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Abstract

With the enormous scale of massive open online
courses (MOOCs), peer grading is vital for addressing
the assessment challenge for open-ended assignments
or exams while at the same time providing students with
an effective learning experience through involvement in
the grading process. Most existing MOOC platforms
use simple schemes for aggregating peer grades, e.g.,
taking the median or mean. To enhance these schemes,
some recent research attempts have developed machine
learning methods under either the cardinal setting (for
absolute judgment) or the ordinal setting (for relative
judgment). In this paper, we seek to study both cardi-
nal and ordinal aspects of peer grading within a com-
mon framework. First, we propose novel extensions to
some existing probabilistic graphical models for cardi-
nal peer grading. Not only do these extensions give su-
perior performance in cardinal evaluation, but they also
outperform conventional ordinal models in ordinal eval-
uation. Next, we combine cardinal and ordinal models
by augmenting ordinal models with cardinal predictions
as prior. Such combination can achieve further perfor-
mance boosts in both cardinal and ordinal evaluations,
suggesting a new research direction to pursue for peer
grading on MOOCs. Extensive experiments have been
conducted using real peer grading data from a course
called “Science, Technology, and Society in China I”
offered by HKUST on the Coursera platform.

Introduction
Massive open online courses (MOOCs) are drawing in-
creased attention lately because they can go well beyond the
boundaries of traditional classrooms and audiences. While
each offering of a traditional course delivered by a fa-
mous professor from a top university can typically benefit
at most hundreds of students, and only students, an online
version can easily scale it up by several orders of magni-
tude and make it available to people from all walks of life
around the globe. However, the massive scale of MOOCs
poses great challenges to student assessment. While most
existing MOOCs simply give multiple-choice assignment or
exam questions which can be graded automatically, open-
ended and free-response exercises or essays are arguably vi-
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tal for assessing learning outcomes of many courses (Paré
and Joordens 2008). Unfortunately, satisfactory automatic
grading of such assessment forms is beyond the current
state of the art. A practical approach to tackle this prob-
lem is peer grading or peer assessment (Godlee et al. 2003;
Sadler and Good 2006), in which students also play the role
of graders in grading a small number of assignments submit-
ted by other students according to the rubrics or benchmarks
provided by the course instructor. The final score assigned to
a submission is usually some aggregate, such as the median
or mean, of the peer grades given by the graders. Due to the
great diversity in student background, purpose and engage-
ment, applying peer grading to give students a fair judgment
of their learning efforts and achievements is hardly a trivial
task. For example, by monitoring the registration informa-
tion and accessing IP addresses of the students in one of the
MOOCs offered by our university on the Coursera platform,
we found the students were from around 160 different coun-
tries. Also, a recent study (Anderson et al. 2014) showed
that students in a MOOC often exhibit different engagement
styles probably corresponding to different purposes.

There are generally two basic rationales behind peer grad-
ing research, namely, cardinal and ordinal. In cardinal peer
grading or absolute judgment (Barnett 2003; Paré and Jo-
ordens 2008), the peer evaluations for assignments are in
the form of explicit numerical scores. This cardinal set-
ting is currently the most common choice for MOOCs. Its
goal is usually to minimize the absolute prediction devia-
tion from some ground truth. However, (Shah et al. 2013;
2014) argued that it is sometimes easier for non-expert peer
graders to make comparison than to give absolute scores
and hence ordinal evaluation can sometimes be more effec-
tive than cardinal evaluation. As demonstrated by (Stewart,
Brown, and Chater 2005; Carterette et al. 2008; Shah et al.
2014), on specific tasks, relative judgment or ordinal eval-
uation is more accurate than absolute judgment or cardinal
evaluation. In ordinal peer grading, peer graders perform or-
dinal comparisons by ranking different assignments in terms
of quality. A special case is pairwise comparison in which
two assignments are compared at a time. The goal of ordinal
peer grading is to predict the relative ranking correctly. We
note that curved grading is used by many courses. As such,
even absolute scores have to be converted into percentiles
before the final grades are assigned. Thus we believe that
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both the cardinal and ordinal aspects have important roles to
play in peer grading.

