
Ontology-Based Information Extraction with a Cognitive Agent

Peter Lindes, Deryle W. Lonsdale, David W. Embley
Brigham Young University

Provo, Utah 84602

Abstract

Machine reading is a relatively new field that features
computer programs designed to read flowing text and
extract fact assertions expressed by the narrative con-
tent. This task involves two core technologies: natural
language processing (NLP) and information extraction
(IE). In this paper we describe a machine reading sys-
tem that we have developed within a cognitive architec-
ture. We show how we have integrated into the frame-
work several levels of knowledge for a particular do-
main, ideas from cognitive semantics and construction
grammar, plus tools from prior NLP and IE research.
The result is a system that is capable of reading and in-
terpreting complex and fairly idiosyncratic texts in the
family history domain. We describe the architecture and
performance of the system. After presenting the results
from several evaluations that we have carried out, we
summarize possible future directions.

Introduction
Much Web traffic involves people searching for genealogi-
cal data that might inform them about their family history. A
great online supply of historical documents containing such
data exists, but most were generated long before modern dig-
ital technology was available. In this paper we discuss one
way of extracting information from historical documents in
a digital form so it can be searchable.

Various approaches are possible depending upon the type
of document involved. Census records are highly structured
but are largely handwritten. Involving vast pools of human
annotators to hand-index entries has proven useful in this
case, as was shown recently for the 1940 U.S. census.

A large corpus of family history books written before the
digital age is now also becoming available online. Figure 1
shows a short example of text from p. 419 of one such book
(Vanderpoel 1902). Many parts of this book have informa-
tion in a fairly structured form, as can be seen in the list
of children. However, much of the rest of the text follows
a greatly abbreviated and highly formulaic style of English
lexis and grammar. Typically these books were digitized by
scanning them into PDF files and using optical character
recognition (OCR) algorithms to extract the raw text. Of

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Sample of domain text (Vanderpoel 1902).

course the OCR process introduces a sizable number of er-
rors. Once a book has been digitized, manual annotation and
indexation can be performed to identify interesting facts us-
ing existing tools. However, the task is enormous, challeng-
ing, and complicated.

Another solution is to automatically extract information
from the textual content. This requires integrating several
types and levels of knowledge: lexical, syntactic, semantic,
and pragmatic. In this paper we describe a system called On-
toSoar that is designed to apply all these levels of knowledge
to the problem of extracting information from genealogy
books in an automatic fashion. Built within a cognitive ar-
chitecture framework and targeting information specified by
a user-supplied ontology, its advanced text processing and
information extraction functions integrate seamlessly. We
discuss performance of the system and evaluate it against
a gold-standard corpus of human annotations.

Related work
Our work derives from several principal threads of ongo-
ing research: natural language processing (NLP), informa-
tion extraction, cognitive grammar, and deep reading.

The task is largely linguistic since we are processing run-
ning text. However, as mentioned above, the text departs
from normal expectations of “grammatical” English; this
complicates the syntactic processing—or parsing—stage.

We (Lonsdale et al. 2007) and others (Akbik and Bross
2009) have successfully used the link grammar (LG) parser
to parse text that, like ours, is linguistically idiosyncratic and

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

558

varies from book to book. The LG parser is an open-source
parsing tool that is both robust and flexible (Sleator and
Temperley 1993). It looks for pairwise associations (link-
ages) between words and annotates the linkages with labels
and (optionally) scores.

Our text processing, though, must go beyond mere syntac-
tic parsing: we require further semantic treatment to recog-
nize the concepts and relationships of interest. Some (but not
all) work in semantic formalisms has sought to account for
human language processing and the deep structures needed
to understand literal and non-literal meaning (Jackendoff
1990; 1996; 2002; 2003; Lakoff and Johnson 1980) includ-
ing grounding it in direct perceptual experience, agency, and
embodiment (Johnson 1987). This area of cognitive linguis-
tics is finding increasing application in systems for under-
standing human language.

One thread of cognitive semantic systems research has
resulted in a concrete language processing system (Feld-
man 2006; Bryant 2008; Chang 2008). A central component
of this research is a grammatical theory called Embodied
Construction Grammar (Bergen and Chang 2013). Hoffman
and Trousdale (2013) survey common construction grammar
tenets shared across approaches, which are directly relevant
to our current implementation.

