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Abstract

Uniquely identifying individuals using anthropometric and
gait data allows for passive biometric systems, where coop-
eration from the subjects being identified is not required. In
this paper, we report on experiments using a novel data set
composed of 140 individuals walking in front of a Microsoft
Kinect sensor. We provide a methodology to extract anthro-
pometric and gait features from this data and show results
of applying different machine learning algorithms on subject
identification tasks. Focusing on KNN classifiers, we discuss
how accuracy varies in different settings, including number of
individuals in a gallery, types of attributes used and number
of considered neighbors. Finally, we compare the obtained
results with other results in the literature, showing that our
approach has comparable accuracy for large galleries.

Introduction

Biometric systems is an important application area for ar-
tificial intelligence in general and machine learning in par-
ticular. As these systems become more popular, with appli-
cations ranging from surveillance to entertainment (Wang
2012), a better handling of lower-quality data from cheaper
sensors becomes necessary.

A relatively recent trend in biometrics is performing per-
son recognition using full-body characteristics, including
anthropometric measurements of body parts and dynamic
gait features from walking patterns. This is often per-
formed with the use of video cameras and complex feature-
extraction algorithms from video footages.

The Microsoft Kinect device is a set of sensors with an
accompanying Software Development Kit (SDK) that is able
to track movements from users by using a skeleton mapping
algorithm. The first version of the device is able to track 48
skeletal points at 30 frames per second and is used in the X-
Box 360 video-game console as an input for a gesture-based
interface.

While this device is primarily aimed at tracking users that
are standing in the same place, it has been used to track
walking subjects in order to extract gait information (Araujo,
Graiia, and Andersson 2013). This use provides a cheaper,
off-the-shelf, alternative to complex multi-part video setups.
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However, several limitations, including range, lighting
and occlusions degrade the accuracy of the data provided
by the device and impose significant challenges to its use in
a biometric system. Hence, while using the Kinect device
greatly simplifies the data capturing stage, it may require
improved techniques to handle these limitations.

In this paper, we provide a comparison of machine learn-
ing algorithms applied to a large data set comprised of walk-
ing subjects captured using the 2010 version of the Kinect
device, aiming at person recognition. We focus on the K-
Nearest Neighbors algorithm that is widely used in the lit-
erature, but also provide comparisons with Multi-Layer Per-
ceptrons and Support Vector Machines.

Related Work

The use of body measurements aiming at subject identifica-
tion can be traced back to mid-XIX century in the France
police (Harrap 1956). (Godil, Grother, and Ressler 2003)
performed an extensive analysis of the effectiveness of using
body measurements and shape for identification purposes,
using the CAESAR database, which collects accurate static
anthropometric data using markers.

The use of joint positions collected using a Kinect de-
vice appears in (Munsell et al. 2012) as part of a broader set
of features that included motion patterns; a SVM was used
for classification along with a statistical model. In (Araujo,
Grafia, and Andersson 2013) body segment lengths derived
from joint positions were used exclusively to train a KNN
classifier. Both cases used only a very limited data set with
the former using 20 individuals and the latter 8.

Using human gait as a biometric feature was motivated
by evidences that individuals describe unique patterns dur-
ing their gait cycles (Murray, Drought, and Kory 1964). Ap-
proaches used to extract and analyze human gait can be clas-
sified as (i) model-based, where the human gait is described
by gait theory fundamentals and is reconstructed through a
model, e.g. “stick figure”, that fits the person in every gait
sequence frame; the spatiotemporal and kinematic parame-
ters, then, are extracted from the model during gait cycle;
and (ii) model-free, where features such as silhouette or en-
closing boxes are used as attributes, without explicitly con-
sidering human gait fundamentals (Ng et al. 2011).

Recent model-based approaches include (Cunado, Nixon,
and Carter 2003), where gait analysis was restricted to the



use of sagital rotations of hips, knees, and ankles and a
KNN classifier was used to perform person identification.
KNN is also used in (Yoo and Nixon 2011), where a detailed
method to extract simplified skeleton figures from videos is
presented and gait features are extracted from these figures.

Model-free approaches include the concept of Gait En-
ergy Images (Han and Bhanu 2006). In (Sivapalan et al.
2011), Gait Energy Volumes are proposed as an extension
and a database containing depth information on 15 subjects
walking towards a Kinect sensor is used to test the method-
ology, using an KNN-based approach.

