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Abstract 

Fast and efficient learning over large bodies of commonsense 
knowledge is a key requirement for cognitive systems. 
Semantic web knowledge bases provide an important new 
resource of ground facts from which plausible inferences can 
be learned. This paper applies structured logistic regression 
with analogical generalization (SLogAn) to make use of 
structural as well as statistical information to achieve rapid 
and robust learning. SLogAn achieves state-of-the-art 
performance in a standard triplet classification task on two 
data sets and, in addition, can provide understandable 
explanations for its answers. 

Introduction   

Learning is a key part of cognitive systems. Humans are fast, 

efficient learners: with a few observations, we can acquire 

new knowledge to reason and make predictions. Moreover, 

we can also explain our reasoning to others to convince or 

persuade them. These two abilities are the focus of this 

work. Analogical learning has proven to be a promising 

model for human learning. It has been used to learn spatial 

prepositions (Lockwood et al. 2008), learn sketched 

concepts (McLure et al 2015), and construct hierarchical 

concepts (Liang & Forbus, 2014). Computational models of 

structural alignment and structure mapping have 

demonstrated the ability to learn linguistic patterns at a 

similar pace to human infants. (Kuehne et al. 2000). SAGE, 

which implements analogical generalization, is used as a 

learning module for the Companion cognitive architecture 

(Forbus et al. 2009). 

 Like humans, cognitive systems need knowledge and the 

ability to reason with it. Hand-coding knowledge and 

inference rules is not a scalable solution. Semantic web 

knowledge bases are a potential resource for cognitive 

systems to automatically acquire common sense knowledge 
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and learn plausible inferences. Semantic web KBs like 

Freebase, WordNet, and YAGO have accumulated 

considerable structured data, which is already used to 

support AI tasks like question answering and information 

retrieval. These KBs continue to grow rapidly.  

 Using semantic web KBs brings up two concerns. First, 

because they can be extracted from text or collected by 

crowd-sourcing, they are often incomplete and noisy. 

Traditional logical inference may not be sufficiently robust 

to reason over them. Second, unlike images, auditory data 

or raw text, semantic web data is inherently structured. 

Although statistical methods can handle uncertainty well, 

most such methods are designed to work over feature 

vectors, and are not able to operate over structures. 

 Statistical relational learning focuses on extending 

statistical machine learning methods from feature vectors to 

relational data. For example, Markov logic networks 

(Richardson & Domingos, 2006) combine first-order logic 

with Markov networks, providing the representation power 

of the former and the statistical power of the latter. But it 

suffers from scalability problems.  Other models, like 

neural networks or bilinear models, work on vector 

embedding of entities (Socher et al. 2013, Wang et al. 2014). 

They can achieve high prediction accuracy efficiently, but 

the opacity of the models makes it hard for users to interpret 

and understand their answers.  

 This paper describes how structured logistic regression 

with analogical generalization (SLogAn) can be used to 

learn plausible inferences from semantic web knowledge. 

We start by summarizing the models we build upon, and 

then describe our new method, covering case construction, 

learning, prediction, and explanation generation. We 

compare it to state-of-the-art methods on a standard triplet 

classification task with two datasets, showing that it has 
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competitive performance, and, at the same time, can provide 

understandable explanations for its answers.  

Background 

We assume Gentner’s (1983) structure-mapping theory. Our 

model is built upon the Sequential Analogical 

Generalization Engine (SAGE; McLure et al. 2010), which 

in turn uses the Structure-Mapping Engine (Falkenhainer et 

al. 1989) for analogical comparison and MAC/FAC (Forbus 

et al. 1995) for analogical retrieval.  We start with SME 

since it is the most fundamental.  SME takes as input two 

structured representations, a base and target, and produces 

one or more mappings.  Each mapping provides a set of 

correspondences (i.e. what goes with what), a structural 

evaluation score which provides an overall estimate of 

match quality, and candidate inferences.  We refer to the 

similarity score of a mapping as NSIM(base,target), which 

is normalized to [0,1] by dividing the raw score by the mean 

of the self-scores of the base and target1.  Forward candidate 

inferences go from base to target, reverse candidate 

inferences go from target to base.  MAC/FAC takes as input 

a case library, which is a set of structured descriptions, and 

a probe, which is a structured description.  It returns one or 

more approximations to the most similar case in the case 

library, using a two-stage process that enables it to scale to 

large case libraries.  The first stage uses a flattened version 

of the relational structure of cases, called content vectors, 

whose dimensions are proportional to the weighted number 

of occurrences of each predicate in a description.  The dot 

product of two content vectors is an estimate of SME’s 

structural evaluation score for the structured representations, 

making it a useful coarse filter.  Both SME and MAC/FAC 

have been used to model a variety of psychological 

phenomena. 