Another branch of computer science has tried to build
functioning models of human cognition, called cognitive ar-
chitectures. These theories and the associated implementa-
tions draw heavily on experimental evidence from psychol-
ogy and measurements of how the brain processes informa-
tion. Anderson (2007) gives a good introduction to this field.
Soar is a mature and versatile cognitive architecture (Newell
1990; Laird 2012) that has been applied to many applica-
tion areas. We use Soar as our framework for representing
meaning and performing reasoning on it across several com-
plex knowledge structures. Cognitive modeling of language
use in Soar was pioneered by the NL-Soar system (Lewis
1993), which parses sentences using methods inspired by
psycholinguistic research on human sentence processing.

We have built on the core Soar cognitive architecture,
finding it to be a good candidate to act as an agent for
language understanding. LG-Soar is a Soar-based language
processing system that uses the LG parser discussed above,
along with a semantic interpreter developed inside Soar to
extract meaning from input sentences. LG-Soar has been
used for information extraction applications (Lonsdale et al.
2008) and in a robotics system that can learn new linguistic
constructions (Mohan et al. 2012). The present work derives
from this approach, but with an innovative form of semantic
analyzer. Soar’s use in this project derives in part from the
fact that Soar is intended to model human cognition (Newell
1990) and by the importance of agency in understanding lan-
guage (Melby and Warner 1995).

Several and varied methods exist for extracting useful
information from the wide range of existing text types.
Sarawagi (2007) reviews the whole field of information ex-
traction. Buitelaar et al. (2009) present an approach to lin-
guistic grounding of ontologies. They argue that “currently
available data-models are not sufficient . . . without linguistic
grounding or structure”. Notably absent from these discus-

sions is consideration of a deep understanding of language.
Another approach called “machine reading” is discussed

in depth by (Hruschka 2013). He reviews three systems
for building knowledge bases by machine reading the web:
YAGO, KnowItAll, and NELL. Each system starts with
some seed knowledge and uses various techniques to make
both the accumulated set of fact assertions and the underly-
ing ontology grow by reading large amounts of knowledge
from the web. However, these systems still have fairly low
accuracy in extracting individual facts and are not tuned to
the special sublanguages of English such as those used in
many family history books.

One of the features of OntoSoar is its ability to take
extracted information in its internal representation of the
meaning of input text and transform that information to pop-
ulate an ontology1 provided by the user. This amounts to a
special case of the general problem of ontology matching,
for which there is also a large literature.

An overview and survey of this field is given by Euzenat
and Schvaiko (2007) . Bleiholder and Naumann (2008) and
Mitra, Noy, and Jaizwal (2004), as well as many others, dis-
cuss specific approaches in more detail. Most of this litera-
ture deals with how to map information from one web site to
another, or onto some pre-defined ontology. Fortunately for
us our ontology mapping problem is much simpler since we
are working within a well understood domain.

Our work unites these various streams of computational
research and illustrates how the result can process certain
types of data-rich text. Since our system uses both ontology-
based and Soar-based processing, we call it OntoSoar. The
innovative semantic analyzer described here is based on a
number of ideas derived from the literature on cognitive se-
mantics, construction grammar, and cognitive architectures.

For ontology specification we use the OntoES data ex-
traction approach (Embley, Liddle, and Lonsdale 2011) and
conceptual modeling system (Embley, Kurtz, and Woodfield
1992). In part OntoES draws on a large body of literature on
conceptual modeling to produce a framework called OSM
capable of representing a wide variety of conceptual models
and populating them with data.

Figure 2 shows a sample user ontology. The ontology ob-
ject and relationship sets are based on simple English sen-
tences and phrases. Reading via arrow direction yields full
names for relationship sets: e.g. “Person born on BirthDate”,
“Person died on DeathDate”, “Person married Spouse on
MarriageDate”, “Son of Person”, “Daughter of Person”. On-
toSoar uses these names for matching Soar conceptualiza-
tions with ontology conceptualizations.

OSM is a logic-based representation: the object sets are
1-place predicates, the n-ary relations are n-place predicates,
and the constraints are representable as well-formed formu-
las. Whereas the figure presents the ontology in its graphical
illustration form, its contents could also be listed entirely
in the predicate logic formulation. Our OntoES system can
translate extracted information directly into RDF and OWL.

1We use the term “ontology” as usually found in information
extraction literature: a computerized conceptual model that can be
populated with facts (Gruber 1993).

559

Figure 2: Sample ontology.