In (Hofmann and Bachmann 2012), the authors proposed
the use of Depth Gradient Histogram Energy Image to im-
prove identification when many more subjects are being
identified, reporting high accuracy (81%-92%) over a data
set created using a Kinect sensor; however, the database
used contains only very few gait cycles due to a fixed sen-
sor placement and only depth and regular video data is used.
Therefore this approach focused on generic object-motion
characteristics, without considering gait signature informa-
tion. Again, a KNN classifier is used.

Compared to previous approaches, the present paper
makes use of a comprehensive (140 subjects) data set cap-
tured using a Kinect sensor, extends the attributes to include
both body measurements and model-based gait information
and provides more in-depth experiments using the data, in-
cluding insights on the used machine learning classifiers.

Methodology
The Kinect Sensor

The Kinect device used in our experiments was the 2010
model for the X-Box 360 video-game console, connected
through an adapter cable to a PC running the SDK version
1.0. This device is equipped with a RGB camera and a depth
sensor composed of an infrared light emitter and a infrared-
sensitive camera.

A software library, called NUI API (Natural User Appli-
cation Programming Interface), retrieves and process data
from the sensors. This API is responsible for providing de-
tailed information about the location, position and orienta-
tion of individuals located in front of the sensor. This in-
formation is provided to the application as a set of 48 three-
dimensional points called “skeleton points”. These points
approximate the main joints of human body and the actual
position of the individual in front of the sensor.

The API provides data in the form of frames at the rate
of 30 frames per second. Each frame contains an array con-
taining all the extracted points at the moment of the capture.

Capturing Methodology

Volunteers walked in front of the sensor in a semi-circular
trajectory while data was being recorded. A spinning dish
was used to help move the Kinect sensor to follow the person
during the walk. This combination of trajectory and Kinect’s
pan camera movement allows several gait cycles to be cap-
tured per individual without distortions caused by subjects
moving in or out of the sensor’s field of view. Each sub-
ject executed five round trip free cadence walk, starting on
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the left of the sensor, walking clockwise to the right of the
sensor and then back.

The volunteers were recruited for the experiment at a uni-
versity campus. The majority of subjects were college stu-
dents, with ages between 17 and 35 years old. Each of the
subjects that accepted to participate in the experiment pro-
vided gender, height and weight information. They were
wearing light clothing, since the captures were conducted
during summer. The captures were conducted in an empty
classroom at day time with mostly artificial lighting. A
total of 140 individuals were captured using the proposed
methodology (95 men and 45 women). In most cases, each
individual generated about 500 to 600 frames and completed
between 6 and 12 gait cycles per walk.

Raw skeleton data often presents noise in the joint posi-
tions due to errors in the tracking process. In order to reduce
this noise we applied an Auto Regressive Moving Average
(ARMA) filter (Azimi 2012) with a window of size 8, set
in an ad hoc fashion by observing a visual reconstruction of
walks before and after the filter. This filter was applied to all
walk samples before being used.

From the captured raw data, attributes were extracted
for each walk, composing labeled examples where the la-
bel is an anonymized identifier of an individual. The at-
tributes are divided in two sets: gait attributes and an-
thropometric attributes. In what follows we describe how
each attribute is defined. The full data set is available at
http://ricardoaraujo.net/kinect.

Gait Attributes Model-based gait analysis considers the
human gait theory to help extract parameters from human
walk. The angles described by the joints of the hips, knees
and ankles, known as kinematic parameters, were calculated
for each frame captured, using the pendulum model pro-
posed in (Cunado, Nixon, and Carter 2003) and depicted
in Figure 1 (b). Furthermore, we calculate the foot angle,
described in (Murray, Drought, and Kory 1964), depicted
in Figure 1 (c) and the spatiotemporal parameters described
in (Yoo and Nixon 2011): the step length, stride length (or
“gait cycle size”), cycle time and velocity.

As shown in Figure 1 (b), the angle 6 is formed during a
gait cycle between the segments of the thigh and a projection
of the hip. Between the leg and the knee projection the angle
v is defined; « is the angle of the ankle rotation formed by
the foot segment and the ankle projection and the foot angle
B is formed by the opening of the foot in relation to the axis
of the heel. These angles describe periodic curves during
a walk, which can have useful characteristics for biometric
recognition (Harrap 1956).

