) in those attribute groups. The algorithm is summa-
rized in Algorithm 1 and its complexity is O(t× k × |E|).
Error Bound Analysis: We show that the algorithm can
guarantee a (1− 1/e)-approximate.

We first consider the submodular property of the quality
function defined in Eq. 1. A function f : V → R+ is sub-
modular if for all sets S ⊆ T ⊆ V and every element v ∈ V ,
it has

f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T )

Function f is monotone increasing if for all sets S ⊆ T ⊆
V , there is

f(T ) ≥ f(S)

For a function f that is both monotonically increasing and
submodular, we could add elements one-by-one into a set T .
Suppose the elements are v1, v2, . . . , vk, and we use Ti to
denote the set of i-th step {v1, v2, . . . , vi} (1 ≤ i ≤ k). We
see that each time we add an element into T , there is an in-
crement of f(T ). If some of the previous elements were not
added, this increment becomes larger or stays the same. At
each step, we choose to add an element v ∈ V that maxi-
mizes f(T ∪ {v})− f(T ). In this way, we can use a greedy
heuristic, that is each time we choose the element that in-
creases f(T ) the most, i.e.,

f(T2)−f(T1) ≥ f(T3)−f(T2) ≥ · · · ≥ f(Tk)−f(Tk−1)

Intuitively, the greedy algorithm can generate a good ap-
proximate solution for the problem of sampling a k-element
set T that maximizes f(T ). Suppose the generated set is T
and the optimal set is T ∗. We consider the set T ∪T ∗, whose
function value is larger than (or worse case equal to) that of
T ∗ according to the monotonic property of f . We can con-
struct T ∪ T ∗ as follows: we first use greedy heuristic and
add k elements of T into it, then we add elements in T ∗−T
one-by-one. We see that for every element in T ∗−T , the in-
crement is not larger than the increment of any element in T .
Since l ≤ k there must be 2 · f(T ) ≥ f(T ∪ T ∗) ≥ f(T ∗).
A tighter bound is reported in (Nemhauser, Wolsey, and
Fisher 1978). For every monotonically increasing, submod-
ular, non-negative function f on V , the set generated by the
greedy heuristic is at least (1− 1/e) of the optimal solution.

Approximate Algorithm for SSD Model
For the SSD model, according to its definition of the qual-
ity function, intuitively we can design a greedy algorithm as
follows: each time we choose the poorest group, and select
a user to increase the representative degree of this group.

Similar to Algorithm 1, we use arrays to store the current
values of R(T, vi, aj) and P (T, l) for every vi ∈ V , aj ∈
A and 1 ≤ l ≤ t. At the beginning of this algorithm, all
groups are considered to be the poorest. Then we process
with greedy heuristics as follows: We combine the procedure
of finding the poorest group and the procedure of finding
the user to improve this group together. We traverse every
user vi, and every group (Vl, ajl) to which vi contributes.
Then we compute the improvement of P (Vl, l) by adding vi
(similar to Algorithm 1). If (Vl, l) is even poorer than the
poorest ever seen, we mark vi as the best candidate. If this
group is as poor as the poorest group, we consider whether
the improvement of λlP (Vl, l) is larger than the previous
poorest group. If so we mark vi as the best candidate. Details
of the algorithm and its error bound analysis is omitted for
brevity.

Experimental Results
We conduct various experiments to evaluate the effective-
ness of the proposed approach. All data sets, codes, and tools
to visualize the mining results are publicly available. 1

1http://arnetminer.org/repuser/
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Experimental Setup
Datasets. We perform experiments on two different gen-
res of datasets. The first type is author datasets: DB and
DM. Each consists of authors and coauthor relationships ex-
tracted from major conferences in a specific domain, where
the goal is to find who are representative authors in the cor-
responding domain. For the Database domain, we extract all
authors from papers published on the three major confer-
ences (SIGMOD, VLDB, ICDE) during 2007-2009. In total,
we collect 8,027 authors and 23,770 coauthor relationships.
For the Data Mining domain, we extract authors from papers
published on the three major conferences (SIGKDD, ICDM,
CIKM) during 2007-2009. In total, we collect 6,394 authors
and 12,454 coauthor relationships.

