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Abstract

Hippocampal place cells and entorhinal grid cells have
been hypothesized to be able to form map-like spa-
tial representation of the environment, namely cogni-
tive map. In most prior approaches, either neural net-
work methods or only hippocampal models are used for
building cognitive maps, lacking biological fidelity to
the entorhinal-hippocampal system. This paper presents
a novel computational model to build cognitive maps of
real environments using both place cells and grid cells.
The proposed model includes two major components:
(1) A competitive Hebbian learning algorithm is used
to select velocity-coupled grid cell population activi-
ties, which path-integrate self-motion signals to deter-
mine computation of place cell population activities; (2)
Visual cues of environments are used to correct the ac-
cumulative errors intrinsically associated with the path
integration process. Experiments performed on a mobile
robot show that cognitive maps of the real environment
can be efficiently built. The proposed model would pro-
vide an alternative neuro-inspired approach for robotic
mapping, navigation and localization.

Introduction
Spatial cognition is the basic ability of mammals to per-
form cognitive tasks including exploration, map building,
localization, and navigation in an environment. For decades,
researchers have been investigating how animals perceive
space and navigate freely in an environment. Tolman sug-
gested that navigation is guided by an internal map-like rep-
resentation, i.e., cognitive map, which represents the spa-
tial relationship among salient landmarks of an environment
(Tolman 1948).

Earlier studies of spatial cognition discovered that place
cells and head direction cells in the rat hippocampus are in-
volved in the development of abstract-level cognitive maps
of spatial relations (O’Keefe and Dostrovsky 1971; O’keefe
and Nadel 1978; Taube 2007). Place cells fire only when
a rat occupies a specific location in a given environment
and provide the rat with a dynamic, continuously updated
representation of allocentric space, while head direction
cells fire when the rat’s head is at a specific global ori-
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entation. However, the discrete representations of individ-
ual place cell and head direction cell activity could not be
sufficient to support navigation from one place to another.
When rats move away from a start position, they can keep
track of their relative changing positions by path-integrating
linear and angular self-motion and return to their origi-
nal location effortlessly (Moser, Kropff, and Moser 2008;
Domnisoru, Kinkhabwala, and Tank 2013; McNaughton et
al. 2006). The historical discovery of grid cells in the dorso-
caudal medial entorhinal cortex (dMEC) strongly suggests
that path integrator exists in the brain, as grid fields persist
after removal or replacement of major landmarks points and
self-motion information is regarded as the primary source
for maintaining and updating grid representations (Hafting
et al. 2005). Grid cells display strikingly regular firing re-
sponses to the animal’s locations in 2-D space and provide
metric information for mapping space. A widely held view
is that grid cells path-integrate self-motion signals of speed
and direction to update the place cell’s firing fields, whereas
external cues specifying location allow error correction as-
sociated with the path integration (Hafting et al. 2005;
Milford, Wiles, and Wyeth 2010). It is unclear, however,
how grid cells interact with place cells in the entorhinal-
hippocampal system (Bonnevie et al. 2013). Existing stud-
ies suggested that place cell responses may be generated
from a subset of grid cell inputs (McNaughton et al. 2006;
Solstad, Moser, and Einevoll 2006; Monaco and Abbott
2011). Two main models have been proposed to account
for the formation of place cell responses by (1) a linear
summation of a subset of afferent grid cells with a range
of spatial frequencies (Solstad, Moser, and Einevoll 2006;
Fuhs and Touretzky 2006); and (2) competitive learning
among grid cell inputs with various spacings and orienta-
tions (Rolls, Stringer, and Elliot 2006; Monaco and Abbott
2011).

It has also been found that rats have mechanisms to
correct the accumulative errors of path integration when
they meet salient landmarks (McNaughton et al. 2006).
While many models (Solstad, Moser, and Einevoll 2006;
Si and Treves 2009; Savelli and Knierim 2010) focus on
how place cell responses are generated from grid cell in-
puts without considering coupling velocity information into
grid cells, (Burak and Fiete 2009) proposed a grid cell model
using continuous attractor network (CAN), which can per-
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form accurate path integration with noise-free velocity in-
puts. However, their study still suffers from some major
constraints. Firstly, the CAN-based grid cell model itself
is insufficient to build a cognitive map, lacking the impor-
tant recurrent interactions with place cells (Bonnevie et al.
2013). Secondly, it remains unknown whether the actual
self-motion and visual inputs can drive a model for error
corrections to construct cognitive maps.

