
Kickback Cuts Backprop’s Red-Tape:
Biologically Plausible Credit Assignment in Neural Networks

David Balduzzi
david.balduzzi@vuw.ac.nz

Victoria University of Wellington

Hastagiri Vanchinathan
hastagiri@inf.ethz.ch

ETH Zurich

Joachim Buhmann
jbuhmann@inf.ethz.ch

ETH Zurich

Abstract

Error backpropagation is an extremely effective algorithm
for assigning credit in artificial neural networks. However,
weight updates under Backprop depend on lengthy recursive
computations and require separate output and error messages
– features not shared by biological neurons, that are perhaps
unnecessary. In this paper, we revisit Backprop and the credit
assignment problem.
We first decompose Backprop into a collection of interact-
ing learning algorithms; provide regret bounds on the perfor-
mance of these sub-algorithms; and factorize Backprop’s er-
ror signals. Using these results, we derive a new credit assign-
ment algorithm for nonparametric regression, Kickback, that
is significantly simpler than Backprop. Finally, we provide
a sufficient condition for Kickback to follow error gradients,
and show that Kickback matches Backprop’s performance on
real-world regression benchmarks.

Introduction
The discovery of error backpropagation was hailed as a
breakthrough because it solved the main problem of dis-
tributed learning – the spatial credit assignment problem
(Werbos 1974; Rumelhart, Hinton, and Williams 1986).
Decades later, Backprop is the workhorse underlying most
deep learning algorithms, and a major component of the
state-of-the-art in supervised learning.

Since Backprop’s introduction, there has been tremen-
dous progress improving the performance of neural net-
works. An enormous amount of effort has been expended
exploring the effects of: the activation functions of nodes;
network architectures (e.g. number of layers and number of
nodes); regularizers such as dropout (Srivastava et al. 2014);
modifications to accelerate gradient descent; and unsuper-
vised methods for pre-training to find better local optima.

However, it was known from the start that Backprop is not
biologically plausible (Crick 1989). Implementing Back-
prop requires that neurons produce two distinct signals –
outputs and errors – whereas only one has been observed
in cortex (Lamme and Roelfsema 2000; Roelfsema and van
Ooyen 2005).

It is therefore remarkable that almost no attempts have
been made to rethink the core algorithm – backpropagation

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

– and the problem that it solves – credit assignment. This pa-
per revisits the credit assignment problem and takes a fresh
look at the signaling architecture that underlies Backprop.

Outline. Our starting point is to decompose Backprop into
local learning algorithms, Theorem 1. Nodes under Back-
prop are modeled as agents that minimize their losses. Back-
prop ensures that nodes cooperate, towards the shared goal
of minimizing the output layer’s error, by gluing together
their loss functions using recursively computed error signals.

Reformulating Backprop as local learners immediately
suggests modifying the signaling architecture (the glue)
whilst keeping the learners. In this paper, we aim to simplify
Backprop’s error signals.

Theorem 2 lays the groundwork, by providing a regret
bound for local learners that holds for any scalar feedback
– and not just the error signals used by Backprop.

The next step is to show that, when a neural network
has 1-dimensional outputs (e.g. nonparametric regression),
Backprop’s error signals factorize into two components,
Theorem 3. The first component is a scalar error computed
at the output layer that is analogous to a neuromodulatory
signal; the second is a complicated sum over paths to the
output layer that has no biological analog.

Our proposed algorithm, Kickback, modifies Backprop by
truncating the second component. Kickback is not gradient
descent on the output error. Nevertheless, Theorem 4 pro-
vides a simple sufficient condition, coherence, for Kickback
to follow the error gradient.

It turns out that many of the components of Kickback have
close neurophysiological analogs. We discuss Kickback’s
biological significance by relating it to a recently developed,
discrete-time model neuron (Balduzzi and Besserve 2012).

Finally, we present experiments demonstrating that Kick-
back matches Backprop’s performance on standard bench-
mark datasets.

Synopsis. Our contribution is twofold. Firstly, we provide
a series of simple, fundamental theorems on Backprop, one
of the most heavily used learning algorithms. In particular,
Theorem 1 suggests that ideas from multi-agent learning and
mechanism design have a role to play in deep learning.

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

485

Secondly, we propose Kickback, a stripped-down variant
of Backprop that simultaneously performs well and ties in
nicely with the signaling architecture of cortical neurons.

