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Abstract

To judge how much a pair of words (or texts) are semanti-
cally related is a cognitive process. However, previous algo-
rithms for computing semantic relatedness are largely based
on co-occurrences within textual windows, and do not ac-
tively leverage cognitive human perceptions of relatedness.
To bridge this perceptional gap, we propose to utilize free as-
sociation as signals to capture such human perceptions. How-
ever, free association, being manually evaluated, has limited
lexical coverage and is inherently sparse. We propose to ex-
pand lexical coverage and overcome sparseness by construct-
ing an association network of terms and concepts that com-
bines signals from free association norms and five types of co-
occurrences extracted from the rich structures of Wikipedia.
Our evaluation results validate that simple algorithms on this
network give competitive results in computing semantic re-
latedness between words and between short texts.

Introduction

Computing semantic relatedness between two words (or
texts) is a fundamental task in natural language process-
ing, artificial intelligence and information retrieval. Strictly
speaking, semantic relatedness is a more general notion than
semantic similarity as it captures not only closeness between
two objects within a type hierarchy (e.g., river and stream),
but also any other relations (e.g., river and boat) (Budanit-
sky and Hirst 2006). Traditionally, semantic similarity has
been computed either within some lexicon (Jarmasz 2003;
Resnik 1995; Jiang and Conrath 1997; Lin 1998) or by com-
paring the distributional properties of contexts (Deerwester
et al. 1990; Gabrilovich and Markovitch 2007; Hassan and
Mihalcea 2011). On the other hand, semantic relatedness
has been largely modeled by co-occurrences within a win-
dow in a large text corpus.

For both similarity and relatedness, co-occurrences play
a central role, hence how they are extracted and combined
can significantly influence the quality of relatedness com-
putation. So far, dozens of similarity functions (McGill
1979) have been proposed for IR, all of which involving co-
occurrences in one way or another, but few achieve satisfac-
tory results on both similarity and relatedness. The reason
for such limited success, we argue, is that, since similarity
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and relatedness are ultimately human perceptions and thus
evaluated against human annotated scores, simple window-
based co-occurrences, often contaminated with noises, offer
insufficient signals to match the human perception. In other
words, there exists a perceptional gap between the related-
ness perceived by humans and the co-occurrences we collect
from text corpora.

As a human perception signal to bridge such gap, we con-
sider a well-studied psychological process called free asso-
ciation. In free association, a person is given a cue word and
is asked to produce the first word that comes to her mind as
the response. Previously, a number of free association ex-
periments by psychologists resulted in a few data sets called
free association norms. Table is a fragment of the free asso-
ciation norms collected by the University of South Florida
(Nelson, McEvoy, and Schreiber 2004), known as Florida
Norms from now on.

Table 1: The strongest reponses to the cue word “river”

Cue Response Strength
river lake 15/150
river stream 15/150
river water 9/150
river flow 8/150
river boat 7/150
river canoe 7/150

Each row of the data contains a cue word, a response word
and the strength of the association (a fraction of the peo-
ple who responded with this pair of association in the ex-
periment). The free association norms can be viewed as a
network in which nodes are the words, and edges carry the
strengths. One can see that edges in this network connect
both similar pairs (e.g., river and stream) and related ones
(e.g., river and boat), which seems ideal for computing se-
mantic relatedness. However, this network suffers from two
limitations. First, the number of cue words in these datasets
ranges from 100 to 5000, which means only the most com-
mon English words are covered and the scale of such a net-
work is too small for predicting the relatedness score be-
tween two arbitrary words. Second, due to the cost of free
association experiments, the number of human subjects is
usually small. A cue word is typically presented to a few



dozens to 1000 subjects, yielding a few dozens unique re-
sponses. Thus the free association network is fairly sparse.