The periodic curves generated by the lower joint angles
are composed by flexion and extension phases, visually no-
ticed by peaks (flexion) and valleys (extension) (Murray,
Drought, and Kory 1964). The arithmetic average and stan-
dard deviation were computed for the flexion peaks and ex-
tension valleys in order to characterize the curves of each
individual. Lower and higher flexion peaks and extension
valleys were treated separately, generating an arithmetic av-
erage and standard deviation for each high and low phase.
Each lower joint was considered independent of the others,
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Figure 1: Angles tracked to compose gait attributes.

generating attributes equally independent.

Spatiotemporal parameters were calculated based on the
step length and frame rate of the Kinect sensor. The step
length was obtained by averaging the highest values of the
difference between the right and left heels. In addition, we
use as attributes the stride length (Eq. 1), average stride
length over all n strides (Eq. 2), cycle time (Eq. 3) and
velocity (Eq. 4). A total of 60 gait attributes were defined.

strideLength = 2 x stepLength (1)
strideLength

avgStrideLength = Z -

i=1

@

avgCyclePeriod
30

avgStrideLength
cycleTime

3)

cycleTime =

“

velocity =

Anthropometric Attributes For each frame captured the
measurements of several body segments, shown in Figure
2, were calculated using the Euclidean distance between
joints, in a similar fashion to the methodology employed in
(Araujo, Grafia, and Andersson 2013). The subject’s height
was defined as the sum of the neck length, upper and lower
spine length and the averages lengths of the left and right
hips, thighs and lower legs.

The mean and standard deviation of each body segment
and height over all frames of a walk were calculated. Mea-
surements beyond two standard deviations from the mean
were discarded and attributed to noise. The recalculated
means for each part were used as attributes, totaling 20 an-
thropometric attributes.

Classifiers

From our literature review, K-Nearest Neighbor (KNN) clas-
sifier is the most commonly used model in full-body biomet-
rics, followed by Support Vector Machines (SVM). In this
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Figure 2: Tracked joints (circles) and body segments used
as attributes.

section, we compare these two models applied to our data
set and, in addition, also Multi-Layer Perceptron (MLP).

Parameters for each algorithm were set by varying their
values while trying to maximize the resulting accuracy us-
ing a 10-fold cross-validation (Mitchell 1997) over a smaller
random validation subset composed of 20 users. The same
number of evaluations was performed for each classifier. All
attributes were normalized before use by mapping their val-
ues to the range {—1,1}.

KNN was set to X = 5, Manhattan distance as the dis-
tance metric and distance weighting of 1/d. For the MLP,
we only considered networks with a single hidden layer and
the number of hidden units was set to 40. Training was per-
formed using the Backpropagation (Haykin 2008) algorithm
with momentum set to 0.2, learning rate to 0.3 and 1000
maximum epochs. The SVM was trained using the Sequen-
tial Minimal Optimization (SMO) algorithm (Platt 1999),
using a polynomial kernel and C' = 100.0.

We use 10-fold cross-validation to validate the models
with the above parameters i.e. the data set was randomly
partitioned in 10 subsets and training was performed ten
times, each time leaving one partition out of the training
process, which was used for testing; the reported accuracies
are the averages of these ten executions. When required,
statistical significance tests are performed using a Wilcoxon
signed-rank test (Wilcoxon 1945).

Results

Classifiers Accuracy

Figure 3 plots accuracy data over the 10 validation folds for
each algorithm and data set. Table 1 shows the mean values
for each case.
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Figure 3: Accuracy boxplots for each classifier and different attributes.

Overall, we can observe that only using gait attributes
leads to a poor performance, much worse than using only
anthropometric attributes. Nonetheless, combining the two
subsets allows for higher accuracy.

In all cases MLP performed consistently worse than KNN
and SVM. When using all attributes, KNN and SVM per-
formed about the same; the difference in the means is not
statistically significant (p = 0.991).

When considering only anthropometric attributes, KNN
displayed slightly better mean, but not very statistically sig-
nificant (p = 0.248). The results for KNN are, how-
ever, more consistent, with smaller standard deviation and
a higher median.