In this work, we aim to develop a computational model in-
tegrating visual cues, place cells and velocity-coupled grid
cells for building cognitive maps. We use one dimensional
continuous attractor network (CAN) to model head direc-
tion cells, as in (McNaughton et al. 2006; Zhang 1996), to
encode orientations of the robot and will not discuss it in
detail. Our strategy is based on the principle that velocity-
coupled grid cells play the role of path integrator while place
cells encode the output of path integration (Moser, Kropff,
and Moser 2008). To the best of our knowledge, this is the
first model in which visual inputs, place cells and velocity-
coupled grid cells contribute together to build spatial cogni-
tive maps of indoor environments on a mobile robot.

Cognitive map mechanisms have continuously inspired
important implications in robotic mapping and navigation.
In (Burgess et al. 1997), the model was coupled strongly to
the biology of place cells, and showed how place cell firing
can enable mapping and navigation in a miniature mobile
robot. Multimodal integration of visual place cells and grid
cells was proposed to enhance robot localization (Cuperlier,
Quoy, and Gaussier 2007; Jauffret, Cuperlier, and Gaussier
2012). Most models have been tested only in laboratory en-
vironments and cognitive maps have not been built in these
models. RatSLAM (Milford and Wyeth 2008), made a sig-
nificant progress in emulating the spatial navigation ability
of the hippocampal system, being able to build a semi-metric
topological map in a real large area. (Tian et al. 2013) ex-
tended to use an RGB-D sensor to built cognitive maps for
robot navigation. However, path integration in these works
was performed by a heuristic method that makes an appro-
priately displaced copy of place cell activities, which sacri-
fices biological fidelity.

In summary, this work makes the important progress in
the following two aspects:

1. The proposed entorhinal-hippocampal model, in which
place cells, velocity-coupled grid cells and visual inputs
contribute together to building cognitive maps simultane-
ously, presents the closest biological fidelity. It provides
an embodied substrate to verify neural activities of the
entorhinal-hippocampal circuitry found in neurobiologi-
cal experiments, e.g., in laboratory rats.

2. The spatial cognitive system built on a mobile robot
provides a practical robotic mapping and navigation ap-
proach. It would motivate more practical developments
on neuro-inspired robotic spatial cognitive systems in real
environments.

Methods
Architecture
Figure 1 shows the system architecture to build cognitive
maps on a mobile robot platform. The robot consists of a
Pioneer 3-DX mobile base, an RGB-D sensor and a lap-
top with an Intel(R) Core(TM) i7-3740 CPU with 16GB
RAM. The front wheels of the base are equipped with en-
coders that provide raw odometry data and the RGB-D sen-
sor is mounted on the front-top of the base to capture vi-
sual RGB-D images of environments. The robot’s locations
and orientations are encoded in place cell and head direc-
tion cell population activities, respectively. The system in-
cludes four major steps: (1) Self-motion of the raw odometry
data is used to generate and drive the velocity-coupled grid
cell activities. (2) A Hebbian learning algorithm is applied to
learn the strengths, i.e., the weights, between place cell and
gird cell population activities and determine computation of
place cell activities, which path-integrate self-motion during
map building. (3) Visual images are used for correcting the
accumulative errors associated with the path integration and
resetting when loop closures are detected. (4) A cognitive
map is updated during the building process.

Figure 1: System architecture. Steps (1)-(4) are explained in
text.