In this paper, we propose a novel approach to construct a
large-scale, comprehensive association network of English
terms and concepts by combining semantic signals from
both free association norms and Wikipedia. Wikipedia is a
large, high-quality text corpus from which co-occurrences
can be drawn. In the past, people primarily extracted
co-occurrences between terms within the Wikipedia article
body. Instead, we leverage the rich structure within Wik-
pedia, to extract 5 types of co-occurrences, which are then
aggregated into a single, universal association strength score
by learning from the strengths of the free association norms.
Such scores are used to weight the edges in the proposed
association network. This network can be thought of as an
expanded, smoothed version of the free associate network,
and can be used to simulate how an average human being
associates one concept to another in her mind. We would
then use this association network to compute the semantic
relatedness between terms and short texts.!

In summary, this paper makes three main contributions.

1. We extract 5 different types of co-occurrences from
Wikipedia and construct a “synthetic” association net-
work by training on free association norms (Section );

2. We empirically show that free association is a competent
alternative source of knowledge for computing semantic
relatedness, and our “synthetic” association network ef-
fectively simulates free association and resolves its limi-
tations (Section and Section );

3. We propose algorithms to compute semantic relatedness
based on the constructed association network , which out-
perform state-of-the-art methods (Section ).

Our Approach

In this section, we first define the proposed association net-
work, then show how to populate such a network. We then
propose algorithms to compute relatedness using this net-
work, and finally conclude with some discussions.

Association network

A super node s represents a set of synonymous terms
and their corresponding Wikipedia concepts (or article
pages), denoted as (T,C), where T is a set of terms
and C is a set of Wikipedia concepts. For example,
({apple, apples}, { Apple, Apple Inc.}) is one such super
node. Given a term ¢, we can generate a super node s by
Algorithm 1. def.(t) returns a set of Wikipedia concepts
defining ¢, while de f;(c) returns a set of terms defined by c.
We say t is defined by c if ¢, as an anchor text, links to c at
least 10% of the time, and c is being linked from ¢ at least
10% of the time. We found the results to be insensitive to
the value of 10%, which was empirically determined.

Our association network is a weighted directed graph
G(V, E), with w(e) denoting the weight of edge e (e € E).
Each vertex in the graph is a super node s, and an edge

'In this paper, we use “short text relatedness” and “short text
similarity” interchangeably.
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Algorithm 1 Generate super node

1: function BOOTSTRAP(term t)
2: T+ {t},C+{}

T «+ T Udefi(c)
return (T, C')

3: while T or C' is updated do
4: fort € T do

5: C + CUdef.(t)
6: for c € C' do

7

8:

e(u,v) (u,v € V) indicates u can associate to v, with
strength w(e). For all u € V/, strength is normalized:

Z w(u,v) =1

veV

)

Network construction

Given a set of terms Tj, we populate an association network
G(V, E) in two steps: first determine the vertex set V' in our
network, and then determine edge set £ and estimate the
association strengths for edges in the network.

To determine the vertex set V' of our association network
G, we run Algorithm 1 for every ¢ € Ty, such that the set of
all output super nodes is V. Algorithm 1 ensures V' to have
the following property :

Lemma 1 Each term t in Ty appears in exactly one vertex
of G, and no two vertices share an identical concept c.

To determine the edge set E of our association network
and the association strength of each e € E, we tap into five
types of co-occurrences in Wikipedia to compute five asso-
ciation strength scores, which are then integrated by a linear
weighted sum, where the weight parameters are trained us-
ing free association norms labeled by human beings.

These five types of co-occurrences are sentence level co-
occurrences (slc), title link co-occurrences (#lc), title gloss
co-occurrences (tgc), title body co-occurrences (tbc), and
category level co-occurrences (clc). Examples of these co-
occurrences are shown in Figure 1.

Specifically, sic refers to the co-occurrence of two terms
in one sentence, such as water and precipitation. tlc refers
to the co-occurrence of a page’s title and an anchor text in
the page, such as river and lake, river and precipitation. tgc
refers to the co-occurrence of a page’s title and an unlinked
term in the gloss, or the definition paragraph of this page,
such as river and stream. tbc refers to the co-occurrence of
a page’s title and an unlinked term in the body paragraphs,
the paragraphs except for gloss, such as river and water. clc
refers to the co-occurrence of two concepts in some category
page, e.g., the concepts Lake and Stream co-occur in the cat-
egory page “Bodies of water”. As described above, slc is
between two terms, clc between two concepts, and the other
three between a concept and a term. For all these types of
co-occurrences, we first map the term or the concept to the
corresponding super node, and then count the frequency.