Related work. The idea of building learning algorithms
out of individual learning agents dates back to at least (Self-
ridge 1958). More recent approaches include REINFORCE
(Williams 1992), the hedonistic neurons in (Seung 2003),
and the neurons modeled using online learning in (Hu et al.
2013). None of these approaches have led to algorithms that
are competitive on benchmarks.

The algorithm closest to Kickback is attention-gated re-
inforcement learning (AGREL), which also eliminates the
error signals from Backprop (Roelfsema and van Ooyen
2005). AGREL and Kickback are analogous at a high level,
however the details differ markedly. In terms of results,
the main differences are as follows. Firstly, we implement
Kickback for networks with 2 and 3 hidden layers; whereas
AGREL was only implemented for 1 hidden layer. Indeed,
as discussed in (Roelfsema and van Ooyen 2005), extending
AGREL to multiple hidden layers is problematic. Secondly,
AGREL achieved comparable performance to Backprop on
toy datasets: XOR, counting, and a mine detection dataset
containing ±200 inputs; whereas Kickback matches Back-
prop on much larger, real-world nonparametric regression
problems. Finally, AGREL converges 1.5 to 10 times slower
than Backprop, whereas Kickback’s convergence is essen-
tially identical to Backprop.

Error Backpropagation
Recent work has shown that using rectilinear functions
instead of sigmoids can significantly improve the perfor-
mance of neural networks. We restrict to rectifiers be-
cause they perform well empirically (Jarrett et al. 2009;
Nair and Hinton 2010; Glorot, Bordes, and Bengio 2011;
Krizhevsky, Sutskever, and Hinton 2012; Zeiler et al. 2013;
Dahl, Sainath, and Hinton 2013; Maas, Hannun, and Ng
2013), are more realistic models of cortical neurons than
sigmoid units (Glorot, Bordes, and Bengio 2011), and are
universal function approximators (Leshno et al. 1993).

Denote the positive and negative rectifiers by P (a) :=
max(0, a) and N(a) := −max(0, a) respectively. Recti-
fiers are continuous everywhere and differentiable every-
where except at 0. The subgradients are:

∇P (a) :=

{
1 a > 0

0 else
∇N(a) :=

{
−1 a > 0

0 else.

Let S(a) denote either P (a) or N(a); the notation is use-
ful when discussing positive and negative rectifiers simulta-
neously. Similarly, let 1 denote either subgradient. The sub-
gradient 1 acts as a signed indicator function.

The output of node j is Swj (x) := S(〈wj ,x〉). We say
that node j fires if 〈wj ,x〉 > 0; the firing rate is |Swj (x)|.

From global to local learning. Under Backprop the entire
neural network optimizes a single objective function using
gradient descent on the network’s error. The partial deriva-
tives with respect to weights are computed via the chain rule.

In more detail, suppose a neural network has error func-
tion E(x, y) that depends on the output layer xo and labels
y. Backprop recursively updates weight vectors using the
chain rule. For nodes in the output layer, δo := ∂E

∂xo
. For

hidden node j, the error signal is derived via

δj :=
∑

{k|j→k}

wjk1kδk. (1)

Our first result is that, when the hidden nodes are recti-
linear, Backprop decomposes into many interacting learning
algorithms that maximize local objective functions.

Consider the following setup.
Definition 1 (rectilinear loss). A node with a rectilinear
activation function Sw(•) receives input x and incurs recti-
linear loss

`RL(w,x, ϕ) := ϕ · Sw(x) =

{
±ϕ · 〈w,x〉 if 〈w,x〉 > 0

0 else

that depends on an externally provided scalar ϕ.

If the node fires then the rectilinear loss is the linear loss
`L(w, ϕ ·x) := 〈w, ϕ ·x〉, which has been extensively ana-
lyzed in online learning (Cesa-Bianchi and Lugosi 2006). If
the node does not fire then the rectilinear loss is zero.

Theorem 1 (Backprop decomposes into local learners).
The weight updates induced by Backprop on rectilinear hid-
den node j are the same as gradient descent on the rectilin-
ear loss:

∇wj`RL(wj ,x, δj) = ∇wjE(xo, y).

The rectilinear loss resembles the hinge loss. However, it
is not convex since, even if the node has a positive rectifier,
ϕ is not necessarily positive.