For gait attributes SVM has a small, but statistically sig-
nificant (p = 0.032), lead over KNN. It is also more con-
sistent and has a higher median. While MLP still performs
poorly over gait attributes, the difference is not as accentu-
ated as for the other cases.

These results lead to the conclusion that KNN and SVM
perform about equally well on the problem, but the chosen
MLP performs considerably and consistently worse. This
is consistent with the literature, where KNN and SVM are
often used. The preference for KNN may be due to it being
easy and fast to train, allowing for quicker experimentation.

The comparatively small increase in accuracy when com-
bining both types of attributes shows that gait attributes do
not provide much value beyond anthropometric attributes,
an evidence that the two are somewhat correlated. It is clear
that the latter is responsible for most of the response, with
gait attributes contributing only an average of 3.3 percentage
points. Nonetheless, gait attributes do show a measurable
contribution and by themselves are reasonably useful (much
better than random) for person identification.

Table 1: Classifiers’ mean accuracy using different at-
tributes. Bold text highlights the best values for each col-
umn.

Classifier Gait | Anthropometric All

SVM 62.9% 84.7% 86.3%
KNN 59.5% 85.4% 87.7%
MLP 59.2% 79.7% 84.7%
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Figure 4: Classifiers’ average accuracy for different gallery
sizes using all attributes. Error bars are 95% confidence in-
tervals.

Gallery Size

While the results in Table 1 are reasonable and useful for a
number of application (possibly excluding strict authentica-
tion), they may seem worse than results presented in similar
previous works - e.g. (Araujo, Grafa, and Andersson 2013)
where upwards of 98% accuracy was reported, but for only
9 subjects. One key missing aspect of these previous work
is an account for how accuracy varies with the size of the
gallery being identified.

Figure 4 shows how accuracy evolves when subjects in in-
creasingly large galleries must be identified. Each point (ex-
cept for 140) is the average over 10 galleries with the same
size and randomly drawn from the complete data set. For
very small galleries, accuracies are close to 98%, steadily
converging to the results seen in Table 1.

Additionally, we can observe that KNN actually performs
worse for small galleries, only becoming better than SVM
and MLP when considering more than 20 individuals.

Figure 5 shows how accuracy vary for different gallery
sizes and when using different attribute sets. Again we can
observe that gait attributes are overall far less useful for the



task than anthropometric attributes. Nonetheless, for very
small galleries (N = 5 in the figure), using only gait at-
tributes provides reasonable performance.

Accuracy using gait attributes degrades much faster when
increasing gallery size. Nonetheless, it is for large galleries
that using gait information in addition to anthropometric at-
tributes is useful. For galleries of size 105 or less there are
no statistically significant differences in accuracy between
using gait information or not (assuming significance level of
0.05) but there are significant, if rather small, differences for
larger galleries.
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Figure 5: Average KNN accuracy for different gallery sizes
and different attribute sets. Error bars represent 95% confi-
dence intervals.

Number of Neighbors

While we used the same value of K for all gallery sizes
when using KNN classifier, one may consider how this pa-
rameter affects overall performance. In order to provide
an answer, for each gallery size we varied the value of K
from 1 to 101 (or the maximum number of individuals in the
gallery; odd values only were considered) and measured the
resulting performance for each K, again as an average over
10 folds using cross-validation.

Figure 6 shows the best K for each gallery size, along
with the accuracy obtained when using the best K. While
the data is noisy, the general trend is clear: larger galleries
benefit from larger values of K but these values do not vary
considerably. Going from a gallery of 10 individuals to 140
individuals only increases the value of K from 1 to 5, a two-
step change. The average improvement over a fixed K = 5
was of 0.6 percentage point.

Even though the best K varies little with gallery size,
this parameter does have a strong effect in accuracy. Figure
7 shows how accuracy varies with K for different gallery
sizes. Increasing K beyond the optimal value leads to an al-
most linear decrease in accuracy. This shows that accuracy is
quite sensitive to K, even though the differences in optimal
values for different gallery sizes do not vary significantly;
hence, knowing the optimal value for some sizes allows for
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Figure 6: Best found K and KNN accuracy with best K for
different gallery sizes.
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Figure 7: KNN accuracy for different values of K and two
gallery sizes.

a quick search for optimal values for other sizes, since there
seems to be no need for an exhaustive search over a wide
range of values. A gradient search should suffice in finding
this parameter.