The proof of this lemma is given at http://adapt.seiee.sjtu.edu.
cn/~keyang/assoc/.



From Wikipedia, the free encyclopedia

ro | Pages in category "Bodies of water”
Acrivel W flowing towards an ocean, a
seq, ¢ \/\/\ ild flow into the ground and dry up
comg L = River ng another body of water. Small rivers
may k 5 tream, creek, brook, rivulet, and rill.
e L
There aepan ich asriver, as applied to geographic
« Sound (geography) - ) .
featur + sorng hyckology] | D88 a[stream|may be defined by its
size. v [ M + Strait sgraphic location; examples are "run”
insomr| « Mainriver d and northeast England, and "beck”
innort| « Mountain river s being larger than a creek.[? but not
alway L

Rivers are part of the hydrological cycle. generally collects in a river from
lhrough a drainage basin from surface runcff and other sources such as
groundwater recharge, springs, and the release of stored water in naturalice and
snowpacks (e.g. from glaciers). Potamology is the scientific study of rivers while limnology
is the study of inland waters in general.

Figure 1: Five types of co-occurrences in Wikipedia

For each type of co-occurrences denoted as 7, where 7 €
{sle, tle, tge, the, cle}, we model the association strength
from v to v after the measure proposed in (Wettler 1993)
in (2). Here, « is an exponent parameter between 0 and 1.
fr) f2(0) nq

N, * N,
—— respectively, where f-(u), fr(v) is the occurrence
frequencies of u, v, f(u,v) is the co-occurrence frequency
of u and v, and N.- is the total number of tokens for a partic-
ular 7. We defer the discussion of the choice of « till Section

pr(u), pr(v) and p,(u,v) is computed as
fr(u,v)
N

pr(u,v)
T ) = 2
re(,0) pr(v)*pr(u) @
r-(u,v) is normalized to w, (u, v):
wr(u,v) = () 3)

Zv rr(u,v)

We perform a case study to examine the different capa-
bilities of capturing associated pairs by the five types of
co-occurrences. We compare the normalized association
strength w, (u, v) for every 7 and the result is shown in Fig-
ure 2. u is set to be the super node of river, and v’s are the
super nodes of 5 terms most associated with river, as shown
in Table . We observe the following: i) slc is distributed
more uniformly among the pairs than others ii) only river-
lake and river-stream have clc, as lake and stream are in the
same type hierarchy as river iii) tlc, tgc and tbc capture the
terms explaining or describing river, basically all the terms
except for boat in this case. This shows that even though
slc has been widely used in the literature, reflecting related
terms of locality, other types of co-occurrences, though less
studied, have complementary strength in terms of capturing
associated pairs.

We then integrate the five types of w,(u,v) into a sin-
gle strength score: w(u,v) = Y _60;w,(u,v). We mimic
human perception of relatedness in determining how to ag-
gregate co-occurrences. Specifically, we train the weights
0. through a linear regression on the Florida Norms.
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T

Figure 2: Comparison of w, (u, v) for different 7

We first use the terms appearing in Florida Norms as 7T
to determine the super node set V. Then we use every cue-
response pair in Florida Norms as a training instance, with
the label being the association strength computed form the
norms. For every training instance we map the two terms
into their corresponding super nodes v and v, and calculate
w,(u,v) for every 7 as its features. When performing lin-
ear regression, we impose the constraints that 6, = 1,
0 < 6, < 1 for all 6., and that the intercept term must be
equal to 0. The parameters 6. are then used to combine the
different w, (u, v) regardless of the given Tp: As > _6, =1
holds true, it is easy to attest that the combined strength
score w(u, v) meets the requirement of (1). An edge e(u, v)
exists if and only if w(u,v) > 0.