Before we proceed to focus on peer grading for
MOOCs, we note that reviewing or ranking items
is a broad topic. Some examples include rank-
ing search results (Aslam and Montague 2001;
Joachims 2002), reviewing conference or jour-
nal papers (Peters and Ceci 1982; Harnad 2000;
Rowland 2002), admitting college students, as well as voting
for candidates as a social choice problem (Coughlin 1992;
Arrow 2012). Without going into a detailed comparison due
to page constraints, we just emphasize that peer grading for
MOOCs is somewhat unique in that the peer grades are of-
ten very sparse and a total order of all the items is needed to
evaluate all students. Peer grading is also related to a rapidly
growing area called crowdscourcing (Surowiecki 2005;
Howe 2006) which seeks to take advantage of the wisdom
of the crowd. A crucial research issue in crowdsourcing is
how to aggregate the results provided by individual workers
to give better-quality results.

The main contribution of this paper is twofold:
• We propose novel extensions to some state-of-the-art

probabilistic graphical models for cardinal peer grad-
ing (Piech et al. 2013). Based on both average-case and
worst-case performance criteria, our models show im-
provement in cardinal evaluation. Moreover, our exten-
sions also outperform conventional ordinal models signif-
icantly in ordinal evaluation.

• We combine cardinal and ordinal models by augmenting
ordinal models with the cardinal predictions as prior. Such
combination can achieve further performance boosts in
both cardinal and ordinal evaluations.

To our knowledge, this is the first research work which stud-
ies both the cardinal and ordinal aspects of peer grading
within a common framework.

Related Work
We first review some existing methods for peer grading un-
der the cardinal setting for predicting scores and the ordinal
setting for predicting ranking or pairwise preferences.

The Vancouver algorithm (de Alfaro and Shavlovsky
2014) measures each student’s grading accuracy by compar-
ing the grades assigned by the student with the grades given
to the same submissions by other students. Specifically, the
grading accuracy is determined by the grading variance and
higher weights are assigned to graders with higher grading
accuracy. It iteratively updates the grading variance of each
user from the consensus grades and computes more pre-
cise consensus grades from the updated grader variance. In-
spired by the PageRank algorithm (Page et al. 1999) which
was first used by the Google search engine, the PeerRank
algorithm (Walsh 2014) was proposed as another iterative
consensus algorithm. It relates a grader’s grading ability to
her performance in the course because the peer graders are
also students. In (Patricia, Nardine, and Carles 2014), a trust
graph is built over the referees and is used to compute the
weights for assessment aggregation. Incorporated in the trust

network are staff grades that are used for performance eval-
uation. Most related to our research is the work reported
in (Piech et al. 2013) which proposed probabilistic mod-
els that model the relationships between the grader’s bias
and reliability, the true score of each submission, and the
observed peer grades. Their PG3 model assumes that high-
scoring students tend to be more reliable as graders. The re-
alization of this idea is extended in our proposed models to
be described in the next section.

For ordinal methods, the Bradley-Terry model is used
in (Shah et al. 2013) to learn the latent ability of the stu-
dents from ordinal peer comparisons and perform cross-
validation experiments to predict peer preferences. In (Ra-
man and Joachims 2014), several statistical models for ordi-
nal comparison, including the Bradley-Terry Model, Mal-
lows Model, Thurstone Model, and Plackett-Luce Model,
are applied to peer grading tasks. Performance evaluation
is based on data collected from the real peer grading process
of a (traditional) class consisting of 170 students.

An observation from these previous studies is worth men-
tioning. Not surprisingly, having more peer evaluations per
submission improves the estimation accuracy for both the
cardinal and ordinal settings. However, if a student is given
too many assignments to grade, she may just complete the
task randomly, defeating the purposes of improving the esti-
mation accuracy and benefiting the students through the peer
review process as a learning experience. Consequently, data
sparsity is more of the norm than the exception and hence is
a key issue to address.