From Grid Cells to Place Cells
There are mainly two general models to describe grid cell
formation, i.e., oscillatory interference (Burgess 2008; Zilli
and Hasselmo 2010) and CAN (Fuhs and Touretzky 2006;
Burak and Fiete 2009). In an oscillatory interference model,
grid cells exhibit theta phase precession during the theta cy-
cle, acutely vulnerable to subtle changes in the phase of
underlying oscillation. In a CAN model, neurons are of-
ten arranged in a 2D neural sheet. Recurrent connectivity
among the neurons in a neural sheet with a global inhibi-
tion leads random patterns of population activity to sponta-
neously merge to organized ‘bumps’ of grid cell population
activity (Burak and Fiete 2009). The bumps are envisaged
to move as the animal moves from one place to another. A
grid cell response is obtained by summing the firing activity
of a single neuron over a full trajectory. The most remark-
able progress of (Burak and Fiete 2009) is to accurately inte-
grate velocity inputs into grid cell models. In this work, we
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use a simplified CAN model to generate and drive velocity-
coupled grid cell population activities.

As in (Burak and Fiete 2009), the dynamics of rate-based
neurons in a 2D neural sheet is specified by:

τdsi/dt =

[∑
j

W g
ijsj +Bi

]
+

− si (1)

where [·]+ denotes a threshold-linear function that leaves
positive arguments unchanged and sets negative ones to
zero. W g

ij is the synaptic weight from neuron j to neuron
i in a neural sheet.

∑
jW

g
ijsj is the inhibitory recurrent in-

put to neuron i, si is the synaptic activation of neuron i and
τ is the time-constant of neuron response. If the length of a
neural sheet is n, there will be n2 neurons in the network.
Each neuron i has a preferred direction θi (W, N, S or E).
The feed-forward excitatory input Bi to neuron i, defined
by:

Bi = 1 + αêθi .vt (2)
where êθi is the unit vector pointing to θi. vt is the velocity
at time t. Wij is defined as follow:

W g
ij =W g

0 (xi − xj − lêθj ) (3)

with
W g

0 = gexce−γ|x|
2

− e−β|x|
2

(4)
where gexc is the gain which modulates the size of grid
cell population activities and l is the shift in the outgoing
weights. λ determines the spacing of the activity in a neural
sheet. We use γ = 1.1β, β = 3λ−2.

As mentioned in (Fuhs and Touretzky 2006), one grid cell
population activity in one neural sheet is not sufficient to
perform path integration as it results in ambiguities in loca-
tion representations. Hence, multiple layers of neural sheet
with various scales and orientations are required to encode
unique locations in a space. Each neural sheet represents one
grid cell population activity. In our implementation, λ and
gexc are uniformly sampled to generate multiple grid cell
population activities. A hippocampal place cell population
activity is defined as a weighted sum of a selective subset of
grid cell population activities, i.e., a subset of neural sheets,
with a global inhibition to balance the grid cell excitations:

pi(r) = A

[ N∑
j=1

wehij sj(r)− Cinh

]
+

(5)

where A and Cinh are the gain and the global inhibition
of the place cell network. N is the layers of neural sheet.
wehij is the synaptic weight connecting from grid cell popu-
lation activity j to place cell population activity i. r is the
current location of the robot. Cinh affects the number of
peaks by clustering the place cell population activities and
is set as B ∗ max(pi(r)). B is used to control the peaks
of the place cell population activities. To generate one ma-
jor peak of the place cell population activities, we need
to learn a synaptic weight distribution to determine a pro-
portion of grid cell population activities with overlapping
activity bumps at a single location (Si and Treves 2009;
Savelli and Knierim 2010). This can be accomplished by

either a linear summation of a subset of grid cells with cer-
tain spatial frequencies or Hebbian learning methods. Oscil-
latory interference based grid cell models are normally suit-
able for the linear summation method (Solstad, Moser, and
Einevoll 2006). In this work, we instead apply competitive
Hebbian learning to find a subset of CAN-based grid cell
population activities to compute the corresponding place cell
population activity for cognitive map building, as defined
by:

dwehij /dt = kpi(sj − 〈sj〉) (6)

where k is the learning rate and 〈·〉 is the mean of the grid
cell activities. The learning rate k permits the formation of
place cell population activities during the first few minutes
of exploration. In our implementation, we set it as 0.00005
experimentally. In addition, we constrainwehij ≥ 0 to prevent
the weights becoming negative. Eq. (6) implicates that the
sum over all weights is kept constant. Thus, small weights
can be reduced by weight competition. According to the
Oja’s rule (Oja 1982), we further normalize the weights as∑N
j=1(w

eh
ij )

2 = 1 to prevent the some neurons always win-
ning the competition (Rolls, Stringer, and Elliot 2006).