 SAGE maintains, for each concept, a generalization 

context.  A generalization context has a trigger, which is 

used to test whether or not an incoming example should be 

added to it.  (An incoming example might satisfy multiple 

triggers, and hence be processed by several generalization 

contexts.)  Each generalization context maintains a set of 

generalizations and a set of unassimilated examples.  (Either 

of these sets might be empty, and both are initially.)  

Generalizations are also structured representations, but 

associated with their statements are probabilities, based on 

the number of times facts that align with them are found in 

examples that are part of that generalization.  

 Every time a new example is added, SAGE uses 

MAC/FAC to retrieve up to three examples or 

generalizations, based on whatever is the most similar to the 

new example.  If nothing is retrieved, or the similarity to the 

                                                 
1The mapped representations are subsets of both base and target, so its score 
is lower than either of their self-scores. 

returned item is less than an assimilation threshold, the new 

example is stored as is.  Otherwise, if the returned item is a 

generalization, the new example is assimilated into it. If the 

returned item is a previously unassimilated example, then 

the two are combined into a new generalization.   

 The assimilation process increments frequency counts 

associated with each statement, based on whether or not 

something in the example aligned with it.  For a new 

generalization, such facts are always either 1.0 (in both) or 

0.5.  If, for example, one black cat and two grey cats had 

been seen, then P[(primaryObjectColor <GenEnt> Black)] 

= 1/3. Facts whose probabilities drop too low are pruned, for 

efficiency.  Importantly, these generalizations do not have 

logical variables: When non-identical entities are aligned, as 

in the cats example, a new arbitrary individual (called 

<GenEnt> above) is constructed to stand for the aligned 

individuals, with its characteristics being determined by the 

set of statements in the generalization that constrain it. 

 In most semantic web KBs, knowledge is stored in the 

triplet format: "entity relation entity". Since there are only 

binary relations, it can be seen as a labeled, directed graph. 

Each entity is a node, and each triplet between two entities 

is an edge labeled with the relation. Semantic web KBs have 

been used in a variety of tasks, including triplet 

classification. Given triplets extracted from a KB, the 

system should learn to distinguish correct triplets like 

"Obama nationality USA" from incorrect ones like "Obama 

nationality Kenya". Then, the learned model is tested on a 

holdout test set, with performance measured by 

classification accuracy.  

Method  

We extend analogical generalization with structured logistic 

regression to make use of the structural as well as the 

statistical information in the semantic web KB. The goal is 

to learn what kinds of inferences are plausible. For example, 

when learning about relation “nationality”, we are not 

learning what people from different countries look like. 

Instead, we are learning about how to infer a person’s 

nationality. One possible inference might be “this person 

comes from Chicago, and I know several people from 

Chicago. What are their nationalities?” 

Case construction by path-finding 

The first step is to prepare the input data. Analogical 

comparison and generalization work on cases. For this task, 

cases contain structured information about particular triplets.  

The idea is to include enough information to enable the 
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system to distinguish correct from incorrect triplets, while 

limiting the size of the cases for the sake of efficiency and 

to reduce the number of irrelevant matches.  

 As discussed above, a semantic web KB can be viewed as 

a graph. We use path-finding as a heuristic to pick relevant 

facts for case construction. For example, when we want to 

create a case for a triplet with A and B as head and tail 

entities, we use depth-first-search to find paths between 

them and put all the facts along the paths found into the case. 

In a large scale and highly connected knowledge base, an 

exhaustive search will be prohibitive, so we use limits on 

branching factor and search depth to randomly select parts 

of the search tree to explore.  