Cardinal Peer Grading
We first study cardinal peer grading in this section. Our
models are extensions of the probabilistic models proposed
in (Piech et al. 2013). Like the models (named PG1 to PG3)
in (Piech et al. 2013), we explicitly model the bias and relia-
bility of each grader. While the bias corresponds to a con-
stant grade inflation or deflation, the reliability measures
how close on average is the assessment by a grader from the
latent true score of the submission after eliminating the bias.
Concretely, the reliability is defined as the inverse variance
(or precision) of a Gaussian distribution. The experiments
in (Piech et al. 2013) show that PG3, which uses a linear re-
lationship to relate the reliability and true score of a grader
in a deterministic fashion, outperforms PG1 which is a sim-
pler model. We note that the idea of assigning grades by
also capturing the grader’s effort and grading accuracy has
been exploited by other researchers, e.g., (Shah et al. 2013;
Walsh 2014).

Although dependency exists between a grader’s reliability
and her true score, we believe that a linear deterministic re-
lationship is overly rigid and may not provide a good enough
model for many graders. Here we propose to relax it by using
a probabilistic relationship instead, resulting in two models
referred to as PG4 and PG5 in the sequel. Besides modeling
the effect of the grader’s true score on her reliability, we have
also considered some other features such as the course forum
reputation score, performance in in-video quizzes, and num-
ber of course forum views. However, none of them turns out
to be more effective than the grader’s true score. This is at
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least true for the course considered in this study. As such,
we will only focus on the influence of a grader’s true score
on her grading reliability in this paper.

Notations

Let v denote an arbitrary grader and V the collection of all
graders. Similarly, let u denote an arbitrary student (a.k.a.
gradee) whose submissions are graded and U the collection
of all students. Table 1 shows the variables used in the graph-
ical model. We note that the only observed variable zvu repre-
sents the score or peer assessment assigned to a submission
of student u by grader v.

Notation Description
τv Reliability of grader v
bv Bias of grader v
su True score for a submission of student u
zvu Score assigned to a submission of u by v

Table 1: Notations used in our models

Graphical Model

As depicted in Figure 1, the plate notation is used to repre-
sent separately the gradee and grader roles for clarity. For
the peer grading setting, however, the gradees and graders
actually correspond to (roughly) the same group of students.
The first three variables in Table 1 are latent variables in
the graphical model for the reliability, bias, and true score
of a student, and the last one is the only observed variable
involving both a gradee and a grader. The hyperparameters
µ0, γ0, β0, η0 are used for specifying the probability distri-
butions of the latent variables. A major difference between
this model and the model in (Piech et al. 2013) is the way in
which the relationship between the reliability and true score
of a grader is modeled. Here we impose a probabilistic rela-
tionship between them. Moreover, unlike PG3, we represent
the reliability explicitly as a random variable in the graphical
model to make it easier for future extension to incorporate
other factors that can influence the reliability.

Figure 1: Graphical model

Two Model Variants: PG4 and PG5

PG4 Model PG5 Model

τv ∼ G(sv, β0) τv ∼ N (sv,
1

β0
)

bv ∼ N (0,
1

η0
) bv ∼ N (0,

1

η0
)

su ∼ N (µ0,
1

γ0
) su ∼ N (µ0,

1

γ0
)

zvu ∼ N (su + bv,
1

τv
) zvu ∼ N (su + bv,

λ

τv
)

To realize the graphical model formulation in Figure 1, we
propose two model variants called PG4 and PG5. In PG4,
a grader’s reliability τv follows the gamma distribution with
rate parameter β0 and the grader’s true score sv as the shape
parameter. Consequently, as desired, the mean reliability of
a grader is sv/β0, which increases with her latent true score.

On the other hand, PG5 assumes that τv follows the Gaus-
sian distribution with sv as the mean and 1/β0 as the vari-
ance. We note that the β0 parameter in PG5 is different from
that in PG4, but we want to describe both PG4 and PG5 us-
ing the same graphical model in Figure 1. For both PG4 and
PG5, the mean reliability of grader v is positively correlated
with her true score sv and both the bias and true score follow
the Gaussian distributions. The mean bias across all graders
is assumed to be zero and the mean true score µ0 is set to
the average score of all the submissions. The observed score
zvu follows the Gaussian distribution with the mean equal
to the true score plus the grader’s bias and the variance in-
versely related to the grader’s reliability. In this sense, the
hyperparameter β0 in PG4 plays an important role in scal-
ing τv to a proper range before plugging into the variance
of the Gaussian density. In PG5, the scale of τv depends on
sv or the grading scheme for a specific grading task, so we
have a hyperparameter λ, similar to the role of β0 in PG4, to
scale the variance of the Gaussian density. Due to page con-
straints, details of the model inference procedures for PG4