OntoSoar fits into this overall OntoES system by reading
in a user ontology in OSMX2 form and outputting a modified
OSMX file which contains the fact assertions it found in a
given input text. In addition, OntoSoar can be evaluated by
using the OntoES tools to compare the fact assertions found
by OntoSoar with those found by a human annotator in the
same text.

OntoSoar processing
In this section we sketch how we use lexical, syntactic, and
semantic analysis tools to extract information from data-
rich texts and match that data to a conceptual model of the
family history domain provided by a user, populating that
model with fact assertions found in the text. Several levels
of knowledge interact in our system: lexical, syntactic, se-
mantic, and pragmatic.

OntoSoar is built using Java components, some Java li-
braries, some custom Java components, the LG parser, the
Soar system, and Soar code that implements all the semantic
components. Figure 3 shows a basic overview of the process-
ing pipeline, with the superordinate arrow labeled “Soar” in-
dicating the cognitive agent framework.

To summarize, each book is digitized via camera cap-
ture, and the images undergo optical character recognition
(OCR) analysis. The resulting PDF files serve as input to
OntoSoar, along with an OSMX target ontology that speci-
fies the targeted content. OntoSoar divides the raw input text
into sentence-like segments, then processes the pages one
segment at a time, parsing each segment and performing se-
mantic interpretation on the result. A mapping component
takes a conceptual model in the form of an OSMX file, pop-
ulates it with fact assertions derived from the semantic struc-

2OSMX is the XML file format we use for storing concep-
tual ontologies and their content in the Object-oriented Systems
Modeling (OSM) conceptual modeling language.

tures, and outputs the populated ontology as a new OSMX
file. This output file can then be viewed, evaluated, or im-
ported into a database by tools from the OntoES tool set.

Linguistic processing
OntoSoar first divides the raw input text into segments cor-
responding to short sentences. Tokenization includes word-
level corrections to reduce OCR errors and relexing tokens
acting as abbreviations in the domain: born for b., died for
d., daughter for dau., and so on. Often, to avoid repetition,
pronouns (he, she, they, etc.) are elided from genealogical
text; in such cases we insert a temporary placeholder token
GP (Generic Pronoun).

The next step involves parsing the incoming segment
with the link grammar (LG) parser. Consider this partial
example linkage produced for the sample text:

2: Charles Christopher Lathrop, N. Y. City, born 1817, died 1865,
son of Mary Ely and Gerard Lathrop ; ’;’

+-----------------Ss--------------
+------MX------+-------Xc-------+
| +----Xd---+--MX*p-+---Xca--+

+----G----+----G----+ | +-G+-G-+ +-Xd-+--IN-+ |
| | | | | | | | | | |

Charles Christopher Lathrop , N. Y. City , born.v 1817 ,

G links build proper nouns, and the Ss link connects the sub-
ject with the verb (not illustrated). Careful inspection shows
two incorrect MX (i.e. appositive) links, indicating that the
LG parser thinks that “Charles Christopher Lathrop” is “N.
Y. City” and that the latter was born in 1817. However, this
is corrected downstream by the semantic processor.

The Meaning Builder is a component based on Embod-
ied Construction Grammar (ECG) (Bergen and Chang 2013;
Bryant 2008; Chang 2008), though we depart from the core
theory in two fundamental ways. First, construction gram-
mar in general and ECG in particular build constructions di-
rectly from input text. However, OntoSoar builds construc-
tions from the LG parser linkages, allowing OntoSoar to act
on information about words and their relationships.

(Bryant 2008) uses a compiler for converting a formal
grammar written in this ECG language into an internal
form; we instead hand-coded ECG rules as Soar produc-
tions. Some of these are declarative, building static data
structures. Other productions fire as the semantic analysis
is proceeding and thus enact procedural knowledge. In the
future we may be able to build a compiler to convert ECG
grammar rules directly into Soar code.

Figure 4 shows part of the LG linkage for our sample seg-
ment and a set of overarching rectangles and arrows that rep-
resent the constructions recognized from this segment. The
lower level rectangles have arrows pointing to the words that
make up the form pole (i.e. anchors) of each of those con-
structions. Though not shown, each construction builds on
words that it contains and on the leftward links from each
word. The ovals represent meaning structures built from the
constructions.

LifeEvent structures form the root of meaning networks.
Each meaning structure has a number of internal slots—
called roles—(not shown) that store values of properties
or references to other meaning structures. For example,

560

Figure 3: OntoSoar system architecture

Figure 4: Example of construction with meanings

a LifeEvent has a subject role requiring a Person and a
date role requiring a Date. A Person’s name role takes a
Name, but it also has birth and death roles which point to
LifeEvents, if filled.