 These two thresholds control the tradeoff between 

information and efficiency. The larger the branching factor, 

the more information is in the case, and the larger the search 

depth, the more distant are the relationships between the two 

entities that can be found. The bound on branching factor is 

applied to each type of relation separately. For example, if 

we hit the entity "Chicago" in the search, and it has a 

"location" relation with 100 people and a "place_of_birth" 

relation with 10 people and the upper limit is 20, we 

randomly select 20 of the 100 Chicagoans to explore, and 

use all of the 10 people born in Chicago to explore, because 

the number is less than 20.  

 The intuition is that the facts we use to infer a relation will 

be represented by a small number of fixed paths between the 

entities in the case. In other words, if some relation holds 

between two entities, they are likely to be indirectly related 

to each other in some other ways.  

 Since there are only positive examples in the original 

dataset, we corrupt the correct triplets by changing their tail 

entities to wrong ones to get negative examples, just like 

Socher et al. (2013) did. We treat the training set as our 

knowledge base, and create cases from it. With just a few 

cases, SLogAn is able to learn plausible inferences. For the 

triplet classification task, we used only 10 positive and 10 

negative examples for each relation.  

Analogical generalization: structural alignment for 

template learning 

The second step is to decide what to include in the inference, 

i.e., learning a template for the inference. This is done by 

SAGE. As outlined above, SAGE can create generalizations 

by comparing examples and compressing them into one 

prototype. A generalization works as a template for an 

inference. It is trivial to compare feature vectors because 

they all share the same dimensions, but it takes some effort 

to find the best way to align structured representations of 

examples and compress them into one structurally 

consistent template that summarizes the facts. SME does 

this job by finding the best structural alignment with 

systematicity as main criterion and several constraints to 

ensure structural consistency. We also require the head 

entity and tail entity of one triplet to be respectively matched 

to those of the other triplet in the mapping to make sure they 

are the focus of the template. Note that, unlike the way 

 
Figure 1: Intended workflow for SLogAn. The learning system gets input from semantic web knowledge base, does template learning 

and weight adjustment with the data.  Using the learned generalizations, it provides answers, with explanations, for the user’s 

queries. Natural language generation (dashed lines) is not yet implemented. 
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SAGE is usually used, we first created generalizations with 

positive examples only, and then add negative examples to 

these generalizations so that they contain facts from positive 

as well as negative examples. In this way, some facts could 

contribute negatively to the target relation. For example, if I 

know that B is A's parent, then A cannot be B's parent. 

Although that fact never appears in a positive example, it is 

still a critical fact to consider in the inference.  

  Using multiple generalizations together as one template 

has strong expressive power. Learning plausible inferences 

is similar to learning the concept of the target relation. A 

concept can be represented by several generalizations in a 

generalization context, which is analogous to a disjunctive 

normal form. Each generalization can be seen as a 

conjunction of facts inside it. Facts with negative weights 

play the role of negations. Combining multiple 

generalizations forms a disjunctive representation of the 

concept. If we also combine the generalizations with 

structured logistic regression, the model can be seen as a 

structured 2-layer neural network. Each generalization plays 

the role of a logistic unit, but the weight vector of the unit in 

standard neural network is changed to a structured template 

with associated weights to handle structured input instead of 

feature vectors. Correspondingly, the dot-product operation 

to activate a unit in standard neural network is replaced with 

a structure mapping process. In this triplet classification task, 

although multiple generalizations can help in accuracy, we 

did not use them for the sake of efficiency.  

Structured logistic regression: structure mapping and 

gradient descent for weight adjustment 

The third step is to learn how much each fact in the template 

supports or contradicts the target relation. Each expression 

in the template is associated with a weight measuring its 

positive support. So if a fact contradicts the target relation, 

it gets a negative score. We use the probability of each fact 

as an initial value for its weight. To further adjust the 

weights, we propose structured logistic regression, which is 

an extension of logistic regression from feature vectors to 

structured cases by combining it with structure mapping.  

Structured logistic regression works as follows. Given an 

example, we compare it to the generalization with SME. 

With the resulting mapping, we compute the prediction 

score of the example being a positive example with  

 

� = 1
1 + ��� 

 

where 	  is the similarity score computed by SME. Then, we 

use cross entropy to define the prediction error and L1 

regularization to promote sparsity in weights for better 

explanation generation: 

 


 = − � [(1 − ��) log(1 − ��) + ��log (��)
�

���
] + � � |��|

�

���
 

 
�  and   are the number of examples and facts in the 

generalizations respectively. �� and ��  are the label (1 for 

positive, 0 for negative) and prediction score of the ith 

example. � controls the strength of the regularization.  Since 

this error depends on similarity score and similarity score 

depends on the weights, we can calculate the derivate of the 

error with respect to the weights and do gradient descent on 

them. The prediction error on the validation set is used to 

decide when to stop the weight adjustment.  