Proof Sketch. Let aj = 〈wj ,x〉 and xj = S(aj). Weight
updates under Backprop are

∆wij ∝ −
∂E

∂wij
= − ∂E

∂aj

∂aj
∂wij

= −δj · xi · 1j .

Weight updates for gradient descent on the rectilinear loss
are

∆wij ∝ −
∂`RL
∂wij

= −ϕ · xi · 1j . (2)

Substituting ϕ← δj yields the theorem. �

Backprop is thus a collection of local optimizations glued
together by the recursively computed error signals.

A regret bound. Since the rectilinear loss has not been
previously studied, our second result is a guarantee on the
predictive performance of the local learners.

Theorem 2 (regret bound for local learners). Suppose that
weights are projected into a compact convex set K at each
time step. Let F := {t |Swt(x

t) > 0} denote the time-
points when the node fired.

486

The following guarantee holds for any sequence of inputs
and scalar feedback when |F | ≥ 1:

1

|F |

[∑
t∈F

`RL(wt,xt, ϕt)− inf
w∈K

∑
t∈F

`RL(w,xt, ϕt)

]

≤

√
8DE

|F |

where D = maxt∈F
{
‖ϕt · xt‖22

}
and E =

maxw∈K ‖w‖22 − ‖w1‖22.
Theorem 2 shows that the loss incurred by rectifiers on the

inputs that cause them to fire converges towards the loss of
the best weight-vector in hindsight. The theorem is shown
for hard constraints (i.e. projecting into K); similar results
hold for convex regularizers.

The result holds for arbitrary sequences of inputs and
feedbacks, including adversarial. It is therefore more real-
istic than the standard i.i.d. assumption. Indeed, even if a
network’s inputs are i.i.d., the inputs to nodes in deeper lay-
ers are not – due to weight-updates within the network.

Proof Sketch. Standard results on online learning do not di-
rectly apply, since the rectilinear loss is not convex. To adapt
these results, observe that, by (2), nodes only learn from the
inputs that cause them to fire.

Clearly, Swt(x
t) = 〈wt,xt〉 for all t ∈ F . That is, a

node’s output is linear on the inputs for which it fires. Fur-
ther, the rectilinear loss is linear on F . The theorem follows
from a well-known result on gradient descent for the linear
loss, see (Hazan 2012). �

Theorem 2 is not restricted to Backprop’s error signals;
it holds for any sequence of scalars {ϕt}. This suggests ex-
ploring alternate ways of gluing together local learners.

Kickback: truncated error backpropagation
Backprop has two unfortunate properties. Firstly, the error
signals δj are computationally expensive: they depend on the
activity and weights of all downstream nodes in the network.
Secondly, nodes produce two distinct signals: outputs that
are fed forward and errors that are fed back. In contrast, cor-
tical neurons communicate with only one signal type, spikes,
which are sent in all directions. This suggests that it may be
possible to make do with less.

Viewed from a distance, Backprop is a single distributed
optimization, performing gradient descent on the network’s
error. Zooming in, via Theorem 1, reveals that Backprop is
a collection of local learners glued together by recursively
computed error signals. We thus have a framework for exper-
imenting with alternate feedback signals (Balduzzi 2014).

Kickback takes the same local learners as Backprop but
weakens the glue that binds them, thereby reducing commu-
nication complexity and increasing biological plausibility.

Factorizing Backprop’s error signals. It is necessary to
distinguish between global and local error signals. Local er-
rors signals are the recursively computed signals δj . The

global error is the derivative of the network’s error function
with respect to the activity of the output layer.
Definition 2 (influence). The influence of node j on node k
is τjk := wjk1k. The influence of node j on the next layer
is τj :=

∑
{k|j→k} τjk. The total influence of node j on

downstream nodes is

πj :=

 ∑
{k|j→k}

τjk

 ∑
{l|k→l}

τkl

 ∑
{m|l→m}

· · ·

 ,

(3)
the sum over all paths from j to the output layer.

Our third result is that Backprop’s error signals factorize
whenever a neural network has 1-dimensional outputs.
Theorem 3 (error signal factorization). Suppose neural
network N has scalar output and let β = ∂E

∂xo
be the global

error. Then, the error signal of a hidden node j factorizes as

δj = β · πj =
(
global error

)
·
(
total influencej

)
. (4)

The theorem holds in the setting of nonparametric regres-
sion. Multi-label classification is excluded.