Relatedness computation

We now present how to leverage the constructed network
for computing relatedness between terms and between short
texts. In both algorithms, the intention is to leverage the
latent bridge vertices between two observed vertices to pro-
vide supportive information in relatedness computation. The
weight of a bridge vertex z, with respect to an unordered pair
of vertices {u, v}, is defined as in (4).

Wiy (2) = max(w(u, r) X w(z,v), w(v,z) X w(:c,u(L))

For term relatedness computation, we first map any given
term ¢t to its corresponding vertex u in the association net-
work. The relatedness between any vertex u and itself is
always defined to be 1: relate(u,u) = 1. To compute relat-
edness between two vertices v and v, our baseline algorithm
is to add up the weights of the edges between u and v:

(&)

This algorithm captures the intuition that if u associates
more strongly to v or vice versa, v and v are often more
related (see Table ). As validated later in Section , despite
its usefulness and intuitiveness in detecting related pairs, this
algorithm leverages insufficient signals from the association
network and hence obtains sub-optimal accuracy, especially
when the association network is sparse. Thus, we propose a
revised algorithm as a natural extension to the baseline:

relate(u,v) = w(u,v) + w(v,u)

relate(u,v) = w(u,v) + w(v, u) + Z Wiwwy(x) (6)
zeV



This algorithm captures the intuition that if u associates
more strongly to v, directly or indirectly (via some bridge
vertices), or vice versa, u and v are often more related.

For the short text relatedness computation, we abstract a
given text as a bag of super nodes, i.e., a vector with each
dimension being a super node and weight in that dimension
being the occurrence frequency of the terms mapping to this
super node. While cosine similarity could be directly com-
puted to measure if two text vectors are similar or not, it
suffers from low accuracy as semantically similar texts do
not necessarily share identical or synonymous terms with
each other. Therefore, we expand the original vectors before
computing cosine similarity between two vectors, by adding
bridge vertices identified through our association network
as new dimensions. Algorithm 2 shows how we convert the
original vector vecy to the expanded vector vec, where K
is a parameter controlling the extent of the expansion (i.e.,
higher K means more expanded vertices).

Algorithm 2 Expand vector

1: function EXPANDVECTOR(network G(V, E), vector
vecy, integer K)

2: VEC4 < VECy
3: for u, v €dimension set of vecy and u # v do
4: Vi =top K vertices in V sorted by Wy, .y
5: for x € Vi do
6: vecy (v) + vecy (z) + 1
7: return vec,

Discussion

Instead of disambiguating the term occurring in a Wikipedia
page to one of its concepts and defining each vertex to
be a disambiguated concept in the association network, we
choose to define each vertex to be a super node, comprising
multiple concepts for a term. That is because, even though
it is possible to disambiguate a term in Wikipedia pages by
taking advantage of contextual information, such a task is
more difficult on the free association norms, where virtu-
ally no context is available. Even worse, the two end-to-end
tasks (term and short text relatedness) also inherently lack
context information to perform reliable disambiguation.

When computing the association strength between two
super nodes u and v, the parameter « needs to be chosen
to instantiate the general form shown in (2). One natural
choice is to set a to be 0, which turns the formula into
conditional probability, i.e., the probability of observing v,
given u. However, it is argued previously (Wettler 1993;
Washtell 2009) that the conditional probability measure does
not take into consideration the general frequency of the re-
sponse word and therefore tends to bias toward highly fre-
quent words, such as function words. As a result, we follow
(Wettler 1993) to set « to be 0.66, which, according to them,
perform the best in estimating word association.