Explanation for (taufaahau_tupou_iv ethnicity tongans): 
Evidence 1: (taufaahau_tupou_iv parents viliami_tungi_mailefihi) (viliami_tungi_mailefihi ethnicity tongans) 

Evidence 2: (viliami_tungi_mailefihi children taufaahau_tupou_iv) (viliami_tungi_mailefihi ethnicity tongans) 

Evidence 3: (taufaahau_tupou_iv nationality tonga) (george_tupou_i_of_tonga nationality tonga) (george_tupou_i_of_tonga ethnicity tongans) 
comment: I believe Taufa'ahau Tupou IV's ethnicity is Tongan, because I know his parent's ethnicity is Tongan, and I remember a person from the 

same country as him, whose ethnicity is also Tongan.  

 
Explanation for (qusay_hussein parents saddam_hussein): 

Evidence 1: (qusay_hussein parents sajida_talfah) (uday_hussein parents sajida_talfah) (uday_hussein parents saddam_hussein) 

Evidence 2: (qusay_hussein parents sajida_talfah) (uday_hussein parents sajida_talfah) (saddam_hussein children uday_hussein) 
Evidence 3: (qusay_hussein parents sajida_talfah) (saddam_hussein spouse sajida_talfah)  

comment: I believe Saddam is Qusay’s parent, because I know Saddam is Qusay’s sibling Uday’s parent and Qusay’s parent Sajida’s spouse. 

 
Explanation for (vuk_stefanovic_karadzic religion serbian_orthodox_church): 

Evidence 1: (vuk_stefanovic_karadzic ethnicity serbs) (gavrilo_princip ethnicity serbs) (gavrilo_princip religion serbian_orthodox_church) 

Evidence 2: (vuk_stefanovic_karadzic ethnicity serbs) (zoran_in_ic ethnicity serbs) (zoran_in_ic religion serbian_orthodox_church) 
Evidence 3: (vuk_stefanovic_karadzic ethnicity serbs) (alexander_i_of_yugoslavia ethnicity serbs) (alexander_i_of_yugoslavia religion 

serbian_orthodox_church) 

comment: I believe Vuk Stefanovic Karadzic's religion is the Serbian orthodox church, because I can recall several persons with the same ethnicity, 
whose religion is the Serbian orthodox church.  

 

Figure 2: Examples of explanations and comments: with only ground facts and no prior knowledge about the relations, the system 

learns to make inference about them with high accuracy and provide the explanations for its answers. The comments are generated 

manually. 
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Prediction and explanation generation by finding 

most weighted paths 

After training, the model has learned to assign high scores 

to the positive examples and low scores to the negative 

examples. We use the validation set to decide the criterion !. 

When the score is larger than! , the model predicts true, 

otherwise it predicts false.  

Explanations are representations of one’s own reasoning 

which can be understood by others. Since SLogAn uses the 

structured representation directly, it is more interpretable for 

the user. By finding the highest weighted paths, we could 

provide understandable explanations. The intuition here is 

that each path between two entities represents one inference 

chain. From the weights, we can know whether a given 

inference chain supports or contradicts the target relation, 

and how important it is. Given a path between the two 

entities in the query triplet, we use the average weight of the 

facts along this path as its weight. Then, we rank the paths 

with the absolute value of their weights. Finally, we pick 

several paths on the top as the explanation for the answer. 

To make the explanation clearer to the user, we use L1 

regularization to induce sparsity in the weight adjustment, 

so that it prefers a few high weights rather than many low 

weights, in other words, it provides a few strong pieces of 

evidence rather than many weak pieces of evidence.  

Experiment 

To test it, we compare SLogAn’s performance to state-of-

the-art performance on the triplet classification task. The 

datasets were collected by Socher et al. (2013). One dataset 

contains triplets from Freebase consisting of 13 relations 

and 38,696 entities, the other dataset, from WordNet, 

consisting of 11 relations and 75,043 entities. More 

information about the number of triplets in training, 

validation and test sets is shown in Table 1.  