Proof Sketch. Backprop recursively updates weight vectors
using the chain rule, recall (1). When the output is one-
dimensional, xo contributes β to the recursive computation
of πj over hidden nodes. �

Kickback. We are now ready to introduce Kickback.
Algorithm 1 (Kickback). The truncated feedback εj at
node j is

εj := β · τj =
(
global error

)
·
(
influencej

)
. (5)

Under Kickback, hidden nodes perform gradient descent on
the rectilinear loss with truncated feedback:

∆wij ∝ −∇wij`RL(wj ,x, εj) = −β · τj · xi · 1j . (6)
Kickback and Backprop are contrasted in Figure 1 and in

equations (4) versus (5). Importantly, Kickback eliminates
the need for nodes to communicate error signals – as distinct
from their outputs.

Kickback as time-averaged Backprop. Truncating the
feedback signal, from (4) to (5), preserves more information
than appears at first glance. The truncated signal received
by node j explicitly depends on j’s influence on the next
layer. However, Kickback implicitly incorporates informa-
tion about the influence of multiple layers.

For simplicity, suppose there is no regularizer and that the
learning rate η is constant. Then, summing over the updates
in (2), a weight at time T is wTij = η

∑
t∈Fj ϕ

t
jx
t
i. In the

specific case of Kickback, the weight is

wTij = η
∑
t∈Fj

(
βtxtiτ

t
j

)
= η

∑
t∈Fj

(
βtxti

∑
{k|j→k}

wtjk1k

)
.

The weight wTij thus implicitly incorporates the effect of in-
teractions τ tjk = wtjk1

t
k in the next layer down, and so on

recursively.

487

Figure 1: Schematic comparison of Kickback and Backprop. Black arrows represent feedforward conenctivity. Colored
arrows depict paths used to compute the bold node’s feedback under each algorithm.

Coherence. With a small enough learning rate, gradient
descent will tend towards a local minimum. Kickback does
not perform gradient descent on the error function since it
uses modified feedback signals. Thus, without further as-
sumptions, it is not guaranteed to improve performance. Our
fourth result is to provide a sufficient condition.
Definition 3 (coherence). Node j is coherent when τj > 0.
A network is coherent when all its nodes are coherent.
Example 1 (signed coherence). An easy way to guaran-
tee coherence for every node is to impose the purely local
condition that all connections targeting positive nodes have
positive weights, and similarly that all connections targeting
negative nodes have negative weights.

If a network is coherent, then increasing a positive node’s
firing rate increases the average (signed) activity in the next
layer and all downstream layers. Increasing the activity of
negative nodes has the opposite effect.

On the other hand, if a network is not coherent, then noth-
ing can be said in general about how the activity of nodes in
one layer affects other layers.

Coherence thus enforces interpretability: it ensures that a
node’s influence on the next layer is indicative of its total
influence on all downstream layers.
Theorem 4 (coherence =⇒ Kickback reduces error). If
a network is coherent then weight updates under Kickback,
with a sufficiently small learning rate, improve performance.

Proof Sketch. It suffices to show that the feedback has the
same sign under Backprop, δj = β · πj , and Kickback, εj =
β · τj for an arbitrary hidden node j.

If j is coherent then τj > 0. If, furthermore, all down-
stream nodes are coherent, then unraveling (3) obtains that
πj > 0. The result follows. �

Under Backprop, each node’s total influence is computed
explicitly. Kickback makes do with less information: a node
“knows” its influence on the next layer, but does not “know”
its total influence.

Biological relevance
There is a direct link from Kickback to neurobiology pro-
vided by the selectron: a simplified model neuron (Balduzzi

and Besserve 2012). The selectron is derived from standard
models of neural dynamics and learning – the Spike Re-
sponse Model (SRM) and Spike-Timing Dependent Plas-
ticity (STDP) – by taking the so-called “fast-time constant
limit” to go from continuous to discrete time.
Theorem 5 (selectron). The fast time-constant limit of the
SRM (Gerstner and Kistler 2002) is a node that outputs 1 if
〈w,x〉 > 0 and 0 otherwise.