Our algorithms for relatedness computation are for show-
casing the power of the association network, and thus many
other algorithms can be developed to take advantage of the
full potential of the association network.
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Experimental Results

This section primarily evaluates two association networks,
one constructed only using the original free association
norms (denoted as ANy...), and the other constructed
through the approach proposed in Section (denoted as
ANyik;). The results on AN¢,.. show the usefulness as
well as limitations of free association norms, while the re-
sults on AN,,x; validate the added benefits of Wikipedia
structures in working around the two limitations of ANy,
leading to better performance in semantic relatedness com-
putation tasks. *

Data sources and statistics

The original Florida free association norms data contains
5,019 cue words (which form the set of normed words) and
a total of 72,176 cue-response pairs. 63,619 of these pairs
contain responses that are also normed words. These pairs
are called normed pairs with known forward (cue-to-target)
and backward (from target-to-cue) strengths.

Our baseline association network, AN ¢y, is made up of
the 5019 normed words as vertices and the 63,619 normed
pairs as directed edges. Each edge carries a normalized
weight w(u, v), which is proportional to Pr(v | u), Note,
in AN¢yee, each word forms a super node by itself, as we
aim to evaluate usefulness of the original free association
norms, without depending on additional knowledge (e.g.,
Wikipedia) to construct super nodes.

Our proposed synthetic association network, ANk,
consists of 17,469 vertices (super nodes) and 107M directed
edges. This network is constructed using the 20,000 most
common English words (with stop words removed) as given
Ty, and using a Wikipedia dump from July, 2014.

Our test set for evaluting term relatedness is the well-
known WordSimilarity-353 (Finkelstein et al. 2002) (a.k.a.
WS-353 with 353 word pairs),

For testing short text similarity, we use the well-known
public set Li30 (Li et al. 2006), comprising 30 pairs of short
texts. A newly constructed dataset STSS-131 (O’shea, Ban-
dar, and Crockett 2013) is used to tune the parameter K de-
cribed in Algorithm 2.

ANfree V.S. ANwiki

To illustrate the usefulness of free association network, as
well as its limitation in semantic relatedness computation,
we create WS-227, a subset of WS-353, in which all words
belong to some vertex in AN .

The baseline algorithm with (5) as its metric is denoted
by ANC, while the revised algorithm with (6) as its met-
ric is denoted by AN*. We apply AN? and AN* using
AN¢yee and AN,;k; on WS-227 and WS-353, and compare
the performance measured in Spearman correlation with two
other well-known algorithms, namely LSA (Deerwester et
al. 1990) and ESA (Gabrilovich and Markovitch 2007), in
Table 2. The result for LSA is obtained from the widely

3A demo of our system is available at http:/adapt.seiee.sjtu.
edu.cn/~keyang/assoc/.



used online portal4, while the result for ESA is obtained
from ESALib°.

We observe the following: 1) AN;“T,EE performs better
than LSA and ESA on WS-227, despite its relatively small
size, which suggests that free association can be useful in
computing semantic relatedness. 2) However, when tested
on WS-353, due to its limited vocabulary, AN}’;C . shows
a drastic degrade in performance, which reflects one of its
primary limitations. Conversely, AN,,;x;, of a larger lexical
coverage, performs consistently well on both WS-227 and
WS-353. 3) Due to ANy,...’s another limitation, sparseness,

AN exhibits sub-optimal performance on both WS-227

free
and WS-353; while Afo% shows a significant improve-
ment as the sparseness problem is alleviated by leveraging
the latent bridge vertices. 4) Though the best performance is
obtained by AN .. its advantage over AN? ., . is not large.
We argue that it is because by reverse-engineering the asso-
ciation strength into an aggregation function of a vector of
structured co-occurrence, AN,,;; alleviates sparseness by
enabling to infer the edge weights missing in ANy, ..

Table 2: Spearman correlation on two WS datasets

Methods  WS-227  WS-353
LSA 0542 0579
ESA 0.727  0.744
AN?...  0.645 0.476
AN{.. 0752 0512
ANO... 0758  0.785
ANS,. 0782  0.813

Prediction of free association

In this experiment, we evaluate if AN,;x; can be used to
predict free association strengths given by humans. We com-
pute Spearman correlation between scores predicted by a
number of competing methods (Washtell 2009) and the hu-
man association strength computed from the Kent’s free as-
sociation norms (1910). Our method is just mapping the two
terms to vertex u and v, and assigning w(u, v) as predicted
association strength.