and PG5 are described in the appendix. They are mostly
based on Gibbs sampling by running for 300 iterations with
the first 60 burn-in samples eliminated. For the latent vari-
ables su in PG4 and τv in PG5, however, closed-form dis-
tributions are not available for performing Gibbs sampling
and hence discrete approximation is applied with fine sepa-
rating intervals. Moreover, for a small group of graders with
no submission and hence no score for an assignment, we
assume that they have the lowest scores and relatively low
reliability among all graders for a particular assignment.

Dataset
The peer grading dataset used in our experiments is from a
course called “Science, Technology, and Society in China I”
offered by our university on the Coursera platform. Table 2
gives summary statistics of the three assignments involv-
ing peer grading. The peer grading method adopted by the
course is detailed below:

• There are three assignments, each of which asks the stu-
dents to write a short essay with suggested word limit
(250 for the first and 500 each for the second and third
ones).
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• For each assignment, each student was asked to evaluate
three other submissions although some ended up evaluat-
ing more and some less. A few even evaluated more than
10. Grader assignment was done automatically and ran-
domly by the system with the goal of maintaining a simi-
lar number of graders for each submission.

• Grading was based on three rubrics provided: 0-7, 0-7, 0-7
for assignment 1 and 0-7, 0-7, 0-11 for assignments 2 and
3. The median of the peer grades for each rubric was used
to compute the assignment score for each submission.

For each assignment, as in Table 2, around 20 submissions
were graded by the course instructor, and on average, there
are 4 peer graders per staff-graded assignment. We treat
these staff grades as ground truth for those submissions in-
volved. This is a versatile dataset for peer grading research.
Not only is it reasonably large with 7546 peer grades, but it
also contains more submissions with staff grades than some
other related datasets, e.g., 3 to 5 staff-graded submissions
per assignment in (Piech et al. 2013). As such, both cardi-
nal and ordinal evaluations using ground-truth data can be
conducted.

Assignment 1 Assignment 2 Assignment 3
# finished students 1202 845 724
# peer grades 3201 2261 2084
# staff grades 23 19 23
Full score 21 25 25
Mean score 14.8 (70%) 17.2 (69%) 16.5 (58%)

Table 2: Summary statistics of assignments for peer grading

Results for Cardinal Experiments
Table 3, Table 4, and Figure 2 show experimental results for
cardinal evaluation on the three assignments with the staff
grades acting as ground truth for the instructor-graded sub-
missions. From the probabilistic models, we can see that the
precision parameter of the Gaussian distribution for the ob-
served score is determined by the grader’s reliability. So in
PG4, we mainly tune the rate parameter β0 which is the rate
parameter in the gamma distribution for the grader’s relia-
bility. For PG5, we mainly tune λ in the density function
for the observed score. During experiments, we found that
PG3 is more sensitive to hyperparameters due to their lin-
earity assumption, compared with β0 in PG4 and λ in PG5.
Moreover, the hyperparameters η0 and γ0 in PG4 and PG5,
which control the variance of the grader’s bias and that of
the true score respectively, need to be tuned slightly. During
the parameter tuning process, we try multiple combinations
of η0 and γ0 in the range [0.04, 0.2]. For each combination,
we perform line search within a certain range on β0 for PG4

and on λ for PG5. The search range is [100, 600] with a fixed
interval of 50. For completeness, sensitivity analysis of the
hyperparameters is provided in the appendix.

Average-Case Performance Here we use the root-mean-
square error (RMSE) as an average measure for the differ-
ence between the score predicted by a model and that as-
signed by the instructor. Table 3 reports the best results, av-
eraged over 10 runs, among hyperparameter settings in the

range considered. Both the mean and standard deviation over
10 runs are shown for each assignment. We can see that
PG3, PG4, and PG5 have lower RMSE than the Median
baseline and PG1, showing that coupling a grader’s relia-
bility and true score is effective. Moreover, compared with
PG3, PG4 and PG5 can achieve quite significant RMSE
improvement for assignments 2 and 3 although they are
slightly worse than PG3 for assignment 1. On average, PG5

gives the best performance with 33% improvement for as-
signments 1 and 3 and 15% improvement for assignment 2
over the Median baseline which is used by Coursera as the
default scheme. Relatively speaking, PG4 performs slightly
worse than PG5 but it still outperforms PG3 on average.
Although PG3 performs the best for assignment 1, its per-
formance for assignments 2 and 3 is much worse than PG4

and PG5. We believe the probabilistic dependency between
a grader’s reliability and true score as adopted by PG4 and
PG5 plays a crucial role in achieving the performance boost.