Weight updates in the fast time-constant limit of neuro-
modulated STDP (Song, Miller, and Abbott 2000) are

∆wij ∝ ν · xi · 1j =

{
ν · xi if 〈wj ,x〉 > 0

0 else,
(7)

where ν is a global, scalar-valued neuromodulatory signal.
The weight updates in (7) are gradient ascent on

Reward(w,x, ν) := ν · Pw(x) =

{
ν〈w,x〉 if 〈wj ,x〉 > 0

0 else.

Setting ϕ := −ν in Reward(w,x, ν) recovers the recti-
linear loss in Definition 1. The selectron thus maximizes a
rectilinear reward via the same weight updates used to min-
imize the rectilinear loss. The difference between the two
models is that the selectron has 0/1-valued outputs (spikes),
whereas nodes have real-valued outputs (firing rates).

Proof. (Balduzzi and Besserve 2012).

Kickback’s weight updates are ∆wij ∝ −β · τj · xi · 1j .
Each factor has a biological analog. The global error, β, cor-
responds to neuromodulators, such as dopamine, that have
been experimentally observed to signal prediction errors
for future rewards (Schultz, Dayan, and Montague 1997).
The kickback term, τj , corresponds to NMDA backconnec-
tions that have a multiplicative effect on synaptic updates,
proportional to the weighted sum of downstream activity
(Vargas-Caballero and Robinson 2003; Roelfsema and van
Ooyen 2005). The feedforward term, xi, corresponds to pre-
synaptic spiking activity (Song, Miller, and Abbott 2000).
Finally, the signed indicator function 1j , ensures that only
active nodes update their weights – thereby playing the role
of post-synaptic activity in STDP.

The regret bound in Theorem 2 is also biologically sig-
nificant. Synapses incur a significant metabolic cost (Tononi

488

and Cirelli 2014). Regularizing synaptic weights provides
a way to quantify metabolic costs. Indeed, limits on the
physical size and metabolic budget of synapses suggest that
synaptic weights may be constrained to an `1-ball (Balduzzi
and Besserve 2012).

To the best of our knowledge, Theorem 2 is the first adver-
sarial generalization bound for a biologically derived model.
The generalization bound for the selectron in (Balduzzi and
Besserve 2012) assumes that inputs are i.i.d. Moving beyond
the i.i.d. assumption is important because biological organ-
isms face adversarial environments.

The final ingredient is coherence. Investigating biologi-
cally plausible mechanisms that ensure coherence (or some
other sufficient condition) is deferred to future work.

Experiments
Goals. Our primary aim is to compare Kickback’s per-
formance to Backprop. We present results on two robotics
datasets, SARCOS1 and Barrett WAM2. Kickback’s perfor-
mance across multiple hidden layers is of particular interest,
since it truncates errors. Results for 3 hidden layers are re-
ported; results for 1 and 2 hidden layers were similar.3 A
secondary aim is to investigate the effect of coherence.

Competing on the datasets tackled by deep learning algo-
rithms is not yet feasible. Further work is required to adapt
Kickback to multiclass learning.

Architecture. Experiments were performed on a 5-layer
network with 2 output nodes, 10, 100 and 200 nodes in
three hidden layers, and with the input layer directly drawn
from the data. Experiments were implemented in Theano
(Bergstra et al. 2010). All nodes are rectifiers. We set half
of nodes as positive and half as negative. Output nodes per-
form rectilinear regression, see below, whereas hidden nodes
minimize the rectilinear loss on feedback implementing ei-
ther Kickback or Backprop.

Training was performed in batch sizes of 20. Lower batch-
sizes yield better performance at the cost of longer training
times. We chose 20 as a reasonable compromise.

Rectilinear regression. Recently, (Glorot, Bordes, and
Bengio 2011) introduced an `1 penalty on firing rates, which
encourages sparsity and can improve performance. Here, we
consider an `2-penalty: `RL(w,x, ϕ) − 1

2Sw(x)2. Weight
updates under gradient descent are

∆w ∝
{

(ϕ− 〈w,x〉)x if 〈w,x〉 > 0

0 else.
(8)

Notice that the penalty 〈w,x〉 in (8) is the firing rate. Com-
paring with the gradient (ϕ−〈w,x〉)x of the mean-squared
error 1

2 (ϕ − 〈w,x〉)2 shows that the `2-activation penalty
leads nodes to perform linear regression on the inputs that

1Taken from www.gaussianprocess.org/gpml/data/.
2Taken from http://www.ias.tu-darmstadt.de/\\Miscellaneous/

Miscellaneous.
3In short: the performance of both Kickback and Backprop is

worse, but still comparable, with fewer layers.

cause them to fire (Balduzzi 2013). A regret bound analo-
gous to Theorem 2 holds for rectilinear regression, with a
faster convergence rate of O(log |F |

|F |).
Training error is the MSE of the output node with the cor-

rect sign4; test error is the sum of the output nodes’ MSEs.