For each input word OntoSoar executes a comprehend-
word operator that in turn invokes a build-meaning opera-
tor. Other operators such as lexical-construction and proper-
name perform specialized word-based mappings for build-
ing these semantic structures.

The Meaning Builder expects arguments of type Person
for predicates such as “was born” or “son of”, hence a proper
name refers to a Person if it is an argument of such a predi-
cate. In this way the Meaning Builder constructs a network
of meaning structures with their roles, many of which are
not yet filled. This network provides the basis for further se-
mantic analysis.

The Conceptual Semantic Analyzer takes the meaning
structures supplied by the Meaning Builder and expands and
enhances them using inference rules implemented as Soar
productions. For example, the presence of a phrase like “is
not living” in the text triggers search for a death event for

the subject person, and also a Date schema with its value set
to UNKNOWN; when a death date is reported, its value is
set explicitly. Similarly, when the text mentions that some-
one “is married” without further comment, the system will
infer the existence of a second person whose name is UN-
KNOWN. Another example of inference involves reference
resolution, where pronouns and GP tokens are associated by
backward search for the Person they refer to. This is imple-
mented with the resolve-reference operator, which performs
basic search but does not yet take advantage of gender and
number agreement or the specific meanings of nouns like
“widow”.

In OntoSoar the meaning schemas are modeled on image
schemas (Johnson 1987), though they are not connected to
perception in any direct way. Nevertheless the matching of
one schema with roles that connect to other schemas in a
network provides declarative knowledge that enables adding
the procedural knowledge for inferencing.

Matching target ontologies
The information OntoSoar targets is subject to some simpli-
fication: while identifying unique individuals and associated
names, gender, important dates, and family relationships, we
exclude for now geographical locations plus other facts like
employment or religion. We also adopt simplifying assump-
tions about family relationships, namely that a marriage is
between a man and a woman, and that parent/child relation-
ships are only for biological parents. These limitations and
assumptions can be relaxed in future work.

Once we have analyzed an input segment to build our in-
ternal meaning structures, the final step is to project those
meanings onto the ontology provided by the user. This
work is done in two steps. Since both the internal meaning
schemas of ECG and the user ontology are static, we can find
object and relationship sets in the ontology that match parts
of our schemas statically before we have seen any input data.
Then when a segment has been completely analyzed, we can
use these matches to map the specific meanings found in the

561

segment onto fact assertions in the ontology.
OntoSoar’s find-matches operator executes the matching

procedure, along with various other operators that match
keywords from the internal schemas with words taken from
the names of the sets in the ontology:

• A lexical schema matches against any lexical object set
(i.e. boxes in Figure 2 with dashed borders) that has a
word in its name3 matching one of the schema keywords.

• The Person schema matches to any object set regardless
of its name as long as it has a relationship set connecting
to a lexical object set that matches ProperName.

• The Couple schema matches against a pattern with a rela-
tionship set with three or more arguments connecting the
object set that matches Person with one of its specializa-
tions (pointed to by the triangle in Figure 2) and a third
argument that matches Date if that relationship set also
has married in its name.

• The FamilyRelationship schema has a matching algo-
rithm that looks for specializations of the object set which
matches Person whose names contain the keywords son,
daughter, or child.

• The LifeEvent schema looks for matches to relationship
sets where the name of the relationship set has a word that
matches one of the verbs that can generate a LifeEvent
(e.g. “born” or “died”). These matches are recorded ac-
cording to the verb that matches, so that the general
LifeEvent schema will match several relationship sets,
with the correct match being chosen later on according
to the specific verb present. This matching also connects
to the correct specialization of Person.

When the semantic analysis of a given segment has
been completed, the OntoSoar extract-facts operator projects
as many fact assertions as possible from the meanings
found for the segment into the user ontology. Separate sub-
operators extract assertions according to the various types of
matches found previously. This assertion extraction process
is fairly straightforward since we have already done the hard
part in the matching.

Evaluation and Results
So far we have run several evaluations of OntoSoar’s per-
formance, across different documents and while using dif-
ferent user ontologies. First, we processed the sample text
page, plus another page relatively similar to it from another
book, using the ontology in Figure 2. For each sample text
an output OSMX file was produced which contained fact as-
sertions populating the ontology with persons identified by
names, birth and death dates, and marriages.