Assignment 1 Assignment 2 Assignment 3
Mean Std Mean Std Mean Std

Median 4.94 5.54 4.12
PG1 3.77 (23%) 0.02 4.93 (11%) 0.03 3.66 (11%) 0.01
PG3 3.22 (35%) 0.02 5.24 (5%) 0.04 3.15 (23%) 0.02
PG4 3.35 (32%) 0.05 4.75 (14%) 0.06 2.83 (31%) 0.09
PG5 3.31 (33%) 0.05 4.69 (15%) 0.05 2.76 (33%) 0.09

Table 3: Experimental results for cardinal models. Median rep-
resents taking the medium of the peer grades. PG1 and PG3 are
models proposed in (Piech et al. 2013) and PG4 and PG5 are our
models described above.

Worst-Case Performance and Model Sensitivity We
also assess the worst-case performance of each method by
measuring the maximum prediction deviation from the in-
structor’s score. Table 4 shows that PG4 and PG5 have
lower worst-case prediction errors than PG3 for all three
assignments, with PG5 being the better. Moreover, from
Figure 2 in which the submissions are sorted according to
the instructor’s grades, we can see that the predicted scores
of PG4 and PG5 fluctuate less from the instructor’s grades
compared with PG3. For some submissions with similar in-
structor’s grades, the predicted scores by PG3 differ quite
significantly. For example, the 7th and 8th submissions of
assignment 1 have the same score from the instructor but
the predicted scores by PG3 differ by around 8 points. Too
much fluctuation is undesirable and can flag concerns about
grading fairness as the ranking of the submissions according
to the scores will be affected more seriously.

Assignment 1 Assignment 2 Assignment 3
PG3 6.52 11.10 6.77
PG4 5.84 9.86 6.70
PG5 5.81 9.85 5.79

Table 4: Maximum prediction deviation from the ground truth for
the optimal settings in Table 3.

Although Table 3 shows that PG3 performs the best for
assignment 1 under an average-case performance measure,
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considering also its worst-case performance and the fair-
ness concern does not favor PG3 as the preferred choice.
In PG3, the latent true score of a student is inferred directly
from both the observed score when she plays the role of a
gradee and the observed scores when she plays the role of
a grader. However, in PG4 and PG5, the observed scores
by a grader only infer her reliability, which then indirectly
infers her true score. Consequently, the student’s score in
PG4 and PG5 is less sensitive to her own performance as
a grader than PG3. Considering various factors related to
both average-case and worst-case performance assessment,
it is fair to conclude that PG4 and PG5 outperform PG3

under cardinal evaluation.

Ordinal Peer Grading
We now study the other aspect of peer grading, ordi-
nal peer grading, and propose a novel approach to com-
bining cardinal and ordinal models for enhanced perfor-
mance. An ordinal peer grading task could be formulated
as a rank aggregation problem (Dwork et al. 2001) or a
preference learning problem (Chu and Ghahramani 2005;
Fürnkranz and Hüllermeier 2010). In this paper, we consider
a specific form of ordinal peer grading in terms of pairwise
preferences (Fürnkranz and Hüllermeier 2003). In pairwise
preference learning, a classical model is the Bradley-Terry
model (Bradley and Terry 1952) which was recently ap-
plied to peer grading (Shah et al. 2013; Raman and Joachims
2014). Specifically, pairwise ordinal peer grading takes as
training data examples with partial and possibly inconsistent
pairwise preferences. The learning task is to predict from the
data a total order or ranking of all the submissions.