Initialization and coherence. No pretraining was used.
We consider two network initializations. The first is uni-
form: draw weights uniformly at random from an interval
symmetric about 0, without regard to coherence. The second
initialization, signed is taken from Example 1: draw weights
uniformly, then change their signs so that connections tar-
geting positive nodes have positive weights and conversely
for negative nodes. Signed guarantees coherence at initial-
ization. Although it is possible to impose coherence during
training, we found that doing so was unnecessary in practice.

Results are plotted under both initializations for Kickback
– excepting Panel (e), where uniform failed to converge.
For Backprop, the initialization that yielded the better per-
formance is reported.

Results. We report normalized mean-squared errors. To
directly compare the behavior of the algorithms, we re-
port individual runs. Performance was robust to significant
changes in tuning parameters: e.g. changing parameters by
2× increased the MSE on SARCOS 3 from .6% to .8%.

Each SARCOS dataset consists of 44,484 training and
4,449 test points; Barrett split as 12,000 and 3,000. Parame-
ters were tuned via grid-search with 5-fold cross-validation.
Backprop’s only parameter is the learning rate. Kickback
was implemented with a learning rate tuned for Backprop.
Kickback has two additional parameters that rescale the
feedback to hidden layers 1 & 2. We observed that tuning
via cross-validation typically set the rescaling factors such
that the truncated errors are rescaled to about same magni-
tude, on average, as Backprop’s feedback.

Kickback and Backprop are competitive with non-
parametric methods such as kernel regression, e.g. (Kpotufe
and Boularias 2013). Kickback performs best with signed
initialization, as expected from Theorem 4. With signed ini-
tialization, Kickback almost exactly matches Backprop in
all 6 datasets. Importantly, Kickback continues to reduce the
MSE after 100s of epochs; following the correct gradient
even when the error is small.

The comparison between Backprop and Kickback is not
completely fair: Kickback’s additional parameters cause it
to outperform Backprop in panel (b). We have endeavored
to keep the comparison as level as possible.

The effect of coherence. Kickback’s performance was
better than expected: coherence was not imposed after ini-
tialization under signed; and no guarantees are applicable to
uniform. A possible explanation is that Kickback preserves
or increases coherence.

4Recall there is one positive and one negative output rectifier.

489

(a) Barrett 2 (b) Barrett 3 (c) Barrett 4

(d) SARCOS 1 (e) SARCOS 3 (f) SARCOS 7
Figure 2: Mean-squared test error per epoch for Kickback and Backprop.

To test this hypothesis, we quantified the coherence of
layer α as coh(Lα) =

∑
j∈Lα τj∑
j∈Lα |τj | , which lies in [−1, 1].

With signed initialization, coherence consistently remained
above 0.9 under Kickback; but exhibited considerable vari-
ability under Backprop. With uniform initialization, Kick-
back increased the coherence of hidden layers 2 & 3, from 0
to > 0.5, with the exception of panel (c). Backprop did not
alter coherence in any consistent way.

Barrett 4 is the only dataset where nodes become incoher-
ent (coh < 0) on average. The oscillations in Panel (c) for
uniform arise because Kickback is not guaranteed to follow
the training error gradient in the absence of coherence. It is
surprising the network learns at all. Note that oscillations do
not occur when networks are given a signed initialization.

Conclusion
A necessary step towards understanding how the brain as-
signs credit is to develop a minimal working model that fits
basic constraints.

Backprop solves the credit assignment problem. It is one
of the simplest and most effective methods for learning rep-
resentations. In combination with various tricks and opti-
mizations, it continues to yield state-of-the-art performance.
However, it flouts a basic constraint imposed by neurobi-
ology: it requires that nodes produce error signals that are
distinct from their outputs.