As is shown in Table 3, AN,,;x; does a reasonable job in
simulating free association, compared with other common
approaches. And as a reference, the Spearman correlation
between the human labeled scores of Kent dataset and those
of the Minnesota dataset (Jenkins 1970) using the same set
of cue words is 0.4, which can be viewed as an upper bound
for computer-based systems.

End-to-end tasks: term & short text relatedness

Table 4 compares AN,,;x; with a number of previous ap-
proaches on the term relatedness computation using WS-353
dataset. Our association network achieves state-of-the-art
results on correlation with human scores.

*http://1sa.colorado.edu/
>http://ticcky.github.io/esalib/
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Table 3: Association Prediction

Methods Spearman
Cond. Prob. 0.31
SCI 0.34
PMI 0.28
Dice/Jaccard 0.32
ANyiki 0.37

Table 4: Spearman correlation on WS-353 dataset

Methods Spearman
Resnik (1995) 0.353
LSA-Landauer (1997) 0.581
Lin (1998) 0.348
Roget-Jarmasz (2003) 0.415
ESA-Gabrilovich (2007) 0.75
Agirre (2009) 0.78
Reisinger (2010) 0.77
SSA-Hassan (2011) 0.629
TSA-Radinsky (2011) 0.80
CLEAR-Halawi (2012) 0.810
Xu (2014) 0.683
ANyiki 0.813

Table 5 shows that our association network outperforms
all existing approaches by significant margins on short text
similarity task.

Recall that, Algorithm 2 is parameterized by K deter-
mining the extent of expansion. Our reported results use
K =10, empirically tuned based on STSS-131 dataset.

Table 5: Pearson and Spearman correlation on Li30 dataset

Methods Pearson Spearman
STASIS-Li (2006) 0.816 0.813
LIU (2007) 0.841 0.854
LSA-OShea (2008) 0.838 0.871
STS-Islam (2008) 0.853 0.838
Omiotis-Tsatsaronis (2010)  0.856 0.891
WSD-STS-Ho (2010) 0.864 0.834
SPD-STS-Ho (2010) 0.895 0.903
SSA-Hassan (2011) 0.881 0.878
LDA-Guo (2012) 0.842 0.866
WTMF-Guo (2012) 0.898 0.909
WTMF+PK-Guo (2013) 0.902 -
ANyiki 0.942 0.940

Effects of different co-occurrences and free
association training

In this experiment, we compare an association network built
from only sentence-level co-occurrences (slc), an associa-
tion network with 5 types of co-occurrences uniformly com-
bined (uniform), and our proposed network, which comes
with weights trained from free association norms. Table 6
gives rise to these observations: i) AN,,;r;(uniform) outper-
forms AN, ;k;(slc) by a large margin on both tasks, which



shows that the four additional types of co-occurrences are
useful in capturing signals not available in slc; ii) ANk
further improves the results from AN,;;(uniform) by a
substantial margin, which shows that signals tapped from
free association norms can indeed benefit semantic related-
ness computation tasks.

Table 6: Several variants of AN ,;x;

Methods WS353  Li30
AN, 110 0734 0.8%4
AN, ri(uniform)  0.766  0.903
ANyin; 0.813  0.942

Execution time

Average execution time for computing the relatedness score
for a pair of terms in WS-353 is 10.3ms, and for a pair of
short texts in Li30 is 465.3ms. The time and space con-
sumption can be further reduced by filtering out edges with
insignificant weights. Experiments show that by removing
up to 90% of the edges, the accuracy in both term and short
text relatedness remains virtually constant, and at the same
time the execution time for a pair of terms and a pair of short
texts are reduced to 1.4ms and 19.1ms, respectively.

Related Work

In this section, we introduce a number of studies in seman-
tic relatedness computation and related work in free associ-
ation.