Our proposition is to augment ordinal models, e.g., the
Bradley-Terry model, with prior information from predic-
tions of cardinal models studied in the previous section. For
the sake of referencing, we refer to this extension as “Cardi-
nal + Ordinal” models in the sequel. To gain a deeper under-
standing of this approach, we consider several combinations
of cardinal and ordinal models in our experiments.

Combining Cardinal and Ordinal Models
We first briefly review the Bradley-Terry model which is re-
ferred to as BTL in (Shah et al. 2013) and BT in (Raman
and Joachims 2014). In the ordinal setting, ui �ρ(v) uj in-
dicates that grader v prefers ui over uj . The probability of
observing ui �ρ(v) uj is defined using a logistic function
with parameter sui−suj , where sui and suj are the latent
true scores of submissions by ui and uj respectively:

hypothesis = P (ui �ρ(v) uj) =
1

1 + exp(−(ui − uj))

Besides using the Bradley-Terry model, some recent at-
tempts such as RBTL (Shah et al. 2013) and BT+G (Ra-
man and Joachims 2014) incorporate the grader’s reliability
to boost the performance of ordinal peer grading. The ra-
tionale for incorporating the grader’s reliability in RBTL is
similar to PG3 while that for BT+G is similar to PG1. If
we assume a Gaussian prior on the latent true scores of all
students with mean µ and variance σ2, the cost function of
the Bradley-Terry model is defined as follows:

L =
λ

2σ2

∑
u∈U

(su − µ)2 −
∑
v∈V

∑
ui�ρ(v)uj

log(hypothesis)

where the first term is a regularization term to avoid overfit-
ting and the second term is the data likelihood term. Since
the cost function above is jointly convex with respect to all
the latent variables, stochastic gradient descent (SGD) can
be used for solving the optimization problem.

Due to the data sparsity issue as discussed before, max-
imizing the data likelihood alone may lead to inconsistent
and bad estimations. The regularization term defined based
on the prior latent score distribution thus plays an important
role. The original ordinal peer grading models (Shah et al.
2013; Raman and Joachims 2014) assume that all students
have the same prior score distribution. Here, we propose to
augment the ordinal models with the prior given by the pre-
dictions of the cardinal models. Alternatively, we may also
interpret it as tuning the predictions of the cardinal models
with the ordinal peer preferences. So the parameter µ in pre-
vious cost function is changed to the predicted score µu for
submission u obtained from a cardinal model, with the mod-
ified cost function given by:

L =
λ

2σ2

∑
u∈U

(su − µu)2 −
∑
v∈V

∑
sui�ρ(v)suj

log(hypothesis)

This formulation offers a principled approach to combining
both cardinal and ordinal evaluations.

Results for Ordinal Experiments
We first generate pairwise preferences from the cardinal
evaluations of each peer grader to form the training data.
Ties are excluded as they indicate lack of preference. Our
underlying assumption is that the absolute evaluations of a
grader on a set of assignments also reflect her ordinal pref-
erences. Table 5 shows the results based on an accuracy
measure that reflects the percentage of correctly evaluated
pairs, which is similar to Kendall’s tau rank correlation co-
efficient (Litchfield Jr and Wilcoxon 1955), except that we
exclude ties and discordant pairs from consideration. For ex-
ample, if there are 100 pairwise preferences based on the in-
structor’s grading (with ties ignored) and a model correctly
predicts 75 of them, then its accuracy is 0.75. The results
in Table 5 are for the best hyperparameter settings averaged
over 10 runs. For the “Cardinal + Ordinal” models, the best
results also consider different cardinal priors corresponding
to different hyperparameter settings explored by the cardi-
nal models. Since preliminary investigation showed that the
accuracy during testing converged fast, so we only report
the average accuracy at iteration 30 for simplicity. We also
report the results in Table 6 using the evaluation metric in
Table 3 for cardinal evaluation.

We first note that two minor results about the pure ordinal
models are consistent with those reported previously (Shah
et al. 2013; Raman and Joachims 2014). First, the pure or-
dinal models have accuracy comparable with the Median
baseline even though converting numerical scores to pair-
wise preferences incurs information loss. Second, modeling
grader reliability in pure ordinal models (RBTL, BT+G) can
slightly improve the performance of BT. Besides, we have
found that simply maximizing the data likelihood as in BT
Same Initial or BT Random Initial does not perform well,
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Figure 2: For the results in Table 3, the figures above show the exact predicted scores of PG3, PG4 and PG5 compared with the instructor
grades for the optimal settings reported in Table 3, with instructor grades sorted in ascending order.

showing that peer preferences alone have drawbacks in pref-
erence prediction.