The right-hand side of Eq. (6) determines the direction
of weight changes: if the current grid cell population activ-
ity is greater than mean of the afferent population activities,
the synapse is potentiated; otherwise, it is depressed. Eq. (6)
allows to detect grid cell population activities with spatial
coincidence from multiple layers of neural sheet. Figure 2
shows the evolution of the synaptic weights of the 80 layers
of neural sheet during the first 5 minutes of the session. All
the synaptic weights were initially assigned to 1/80. It can
be observed that by the competitive Hebbian learning algo-
rithm, a small portion of the synaptic weights remained pos-
itive while a large portion of them converged to zero across
the session. Thus, only a small subset of grid cell population
activities will be selected to form one major peak of place
cell population activities.
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Figure 2: Evolution of synaptic weights.

Effects of Learning Parameters
In this section, we evaluate the effects of Hebbian learning
parameters on place cell activities. Learning the synaptic
weights between gird cells and place cells is important to
determine the contributions of grid cell population activi-
ties to generating place cell population activities which en-
code the robot’s locations for cognitive map building. The

588



size and the layers of neural sheets, the spacing of grid cell
population activities in one neural sheet by λ and the gain
gexc mainly affect the formation of the place field activities.
Obviously, if the value of λ increases, the spacing of the
grid cells will also increases, thus leading fewer peaks of the
place cell population activities. Fig 3 and 4 show how the
size of neural sheet and the layers of neural sheet affect the
learning results. In these two examples, gexc is both set as
1.0. It can be observed that with the same λ and the layers of
neural sheet, the larger the size of the neural sheet, the fewer
the number of the major peaks of the place cell population
activities. At the same time, with the same λ and the same
size of the neural sheet, larger number of the the layers of
neural sheet reduces the number of the major peaks of the
place cell population activities.
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Figure 3: Larger size of the neural sheet leads to fewer peaks
of the place cell population activities. Row A to C represent
the results of 40× 40, 48× 48 and 56× 56, respectively.
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Figure 4: More grid cells reduce the number of the major
peaks of the place cell population activities. Row A to C
represent the results of 80, 100 and 120, respectively.

Different values of gexc will also lead to different place
cell population activities. Fig 5 shows the results in which
gexc was sampled from [1, 1.1]. It can be observed that the
Hebbian learning results are much better than those when
gexc is set to 1.0, as shown in Row A in Fig 3 and 4. How-
ever, it is non-trivial to determine an optimum. In our current
implementation, it was set experimentally. Furthermore, to
deal with the presence of the multiple peaks, one solution is
that we can increase the value of B to reduce the numbers
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Figure 5: Place cell population activity generated from grid
cell population activities with gexc sampled from [1, 1.1].

of peaks. However, from our experiments, we have observed
that the major peak of the place cell population activities ex-
ists consistently during the entire session even in the case of
multiple peaks. Thus, this property of the proposed method
guarantees that cognitive maps can be correctly built using
various scales of grid cell networks.

Visual Calibration and Map Building
Evidence has revealed that when a rat returns to a famil-
iar environment, the path integrator should be reset in order
to adjust to the perceived environment (Moser, Kropff, and
Moser 2008; Fuhs and Touretzky 2006). However, it remains
unclear that how the brain senses and transforms external
sensory inputs into an internal cognitive map (Burak and Fi-
ete 2009). In our implementation, we use RGB-D images as
visual cues to correct the path integration errors and reset
the place cell population activities as well as the associated
grid cell population activities at the previous locations and
directions when loop closures are detected. Depth informa-
tion can avoid ambiguity caused in 2D images and it is in-
variant to lighting conditions, in which many similar indoor
scenes become distinguishable. A comparison between the
image profiles is performed for each pair of incoming RGB
and depth frames (Tian et al. 2013) for loop closure and new
scene detection.