Previous approaches to semantic relatedness pursue two
main directions, of using hand-crafted lexical taxonomies
like WordNet (Miller 1995) or Roget’s Thesaurus (Roget
1911) as semantic knowledge, or of employing probabilis-
tic approaches to decode semantics based on large corpora.

The first approach of using hand-crafted resources pro-
poses knowledge-based measures that tap into the properties
of their underlying structure to compute semantic related-
ness (Roget 1911; Lin 1998; Leacock and Chodorow 1998;
Hirst and St-Onge 1998; Jiang and Conrath 1997; Resnik
1995; Wu and Palmer 1994). Though showing potential in
such tasks like term relatedness computation, this approach
requires to construct manually curated lexical resources and
thus cannot easily scale to larger lexical coverage or to a new
language.

On the other hand, the second approach of using corpus-
based measures, instead of relying on human-organized
knowledge, utilize the contextual information and patterns
observed in large corpus to construct semantic profiles for
words. Latent Semantic Analysis (LSA) (Deerwester et
al. 1990) was an original approach to leverage word co-
occurrences from a large corpus of text, and “learns” its
representation by applying Singular Value Decomposition to
the words-by-documents co-occurrence matrix. Explicit Se-
mantic Analysis (ESA) (Gabrilovich and Markovitch 2007)
as well as Salient Semantic Analysis (SSA) (Hassan and Mi-
halcea 2011) were proposed to incorporate large amounts of
human knowledge such as Wikipedia into word relatedness
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computation. They both represent a word as a concept vec-
tor, where each dimension corresponds to a Wikipedia con-
cept. Later, Temporal Semantic Analysis (TSA) (Radinsky
et al. 2011) considered that words have different meanings
over time and extended the concept vector with a tempo-
ral dimension. To bridge the corpus-based measures with
knowledge-based measures, Constrained LEArning of Re-
latedness (CLEAR) (Halawi et al. 2012) was proposed to
learn word relatedness based on word occurrence statistics
from large corpora while constraining the learning process
by incorporating knowledge from WordNet. Some recent
works like (Mikolov et al. 2013) used machine learning
techniques to compute continuous vector representations of
words from large datasets , shown to perform better than
LSA for preserving linear regularities among words.

Some models aim particularly at solving the similarity
problem between two sentences, or two short texts (Guo and
Diab 2012; 2013; Ho et al. 2010; OShea et al. 2008). WSD-
Based Sentence Similarity (Ho et al. 2010) was proposed
to compute the similarity between two sentences based on
a comparison of their actual meanings by integrating word
sense disambiguation. WTMF (Guo and Diab 2012) was
proposed to model the missing words in the sentences as a
typically overlooked feature to address the sparseness prob-
lem for the short text similarity task.

All the existing semantic relatedness models mentioned
above, though leveraging some useful signals from hand-
crafted lexical taxonomies or large corpus text, fail to ac-
tively take advantage of the human perception signal in se-
mantic relatedness computation. Our approach, by effec-
tively bridging this gap using signals in the well-studied psy-
chological process of free association, outperforms state-of-
the-art models in both word and short text relatedness tasks.

Free association is a task requiring human participants to
produce the easily associated word for the given cue word,
to tap into human perception acquired through world expe-
rience (Nelson, McEvoy, and Schreiber 2004). Mining the
signals contained in this cognitive process is made possi-
ble by several collections of free association norms (Nel-
son, McEvoy, and Schreiber 2004; Kent and Rosanoff 1910;
Jenkins 1970; Kiss et al. 1973), which are typically collected
by researchers in phychology and cognitive science. As the
Florida Norms is the largest collection available, and also
the most recent in time, we choose to use it as our primary
source of human perception to be combined with signals
from Wikipedia.

Conclusion

We synthetically build an association network, by aggre-
gating Wikipedia signals, using free association as a train-
ing data. Our evaluation results validated that our proposed
framework reaches state-of-the-art in a standard benchmark
for term relatedness computation and outperforms all other
state-of-the-arts for short text similarity computation by a
significant margin.
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