Comparison to Other Approaches

Figure 6 allows for a rough comparison with previous sim-
ilar works. For instance, (Yoo and Nixon 2011), using reg-
ular video cameras to extract 2D stick-figures information
from individuals, reports an accuracy of 84.0% using KNN
to classify 100 individuals, against 89.4% using our method-
ology and data set. However, they also report a 96.7% ac-
curacy using 30 individuals, while ours is of 94.0%, an ev-
idence that the adequacy of a methodology, including the
chosen classifier and attributes, is conditional on the number
of individuals being identified.

In (Hofmann and Bachmann 2012), only images’ energies
are used for identification - i.e. it does not try to reconstruct a



Table 2: Attributes selected from a Correlation-based Fea-
ture Subset Selection and how much removing each of the
set affects KNN accuracy, in percentage points.

Attribute Average Accuracy Change
Stride Length (gait) -4.4%
Right Foot -3.2%
Right Hand -2.9%
Neck -2.6%
Upper Spine -1.9%
Right Shoulder -1.7%
Left Hip -1.7%
Height -1.4%
Right Leg -1.3%
Left Angle Peaks (gait) -0.7%
Left Forearm -0.6%
Right Thigh -0.6%
Left Thigh 0.0%
Left Leg 0.0%

skeleton model from video images - and an 81.0% accuracy
is reported for 176 individuals. While a more direct compar-
ison is not possible given our more limited data set, fitting
an exponential function to Figure 6, yields a projection of
84.5% for this same gallery size.

Relevant Attributes

The complete data set contains a total 80 attributes. In the
provided experiments, all were used, but such large number
of attributes lead to high computational requirements and
may reduce accuracy if many attributes are irrelevant.

In order to better understand the role each attribute has in
the obtained results, we applied a correlation-based feature
subset selection (Hall 1998) to the data. The resulting subset
contains only 14 attributes, shown in Table 2. While using
this subset does not improve accuracy, it only performs an
average of 0.1 percentage point worse when compared to
the case where all attributes are provided.

It is also possible to observe that 12 of the 14 selected
attributes are anthropometric and only 2 are related to gait.
This reinforces our previous observation that gait features
are largely correlated to anthropometric features but less re-
liable for identification. Nonetheless, Step Length, a gait
attribute, provides the largest drop in accuracy when indi-
vidually removed from this set.

Conclusions

We reported on the ability of different classifiers to dis-
criminate walking individuals tracked by a Microsoft Kinect
device, aiming at composing a full-body person identifica-
tion system. In order to do so, we detailed how attributes
could be extracted from the raw data and categorized these
attributes as based on static body measurements (anthro-
pometric) or motion patterns (gait). A data set composed
of 140 subjects was used and three classifiers were tested
(KNN,MLP and SVM).

The main contribution of this paper was to provide a set of
simulations that allowed for the comparison between com-
monly used classifiers applied to a novel biometric data set.
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The experiments considered several different conditions, no-
tably different gallery sizes and different combinations of
attributes.

Our results showed that the defined gait attributes are less
useful than anthropometric attributes when each is used sep-
arately; accuracies using only gait also fall faster as gallery
size is increased. However, combining the two attribute
types allows for higher accuracies when the number of sub-
jects is large enough. By reducing the dimensionality of the
data, we showed evidences that a very compact set of at-
tributes is enough to ensure high accuracy and that in this
smaller set, gait information is very relevant.

When comparing the classifiers, our results showed evi-
dences that KNN and SVM display similar accuracies, while
MLP perform considerably worse for all tested variations of
attributes, with the exception of very small galleries. Focus-
ing on KNN, we showed that the number of neighbors (K)
does not vary considerably when very different gallery sizes
are used. In addition, our best results are generally compa-
rable to accuracies reported in the literature, but the compar-
ison methodology does not allow for stronger claims.

In conclusion, a full-body person identification system
was shown to be viable using data from a Kinect device
and the proposed methodology, but the observed accuracies
are not high enough for critical applications, suggesting that
this approach should be used as a complement to other tech-
niques (e.g. face recognition).

Future work include finding and testing better gait-based
attributes that can be easily inferred from Kinect data and
testing the trained classifiers in real-world uncontrolled sce-
narios.
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