Kickback is a stripped-down version of Backprop moti-
vated by theoretical (Theorems 1–4) and biological (Fig. 1
and Theorem 5) considerations. Under Kickback, nodes per-
form gradient descent, or ascent, on the representation – that
is, the kicked back activity – produced by the next layer. The

sign of the global error determines whether nodes follow the
gradient downwards, or upwards.

Kickback is the first competitive algorithm with biologi-
cally plausible credit-assignment. Earlier proposals were not
competitive and only worked for one hidden-layer (Kick-
back works well for ≤ 3 hidden-layers; we have not tested
≥ 4). Kickback’s simplified signaling is suited to hardware
implementations (Indiveri et al. 2011; Nere et al. 2012).

An important outcome of the paper is a new formulation
of Backprop in terms of interacting local learners, that may
connect deep learning to recent developments in multi-agent
systems (Seuken and Zilberstein 2008; Sutton et al. 2011)
and mechanism design (Balduzzi 2014).

Kickback’s rescaling factors (1 per hidden layer) are a
loose-end that require addressing in future work.

Perhaps the most important direction is to extend Kick-
back to multiclass learning. For this, it is necessary to con-
sider multidimensional outputs, in which case the derivative
of the energy function with respect to the output layer is not
a scalar. A natural approach to tackle this setting is to use
more sophisticated global error signals. Indeed, modeling
the neuromodulatory system as producing scalar outputs is
a vast oversimplification (Dayan 2012).

Finally, reinforcement learning is a better model of how
an agent adapts to its environment than supervised learn-
ing (Veness et al. 2010). A natural avenue to explore is how
Kickback, suitably modified, performs in this setting.

Acknowledgements. We thank Jacob Abernethy and
Satinder Singh for useful conversations. This research was
supported in part by SNSF grant 200021 137971.

490

References
Balduzzi, D., and Besserve, M. 2012. Towards a learning-theoretic
analysis of spike-timing dependent plasticity. In Advances in Neu-
ral Information Processing Systems (NIPS).
Balduzzi, D. 2013. Randomized co-training: from cortical neu-
rons to machine learning and back again. Randomized Methods for
Machine Learning Workshop, Neural Inf Proc Systems (NIPS).
Balduzzi, D. 2014. Cortical prediction markets. In Proc. 13th Int
Conf on Autonomous Agents and Multiagent Systems (AAMAS).
Bergstra, J.; Breuleux, O.; Bastien, F.; Lamblin, P.; Pascanu, R.;
Desjardins, G.; Turian, J.; Warde-Farley, D.; and Bengio, Y. 2010.
Theano: A CPU and GPU Math Expression Compiler. In Proc.
Python for Scientific Comp. Conf. (SciPy).
Cesa-Bianchi, N., and Lugosi, G. 2006. Prediction, Learning and
Games. Cambridge University Press.
Crick, F. 1989. The recent excitement about neural networks. Na-
ture 337(12):129–132.
Dahl, G. E.; Sainath, T. N.; and Hinton, G. 2013. Improving
deep neural networks for LVCSR using rectified linear units and
dropout. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP).
Dayan, P. 2012. Twenty-Five Lessons from Computational Neuro-
modulation. Neuron 76:240–256.
Gerstner, W., and Kistler, W. 2002. Spiking Neuron Models. Cam-
bridge University Press.
Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Deep Sparse Recti-
fier Neural Networks. In Proc. 14th International Conference on
Artificial Intelligence and Statistics (AISTATS).
Hazan, E. 2012. The convex optimization approach to regret min-
imization. In Sra, S.; Nowozin, S.; and Wright, S. J., eds., Opti-
mization for machine learning. MIT Press.
Hu, T.; Towfic, Z. J.; Pehlevan, C.; Genkin, A.; and Chklovskii,
D. B. 2013. A Neuron as a Signal Processing Device. In Asilomar
Conference on Signals, Systems and Computers.
Indiveri, G.; Linares-Barranco, B.; Hamilton, T. J.; van Schaik,
A.; Etienne-Cummings, R.; Delbruck, T.; Liu, S.-C.; Dudek, P.;
Häfliger, P.; and et al. 2011. Neuromorphic silicon neuron circuits.
Front. Neurosci 5(73).
Jarrett, K.; Kavukcuoglu, K.; Ranzato, M.; and LeCun, Y. 2009.
What is the Best Multi-Stage Architecture for Object Recognition?
In Proc. International Conference on Computer Vision (ICCV).
Kpotufe, S., and Boularias, A. 2013. Gradient Weights help Non-
parametric Regressors. In Advances in Neural Information Pro-
cessing Systems (NIPS).
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In Ad-
vances in Neural Information Processing Systems (NIPS).
Lamme, V., and Roelfsema, P. 2000. The distinct modes of vi-
sion offered by feedforward and recurrent processing. Trends in
Neurosci. 23(11):571–579.
Leshno, M.; Lin, V. Y.; Pinkus, A.; and Schocken, S. 1993.
Multilayer Feedforward Networks With a Nonpolynomial Activa-
tion Function Can Approximate Any Function. Neural Networks
6:861–867.
Maas, A. L.; Hannun, A. Y.; and Ng, A. 2013. Rectifier Nonlinear-
ities Improve Neural Network Acoustic Models. In Proceedings of
the 30th International Conference on Machine Learning (ICML).
Nair, V., and Hinton, G. 2010. Rectified Linear Units Improve
Restricted Boltzmann Machines. In Proceedings of the 27th Inter-
national Conference on Machine Learning (ICML).