Table 1 shows combined precision, recall, and F-measure
result set for Samples 1 and 2 when compared to human
annotations. Overall the precision is quite high, but the recall
is lower. The primary reason for the recall errors is the lack
of understanding of all the linguistic constructions used in
the text.

3Ontology names are in camel-case and are split by OntoSoar.

Category Exist Found Good P % R % F %
Persons 31 26 25 96.2 80.6 87.7
Births 14 14 13 92.9 92.9 92.9
Deaths 9 7 7 100.0 77.8 87.5
Marriages 7 7 5 71.4 71.4 71.4
Children 16 2 2 100.0 12.5 22.2
Tot./Avg. 77 56 52 92.9 67.5 78.2

Table 1: Combined accuracy measures for Samples 1 and 2

Persons: The system has an ontological committment for
creating a Person: there must be a proper name, and that
name must be the grammatical subject or object of a predi-
cate which applies to people, such as “born”, “married”, or
“son of”.

For the two sample text pages, OntoSoar missed finding
six people. One was missed in the first sample text because
the last sentence contained no identifiable predicates asso-
ciated with her mention. In another case in the second text
page, a person was incorrectly identified because of a seg-
mentation ambiguity. Another was missed because of On-
toSoar’s current inability to unpack the dense semantics in
the expression “...by whom she had one son...”. Other refer-
ence resolution problems explain the other missing Persons.

Births and Deaths: OntoSoar finds every birth event, but
in one case it is assigned to the wrong person due to unclear
reference. Some dates are marked as UNKNOWN when the
English text states that a person died (e.g. with the phrase
“... is not living”) but does not specify the date.

Marriages: OntoSoar finds all mentioned marriages (one
in the first sample page, and six in the second), but in two
cases from the latter it attaches the wrong subject to them.

Sons and Daughters: Many of the parent-child relation-
ships in these sample texts, and in many other texts as well,
are represented as enumerated lists of children. OntoSoar
does not yet implement any list processing. This caused a
total of 12 recall errors.

Beyond the two sample pages mentioned above, we also
evaluated OntoSoar performance on a larger sampling of
texts from family history books. We have access to a pri-
vate repository of over a hundred thousand such books. We
selected 200 books at random from this collection, and then
randomly chose a sequence of three consecutive and data-
rich pages from each of these books. We then arbitrarily
chose twelve books’ three-page ranges and ran them through
OntoSoar. With minor adaptations to the input process, all
twelve of the text files ran successfully through OntoSoar.

Performing a complete measure of the precision and recall
of OntoSoar on this data would require manually annotating
all the texts for all the relations of interest, which was be-
yond the scope of the available resources. However, we have
looked through all the output files to examine the fact asser-
tions that OntoSoar claims to have found and evaluated each
as correct or not. The results are summarized in Table 2; the
“Ely” and “Myra” files are the two sample pages discussed
above.

In evaluating the matches, persons were considered cor-
rect if OntoSoar found at least a subset of the name given in
the text with no extraneous material. Births and deaths were

562

Persons Births & Deaths Marriages Children Run Time
File Segs Found Correct Found Correct Found Correct Found Correct Secs Segs/Sec
Ely 15 11 100.00% 10 100.00% 1 100.00% 2 100.00% 15 1.000
Myra 23 15 93.33% 11 100.00% 6 66.67% 0 0.00% 10 2.300
Other documents 1547 328 73.48% 176 40.34% 78 51.28% 31 77.42% 1489 1.039

Table 2: Precision results for additional texts

considered correct if they were attached to a legitimate per-
son and the date was complete. A marriage was considered
correct if it connected the two correct people, even if the
date was not found or incomplete. A child was considered
correct if a person of the right gender was connected as a
son or daughter to at least one of the correct parents.

The table only gives an estimate of precision; no attempt
was made to measure either recall or F-measure. Unsurpris-
ingly, the overall recall for these twelve files is rather low.
If no facts were found in a particular case, the precision is
marked as N/A. Overall OntoSoar processing time is consis-
tent, at about one second per segment.

Many issues contribute to both recall and precision being
much lower than for our original two samples. Some, such
as OCR errors, are mostly beyond the reach of OntoSoar
to solve. Other types of errors, however, could be reduced
substantially by further improvements to OntoSoar within
the scope of its existing architecture. For example, OntoSoar
currently misses the many instances of dates formatted like
“25 June 1823” or “6/25/1823” or even “Private” (indicat-
ing a person alive at time of publication). Nor can OntoSoar
correctly unpack combined personal name constructions like
“John Phillip and Alice Adel (Billeter) Harris”, a common
structure in this domain. Extending OntoSoar’s capabilities
in such areas will be straightforward.