Our cognitive map contains a set of spatial coordinates
that the robot has experienced in its past travels, as shown in
Fig 6. The robot’s spatial coordinates are calculated from the
place cell population activities which are generated from a
subset of grid cell population activities using Eq. (5). Nodes
in the cognitive map are constructed by associating the ma-
jor peak of the place cell population activities with corre-
sponding visual cues, locations and denoted as visual expe-
riences. These visual experiences serve as visual cues for
loop closure detection. Algorithm 1 shows the cognitive
map building process. The incoming visual inputs are com-
pared with the historical visual experiences. If the latest in-
put matches the previous visual experiences, it is considered
as a familiar scene which had been seen previously by the
robot. The status of the grid cell population activities and
the place cell population activity are then reset to the pre-
vious matched visual experiences. The current visual input
and the matched visual experience are merged to one expe-
rience. Otherwise, a new visual experience is created. Once
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a loop closure is detected, the map will be adjusted to the
recalled visual experiences.

Algorithm 1: The Cognitive Map Building Algorithm
Input: Raw odometry data from the robot wheel encoders and
visual images from the RGB-D sensor
Output: Cognitive map
Begin:
• Calculate grid cell population activities using Eq. (1)-(4).
• Calculate place cell population activities using Eq. (5).
• Obtain one major peak of place cell population activities
using Eq. (6).
• Perform visual profile comparison.

if The incoming visual input matches the previous visual
experiences,

then Perform resetting and map correction.
else Create a new visual experience.
end if

End:

Experimental Analysis
We aim to build a cognitive map for a large office environ-
ment of 35m× 35m on a mobile robot to validate the effec-
tiveness of the proposed model. Table shows the parameters
setting. The mobile robot is commanded to make a complete
exploration of the indoor environment (the exploration pro-
cess is shown in the accompanying video).

Fig.6 shows the experimental results. Row A shows the
dead-reckoning map obtained from the robot odometry. Ob-
viously, this map can not represent the environment prop-
erly. Row B shows the cognitive map built by the proposed
computational model. With visual inputs, the system can
successfully perform loop closure detection and and cor-
rect the odometry drift. Finally it generates a cognitive map
which encodes both topological and metric information. In
Row C, the blue dotted line shows the real trajectory traveled
by the robot, and the red crosses indicate the firing locations
of the grid cell located at (20,20) in the 21th layer of the
neural sheets. Row D shows the corresponding rate map. To
generate the rate map, a spatial smoothing algorithm using
a Gaussian kernel, as described in (Hafting et al. 2005), is
adopted with a bin size of 0.5m× 0.5m.

From the experiment, we have observed that before the
first loop closure was detected, the cognitive map was the
same as the raw map built directly using the raw odome-
try data. When the loop closure was detected (i.e., the robot
detected a scene which it had traveled.), resetting was per-
formed and the map was corrected according to the recalled
visual experiences. Fig. 7 demonstrates an example of loop
closure detection and path integration resetting process. Fig.
7(a) and (b) show the constructed map and corresponding
place cell population activities at t=15 seconds. When t=265
seconds, the incoming visual input matched with the pre-
vious visual experience (t=15 seconds) and a loop closure
was thus detected (Fig. 7(c)). Immediately, the system cor-
rected the map (at t=267.5 seconds), as shown in Fig. 7(e).
Correspondingly, the grid cell population activities and the
place cell population activities were reset to the visual ex-

Parameter Setting
Shift in Outgoing Weights l 2

Size of Neural Sheet 40× 40
Time-Constant of Neuron Response τ 10ms

Periodicity of the Formed Lattice λ [13, 21]
Gain gexc [1, 1.1]

Parameter B 0.5
Layers of Neural Sheet N 80

Learning Rate k 0.00005

Table 1: Parameter Setting

perience at t=15 seconds. Fig. 7(f) show the result of re-
setting the place cell population activities at t=265 seconds
(Fig. 7(d)) to the previous position and direction of the vi-
sual experience at t=15 seconds (Fig. 7(b))1. It should be
noted that the positions of the place cell population activ-
ities in Fig. 7(b), (d) and (f) are not the same as those in
the cognitive map because the place cell population activi-
ties only encoded the robot’s relative positions. In addition,
before and after the resetting process, the synaptic weights
remained unchanged, thus resulting in different activities at
t=15 seconds and 267.5 seconds. As observed, the final raw
maps built directly using the raw odometry data failed to
represent the real environment due to the accumulated er-
rors, while the cognitive maps built using path integration
resetting correctly represented the environment with associ-
ated visual experiences. Fig. 8 shows that the final cognitive
map correctly represented the spatial representation of the
robot’s exploring space.