Nere, A.; Olcese, U.; Balduzzi, D.; and Tononi, G. 2012. A neuro-
morphic architecture for object recognition and motion anticipation
using burst-STDP. PLoS One 7(5):e36958.
Roelfsema, P. R., and van Ooyen, A. 2005. Attention-gated re-
inforcement learning of internal representations for classification.
Neural Comput 17(10):2176–2214.
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986. Learn-
ing representations by back-propagating errors. Nature 323:533–
536.
Schultz, W.; Dayan, P.; and Montague, P. 1997. A neural substrate
of prediction and reward. Science 275(1593-1599).
Selfridge, O. G. 1958. Pandemonium: a paradigm for learning. In
Mechanisation of Thought Processes: Proceedings of a Symposium
Held at the National Physics Laboratory.
Seuken, S., and Zilberstein, S. 2008. Formal models and algorithms
for decentralized decision making under uncertainty. Auton Agent
Multi-Agent Syst 17(2):190–250.
Seung, H. S. 2003. Learning in Spiking Neural Networks by Rein-
forcement of Stochastic Synaptic Transmission. Neuron 40(1063-
1073).
Song, S.; Miller, K. D.; and Abbott, L. F. 2000. Competitive Heb-
bian learning through spike-timing-dependent synaptic plasticity.
Nat Neurosci 3(9).
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. JMLR 15:1929–1958.
Sutton, R.; Modayil, J.; Delp, M.; Degris, T.; Pilarski, P. M.; White,
A.; and Precup, D. 2011. Horde: A Scalable Real-time Architecture
for Learning Knowledge from Unsupervised Motor Interaction. In
Proc. 10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS).
Tononi, G., and Cirelli, C. 2014. Sleep and the Price of Plasticity:
From Synaptic and Cellular Homeostasis to Memory Consolida-
tion and Integration. Neuron 81(1):12–34.
Vargas-Caballero, M., and Robinson, H. P. 2003. A slow frac-
tion of Mg2+ unblock of NMDA receptors limits their contribution
to spike generation in cortical pyramidal neurons. J Neurophysiol
89(5):2778–83.
Veness, J.; Ng, K. S.; Hutter, M.; and Silver, D. 2010. Reinforce-
ment Learning via AIXI Approximation. In Proc. 24th AAAI Con-
ference on Artificial Intelligence (AAAI).
Werbos, P. J. 1974. Beyond Regression: New Tools for Predic-
tion and Analysis in the Behavioral Sciences. Ph.D. Dissertation,
Harvard.
Williams, R. J. 1992. Simple Statistical Gradient-Following Algo-
rithms for Connectionist Reinforcement Learning. Machine Learn-
ing 8:229–256.
Zeiler, M. D.; Ranzato, M.; Monga, R.; Mao, M.; Yang, K.; Le,
Q. V.; Nguyen, P.; Senior, A.; Vanhoucke, V.; Dean, J.; and Hinton,
G. 2013. On Rectified Linear Units for Speech Processing. In
IEEE Int Conf on Acoustics, Speech and Signal Proc (ICASSP).

491