 As for the hyperparameters, the limit on branching factor 

is 20 and the search depth is 3 for FB13 and 5 for WN11, 

which is chosen based on run time limit. (On average, one 

entity in FB13 has 316232/75043 ≈ 4.2 outgoing triplets, 

while the same number is 112581/38696 ≈ 2.9 in WN11, so 

the search depth is lower on FB13.) For each relation, we 

randomly select 10 triplets as positive examples, and create 

their corresponding negative examples as training data. The 

regularization parameter � is set to 0.01, which is decided 

by prediction error on validation set.  

 Other methods have been tested on exactly the same 

datasets, making the results useful for comparison. Table 2 

shows accuracy performances from Wang et al (2014). 

SLogAn is 2nd on WN11 and FB13, and no method 

consistently outperforms it on both datasets. Thus our 

method performs at a level that is competitive with the state-

of-the-art. Other approaches have not provided information 

concerning statistical significance, so we will not be able to 

compare that against them. The difference between SLogAn 

and chance is statistically significant with � < 0.001 . 

Prediction accuracies of different relations are shown in 

Table 3. SLogAn learns from the data collected by path-

finding during case construction, so its performance drops 

on relations like “similar to” because it is hard to find a path 

in the KB between entities like “adamant_1” and 

“physiologist_1”, although they are “similar to” each other.  

 The results provided by other methods are opaque to users. 

Since they are based on vector embedding, they cannot 

easily explain why they make certain predictions. In contrast, 

we work on the structured data directly. From the 

explanation the model provides, the user is able to see how 

its reasoning works. Examples of explanations are shown in 

Figure 2. Note that unfamiliar examples are intentionally 

chosen to show how explanations help with human 

Model WordNet11 Freebase13 

Distance Model 53.0 75.2 

Hadamard Model 70.0 63.7 

Single Layer Model 69.9 85.3 

Bilinear Model 73.8 84.3 

Neural Tensor Network 70.4 87.1 

TransH 78.8 83.3 

SLogAn 75.3 85.3 

 
Table 2: Triplet classification accuracy (%) of different models 

Datasets #Relations #Entities #Train #Validation #Test 

WN11 11 38,696 112,581 2,609 10,544 

FB13 13 75,043 316,232 5,908 23,733 

 
Table 1: Statistics of WordNet and Freebase datasets 

WordNet11 accuracy Freebase13 accuracy 

has instance 74.5 gender 85.9 

type of 76.9 nationality 94.6 

member meronym 75.8 profession 81.4 

member holonym 74.2 institution 79.4 

part of 72.0 cause of death 76.9 

has part  73.5 religion 82.2 

subordinate instance of 81.7 ethnicity 87.9 

domain region 69.9   

synset domain topic 76.0   

similar to 50.0   

domain topic 69.0   

 
Table 3: Triplet classification accuracy (%) of different relations 
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validation of the results and increase trust in prediction: even 

without explanations, familiar examples are easy for people 

to validate. We used the top 3 most weighted paths as the 

explanation for each example. 

Discussion 

SLogAn learned plausible inferences from semantic web 

knowledge to achieve competitive performance to state-of-

the-art methods on the triplet classification task, and, 

moreover, provides understandable explanations. These two 

abilities would make a cognitive system more autonomous 

and independent because it does not need to be told about 

everything it will be asked for, and more trustworthy and 

helpful because it can explain its answer to the user. 

 For example, when asked about “is Taufa'ahau Tupou 

IV’s ethnicity Tongan?”, even though the system is not told 

about this fact or how to infer one’s ethnicity, it can learn it 

from several examples it knows of the relation “ethnicity” 

and makes a prediction based on its knowledge of 

Taufa'ahau Tupou IV and Tongan with reasonable accuracy. 

If the users are only provided with the answer, they have to 

decide whether to believe it or not based on their trust of the 

system. However, if the system could say, “I believe 

Taufa'ahau Tupou IV’s ethnicity is Tongan, because I know 

his parent’s ethnicity is Tongan, and I remember a person 

with the same nationality whose ethnicity is also Tongan”, 

it is easier to convince the users when the system is correct, 

and alert them when the system is wrong. It would make 

cooperation more efficient and natural, by reducing the 

labor of human validation.  