As for the attributes of authors, we extract keywords from
the papers in each dataset. For each author, we then define
the value of an attribute as the number of times she/he uses
the corresponding keyword in the authored papers. For each
dataset, we first downcase all the keywords and then ex-
tract 200 most frequently used keywords. For evaluation,
it is difficult to find a standard dataset with ground truth.
Finally, we take program committee (PC) members of the
conferences in each dataset during 2007-2009 as representa-
tive users. Typically, program committee members of a con-
ference not only include top experts in a domain, but also
include authors with expertise covering all subareas of the
domain. Therefore, our goal is to predict who are represen-
tative users (PC members of the three major conferences)
for the two research domains, respectively. Finally, we col-
lect 291 representative users (by removing those who are not
coauthors papers we collected) in the Database dataset and
373 representative users in the Data Mining dataset. Table 1
shows detailed statistics of the two datasets.

The second type of data is a mibroblog network. We
crawled the messages from Weibo and classify them by
keywords into 4 datasets, namely, program, food, student
and public welfare. Then, we extracted the senders and the
sender-follower relationships for each message. For pro-
gram domain, we find 330 messages and collect 19,152
senders as well as 19,225 sender-follower relationships.
There are 2,956 messages including 189176 senders and
204,863 sender-follower relationships in food domain. 859
messages with 79,052 senders and 76,559 sender-follower
relationships are collected for student domain while 2,410
messages with 324,594 senders and 383,702 sender-follower
relationships are collected for public welfare domain. We
consider the basic information of each user as the attributes,
including location, gender, registration date, verified type,
status, description and the number of friends or followers.
All the attributes are classified into several categories de-
noting by numbers and the value of an attribute is defined
as those number. As there is no ground truth for the Weibo
data, we mainly use this dataset for evaluating efficiency and
qualitative evaluation.
Evaluation Measures, Baseline Methods. For comparison
purposes, we define the following baseline methods:
• InDegree. It simply takes the number of links as the crite-

ria to select the representative users who have the highest

Table 1: Statistics of the two datasets.
Dataset Conf. #authors #coauthorships #representatives

Database
SIGMOD 3,447 9,507 256

VLDB 3,606 8,943 251
ICDE 4,150 9,120 244

Sum ALL 8,027 23,770 291

Data Mining
SIGKDD 2,494 4,898 243

ICDM 2,121 3,452 211
CIKM 2,942 4,921 205

Sum ALL 6,394 12,454 373

indegree scores.
• HITS h and HITS a. It applies the HITS algorithm (Klein-

berg 1999) to the author networks to calculate two values
for each node: authority representing a score of authority
of the node, and hub value representing a score based on
the node’s out-links to other nodes, thus resulting in two
baselines, HITS h and HITS a. The former selects nodes
with the highest hub scores while the latter selects nodes
with the highest authorities.

• PageRank. It employs the PageRank algorithm (Page et
al. 1999) to estimate the importance of each node in a
network via a random process. This method selects nodes
with the highest PageRank scores as representative users.
In our method, we consider the network information by

treating each node as an attribute. We implement all the al-
gorithms C++. In all experiments, we conduct evaluations
for all methods in terms of P@10, P@50, P@100, R@50,
R@100, and F1-measure (Buckley and Voorhees 2004).

Results
We evaluate the performance of the proposed models for
sampling representative users on the two datasets. Let fl be
the total frequency of the l-th keyword (1 ≤ l ≤ 200). We
assign ml = f0.5l in the S3 model and λl = f−1l in the SSD
model. The parameter β in the S3 model is set to be β = 0.7,
by tuning from 0.1 to 1 with interval 0.1. We also compare
our approach to the baseline methods.

Table 2 and 3 list the results of the comparison methods
on the two datasets with the following observations:
High Precision. The proposed models achieve the best
performance on both datasets. In terms of P@10, P@50,
and P@100, the S3 model significantly outperforms the
other methods (+18.0%-28.0% by P@50 for example) on
the Database, and performs best as well on Data Mining in
terms of P@10, P@50. On the Database the SSD model fi-
nally achieves the best accuracy by Precision, Recall, and
F1-measure, while on Data Mining S3 model achieves the
best accuracy.
Precision-Recall Curve. Figure 2 illustrates the precision-
recall curve of the different methods. It can be seen that on
the Database dataset, our S3 model clearly outperforms the
baseline methods. The SSD underperforms the InDegree al-
gorithm when the recall is small, but when increasing the
recall, for example up to 40%, the SSD model performs the
best, even better than the S3 model. On the Data Mining
dataset, the S3 also model clearly performs best. The SSD
model starts to perform better when increasing recall.
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Table 2: Performance of different methods on the Database
dataset (%). (In Model 1, we set β = 0.6.)