Throughout the map building process, the grid cells
spiked at regular intervals along the robot trajectory, dis-
playing grid-like property. Compared to the regularly tessel-
lating triangle structure spanning the environment observed
from the grid cells in rat’s entorhinal cortex region (Hafting
et al. 2005), the responses of a single grid cell in our sim-
ulation were at regular intervals because the robot explored
the environments with guided exploration in order to build a
complete map.

Discussion
As addressed above, place cell activities are generated from
a selected subset of grid cell activities. In a recent research
(Bonnevie et al. 2013), it is found that the formation of grid
cells is also dependent on place cells by hippocampal back-
projections. In our model, grid cells interact with place cells.
First, due to the ambiguous location representations in grid
cells, the resetting process was performed on place cells,
leading to the corresponding resettings of grid cells. Second,
the competitive Hebbian learning used in this work also im-
plicates that grid cells interact with place cells.

In most existing experiments (Burak and Fiete 2009; Zilli
and Hasselmo 2010), the velocity inputs are extracted from
ground-truth trajectories recorded by an allothetic tracking
system. However, for animals or autonomous mobile robots,
the accumulated errors are inevitable. In our model, the ve-
locity inputs were extracted from idiothetic wheel encoders,

1The resetting results of grid cells are not shown in the paper.
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Figure 7: Loop closure detection and path integration resetting. The red circle indicates the robot’s current position.
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Figure 6: Neural responses in the map building process.

Figure 8: The final cognitive map (in blue) superimposed on
the office layout.

which are self-generated signals and the accumulated errors
are reflected in raw odometry data, to generate and drive
CAN-based grid cell population activities. Together with the
visual information captured from the RGB-D sensor for loop
closure detection and map correction, our cognitive map
model is able to produce accurate representation of the envi-

Neural Sheet Memory(MB) Time (Second)
32× 32 66 450
40× 40 217 1638
48× 48 564 2304
56× 56 1180 10913
64× 64 2192 21988

Table 2: Weights for various neural sheets

ronment in contrast to what constructed from the raw data.
For computational efficiency, we use a small scale net-

work with a sheet of 40 × 40 neurons and N is 80. We
have conducted experiments with large scale of grid cell net-
works, such as 64 × 64, which can still build accurate cog-
nitive maps. However, it is found that the CAN-based grid
cell model is computationally inefficient and not scalable.
With larger n, the generation time and the memory storage
of the recurrent synaptic weights increase dramatically. Ta-
ble shows the times and memories to generate and store the
recurrent synaptic weights of 80 layers of neural sheet with
various sizes of the neural sheet. It can be seen that for only
80 grid cell population activities with a sheet of 64 × 64,
it requires around 6 hours to generate and 2.2G memory to
store the recurrent synaptic weights. To simulate large scale
networks, using scalable neuromorphic hardware (Furber et
al. 2014; Merolla et al. 2014) could drive the way.

Our cognitive map model will contribute to developing in-
novative robotic spatial cognition approaches (Huang, Tang,
and Tian 2014; Milford, Wiles, and Wyeth 2010). Compared
to the traditional probabilistic SLAM algorithms, the pro-
posed method tracks the neural activities, which encode lo-
cations and orientations with regard to the robot in a cogni-
tive map. The advantage is that poses and related view infor-
mation can be efficiently associated with the cognitive map
for efficient robot navigation and localization without mod-
eling uncertainties of landmarks.

Conclusion
In this paper, we proposed a novel entorhinal-hippocampal
model which is able to build cognitive maps simultaneously
by integrating activities of place cells and grid cells with
real visual inputs. The mobile robot embedded with the spa-
tial cognitive model was able to accurately map the envi-
ronment. Such a model will facilitate to investigate neural
mechanisms of spatial cognition in a non-intrusive way. Fur-
thermore, it will inspire innovative robotic approaches for
mapping, localization and navigation, etc.
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