On the other hand, our extensive experiments show two
major results:

• Cardinal models can perform much better than pure ordi-
nal models even for ordinal evaluation;

• Combining cardinal and ordinal models can further boost
the accuracy in both cardinal and ordinal evaluations.

From results in Table 5, cardinal models outperform pure or-
dinal ones because they use fine-grained numerical informa-
tion rather than binary comparisons (better or worse) in the
ordinal setting. For example, with absolute evaluations, we
can interpret the numerical scores as degree of preferences,
and we could also model grader’s bias from numerical evalu-
ations. With the help of prior from cardinal models, combin-
ing cardinal and ordinal models (“Cardinal + Ordinal”) gives
the best ordinal accuracy for all three assignments among all
the models. As it may be interpreted as tuning the cardinal
predictions as well, we also evaluate the combined models in
a cardinal way in Table 6, which shows consistent cardinal
performance boost against all corresponding pure cardinal
models for all three assignments in Table 3. For now, the or-
dinal comparisons are generated from cardinal evaluations.
If ordinal data are generated directly, combining cardinal
and ordinal models may be used to further tune and reinforce
each other so that further improvement may be possible.

From another perspective, the technique to combine car-
dinal and ordinal models may be used to alleviate the data
sparsity problem in peer grading as well. In other words,
with cardinal evaluations, we can generate ordinal com-
parisons and combine the models using two types of in-
put to boost accuracy. If we are forced to make only one
choice, our recommendation would be a cardinal peer grad-
ing method which can obtain more accurate grade predic-
tion as demonstrated above. In addition, from (Shah et al.
2013), ordinal models need more comparisons per grader to
get a reasonable accuracy. For typical peer grading task with
open-ended exercises of several hundred words, it is hard
for peer graders to compare submissions in detail. At last,
we maintain that it is easier for students to perform cardinal
grading for typical peer grading tasks because the instruc-
tor’s detailed cardinal rubrics can clarify students’ thoughts,
while quantizing the subjective and vague evaluation stan-
dard when making ordinal comparisons.

Assignment 1 Assignment 2 Assignment 3
Cardinal Models

PG3 0.7526 0.6155 0.7775
PG4 0.6928 0.6552 0.7854
PG5 0.6979 0.6616 0.7889

“Cardinal + Ordinal” Models
PG3+BT 0.7577 0.6110 0.7892
PG4+BT 0.7221 0.6484 0.7931
PG5+BT 0.7191 0.6646 0.8000
PG3+BT+G 0.7645 0.6587 0.7879
PG4+BT+G 0.7145 0.7032 0.7896
PG5+BT+G 0.7170 0.7065 0.8013
PG3+RBTL 0.7660 0.6494 0.7979
PG4+RBTL 0.7064 0.6745 0.7835
PG5+RBTL 0.7201 0.6845 0.8009

Pure Ordinal Models
BT (or BTL) 0.6536 0.6329 0.6896
RBTL 0.6583 0.6432 0.6996
BT+G 0.6547 0.6535 0.7009
BT Same Initial 0.6387 0.6194 0.6407
BT Random Initial 0.6381 0.6416 0.6667

Baseline Method
Median 0.6043 0.6610 0.6753

Table 5: Ordinal evaluation results for different models. Cardinal
models: described above but evaluated differently here. “Cardinal
+ Ordinal” models: ordinal models with predictions from differ-
ent cardinal models as prior. Pure ordinal models: BTL and RBTL
from (Shah et al. 2013), BT and BT+G from (Raman and Joachims
2014); BT Same Initial or BT Random Initial, similar to BT (or
BTL), has no prior on the student scores for regularization with the
same or random scores initially for all students. Median: baseline
that takes the median of the peer grades.

Conclusion
In this paper, we have proposed a new probabilistic model
for peer grading and a novel mechanism for combining car-
dinal and ordinal models. Extensive experiments on both
cardinal and ordinal evaluations show promising results.
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