Methods P@10 P@50 P@100 R@50 R@100 F1
InDegree 50.0 36.0 40.0 6.2 13.7 33.0
HITS h 40.0 30.0 27.0 5.2 9.3 20.3
HITS a 30.0 30.0 30.0 5.2 10.3 24.1

PageRank 40.0 26.0 27.0 4.5 9.3 24.7
S3 70.0 46.0 46.0 7.9 15.8 41.9

SSD 10.0 36.0 39.0 6.2 13.4 32.6

Table 3: Performance of different methods on the Data Min-
ing dataset (%). (In Model 1, we set β = 0.6.)
Methods P@10 P@50 P@100 R@50 R@100 F1
InDegree 80.0 62.0 45.0 8.3 12.1 28.4
HITS h 70.0 42.0 30.0 5.6 8.0 21.4
HITS a 70.0 48.0 30.0 6.4 8.0 18.8

PageRank 50.0 38.0 30.0 5.1 8.0 24.9
S3 80.0 64.0 53.0 8.6 14.2 36.7

SSD 20.0 32.0 22.0 4.3 5.9 22.5

Efficiency. We further compare the efficiency of the pro-
posed methods with the baseline methods. Table 4 lists the
CPU time required by the different methods to find represen-
tative users respectively from the coauthor datasets and the
Weibo dataset. Our methods are found to be very efficient,
for the SSD model only requires 0.54s for Database, 0.74s
for Data Mining and 0.67s for Weibo in program domain,
and is faster than the S3 model.

Effect of Parameter β for S3. On both datasets, the S3

performs the best. We set the parameter β in the S3 model
as β = 0.7. We then analyze how the parameter affects
the model performance. We test the performance of the S3

model by with the parameter β varied. We found that the
model is not very sensitive with β, although the perfor-
mances of S3 with different values for β are a bit different.
Generally, S3 achieves the best performance on Database at
β = 0.4, and on Data Mining at β = 0.7. This confirms the
effectiveness of our proposed methods.

Case Study. We demonstrate here the effectiveness of the
two proposed models for representative user identification
on the Database and Data Mining datasets.

Table 5 shows representative authors found by our meth-
ods and one baseline method (PageRank) from the two coau-
thor datasets. For each dataset, we list the top 10 represen-
tative authors found by the different methods (more details
about the results is online available.). Compared with the
authority-based baseline method (PageRank), our method
has several distinct advantages: First, the baseline method
can only measure the similarity between nodes, but does not
consider the diversity of attributes, which is necessary for
the statistical representation. Second, the baseline method
cannot tell which users can be represented by a selected rep-
resentative user on a specific attribute, while our methods
have the capacity to do so.
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Figure 2: Precision-recall curves of the comparison methods
on the Database and Data Mining datasets.

Table 4: Efficiency performance of different methods on the
three datasets. The CPU time does not include the time of
loading the network data. (Second)

Methods Database (291) Data Mining (373) Weibo (200)
Program Food

InDegree 0.10 0.16 0.01 0.02
HITS h 2.44 1.58 0.99 45.66
HITS a 2.44 1.58 0.95 45.60

PageRank 6.89 2.95 0.51 18.33
S3 1.68 3.62 4.45 50.71

SSD 0.54 0.74 0.67 10.81

Conclusions
In this paper, we study a novel problem of sampling repre-
sentative users from social networks, with the objective of
finding a small subset of users to statistically represent all
users in the original social network. We formally define this
problem and perform a theoretical investigation of the prob-
lem, and prove its NP-hardness. Approximate algorithms for
the two models have been developed to efficiently choose the
set of representative users. Experimental results on two au-
thor datasets demonstrate the effectiveness and efficiency of
the proposed models.
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