Related work 

Many vector embedding based methods have been tested on 

the triplet classification tasks. Socher et al. (2013) and Wang 

et al. (2014) are the most recent and have the best 

performance. Their models are quite different from ours. 

They learn vector representations for the entities and 

parameterization (translation or tensor) for each relation that 

implicitly encode the knowledge about them. During 

training, they created negative examples for every triplet in 

the training set and train on all of them. In contrast, SLogAn 

only randomly selects a few triplets and creates cases and 

corresponding negative examples for them. Instead of 

implicit encoding of knowledge with vector embedding, we 

use the structured knowledge directly and learn 

generalizations that explicitly encode valid inferences. This 

gives our model interpretability. Moreover, SLogAn can 

learn each relation separately, while theirs have to learn all 

the relations together.  

 Several previous efforts have used path-finding for 

relational learning. Sharma & Forbus (2010) used higher-

order knowledge about relations and reinforcement learning 

to construct plausible inference patterns, whereas SLogAn 

is learning from purely ground facts. Integrating these 

methods could prove valuable.  Richards & Mooney (1992) 

uses path-finding to find candidate clauses for learning first-

order rules, but it was computationally expensive. Lao et al. 

(2011) used limited-length path-finding in NELL 

knowledge base to create features and do logistic regression 

with them. As is discussed above, SLogAn can use multiple 

generalizations to handle disjunctive concepts, and thus has 

more expressive power. Also note that SLogAn can 

potentially work with other case construction methods as 

long as they provide structured representations of relevant 

information.  

 Structural logistic regression (Popescul & Ungar, 2003) 

generates features by propositionalizing first-order rules 

learned by inductive logic programming, and uses logistic 

regression with these features for classification. Relational 

logistic regression (Kazemi et al. 2014) uses logistic 

regression to learn weights for first-order formulae in 

defining the conditional probability of a new relation given 

those formulae. Their ways of adding the counts of certain 

facts as features are possible improvements for the current 

model. Although the triplet classification task only deals 

with binary relations, SLogAn has the ability to deal with 

higher arity and high-order relations because it builds on 

SME and SAGE, which can handle them. Halstead & 

Forbus (2005) takes a similar approach to this work. They 

used SAGE to generate probabilistic generalizations to turn 

structured cases into features and built a Bayesian network 

on top of them to make predictions.   

 Deductive systems like Cyc and SHAKEN (Clark et al. 

2001) can also provide explanations, but those explanations 

tend to be narrow and deeply nested, whereas the 

explanations produced by our current system are broad and 

shallow, more akin to explanations found in evidential 

reasoning arenas (e.g. intelligence analysis). Extensions to 

handle deeper nested inference by adding more levels to the 

current system are interesting, and will be crucial for 

learning more complex yet still interpretable models for 

prediction.  

Conclusion and future work 

This work shows that analogical generalization and 

structure mapping can be combined with statistical machine 

learning methods to achieve state-of-the-art performance on 

a standard task, while preserving interpretability. It enables 

cognitive systems to learn from structured data, e.g. 

semantic web resources, to do reasoning with what they 

have learned, and to explain their reasoning to the user.  

 We plan to explore several future directions. First, 

semantic web knowledge typically contains only binary 

relations involving entities. However, SME and SAGE are 
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designed to work on cases that also include high-order 

relations that express arguments and explanations. We plan 

to test this method with representations produced via 

learning by reading systems (Forbus et al. 2007) and sketch 

understanding systems (Forbus et al. 2011). Second, we plan 

to compare its performance to other SRL methods on other 

tasks, such as link prediction.  Third, unsupervised learning 

of high-level representations to disentangle independent 

factors and discover patterns has recently drawn a lot of 

attention (Lee et al. 2011, Bengio, 2009). The learned 

representations can be used to represent the input more 

compactly and help supervised learning to achieve better 

performance. Extending the current model to learn high-

level representations for structured examples that are 

understandable, more compact and useful for supervised 

learning is a promising direction. Fourth, we plan to 

integrate it into our Companion cognitive architecture, to 

provide a new learning capability and exploit Companion’s 

interaction capabilities to implement the full workflow of 

Figure 1. 
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