Our work is preliminary, so we include a few notes about
portability. We have directed very little effort at this spe-
cific text type: only the semantic interpretation rules that the
agent executes were hand-crafted for the specific text type
of this domain. Other text domains would require more se-
mantic rules, but their integration into the system would be
straightforward.

OntoSoar’s conceptual-model-based ontologies are built
by end-users, so presumably they may have different ways
of conceptualizing or expressing the desired relationships
than in the ontology depicted in Figure 2. We tested On-
toSoar performance on two other ontologies representing
largely the same information but structured differently. On-
toSoar did well in finding Persons, Births, Deaths, and Mar-
riages. However, the second ontology only specified Parent-
Child relations, but not with specializations of Child for Son
and Daughter, so OntoSoar was not able to distinguish these
when using that ontology. The third ontology did not have
any object sets for Child, so none of these were recognized.
With more inference rules for reasoning about all possi-
ble arrangements of family relationships, these connections
should be made.

Finally, we ran the system on all 830 pages of the book
mentioned earlier (Vanderpoel 1902), which contains the
partial page shown in Figure 1. Processing took about 8

hours on a typical PC desktop. The collection of assertions
extracted consists of:

Persons 16,848
Births 8,609
Deaths 2,406
Genders 1,674
Couples 3,343
Children 3,049
Total 35,929

Conclusions and Future Work
From our work—preliminary though it is at this point— we
are already able to draw several conclusions:
• Our linguistic analysis components are capable of extract-

ing fact assertions from complex genealogical texts. In
particular, an agent-based cognitive construction gram-
mar framework provides a viable semantic representation.

• Meaning structures can be mapped onto ontologies to
populate a user-specified conceptual model.

• The Soar cognitive architecture supports the above pro-
cesses and provides a basis for more extensive inferencing
for higher-level linguistic issues.
This work also represents a sizable increase in the quan-

tity of running text that any Soar-based system has pro-
cessed; treating a whole book of hundreds of pages with
Soar is unprecedented.

Incremental improvement to OntoSoar is possible by
adding or modifying rules in several parts of the system: the
Segmenter can be made to recognize and expand new ab-
breviations such as “b”, “dau”, and “Bapt.”; the grammar of
the LG Parser can be augmented to understand different date
formats; and the constructions in the Semantic Analyzer can
be expanded to recognize common phrases like “his widow”
and “they had one son”.

Previous work has demonstrated incremental word-by-
word language modeling in Soar with parsers other than the
LG parser (Rytting and Lonsdale 2006); this permits inter-
leaving syntactic and semantic processing at the word level.
The basic pipeline described in this paper could be improved
to allow for more interaction between semantics and the
parser, the syntax, or even the segmenter.

Several Soar systems have learned tasks by observing hu-
mans doing the tasks. We anticipate being able to integrate
this ability into our work, since the OntoES Annotator al-
ready provides a framework for human annotators doing the
same task as OntoSoar. As the system scales up to handle
more books of wider coverage, this type of human input
would be helpful in the initial stages of processing each new
book to adapt to its linguistic style.

563

References
Akbik, A., and Bross, J. 2009. Wanderlust: Extracting
semantic relations from natural language text using depen-
dency grammar patterns. In Proceedings of the World Wide
Web Conference (WWW2009) Semantic Search 2009 Work-
shop (SemSearch09).
Anderson, J. R. 2007. How Can the Human Mind Occur
in the Physical Universe? Oxford and New York: Oxford
University Press.
Bergen, B., and Chang, N. 2013. Embodied construction
grammar. In Hoffman, T., and Trousdale, G., eds., The Ox-
ford Handbook of Construction Grammar. New York: Ox-
ford University Press. 168–190.
Bleiholder, J., and Naumann, F. 2008. Data fusion. ACM
Computing Surveys 41(1):1–41.
Bryant, J. E. 2008. Best-Fit Constructional Analysis. Ph.D.
Dissertation, University of California at Berkeley.
Buitelaar, P.; Cimiano, P.; Haase, P.; and Sintek, M. 2009.
Towards linguistically grounded ontologies. In Proceedings
of the 6th European Semantic Web Conference (ESWC’09).
Chang, N. C.-L. 2008. Constructing grammar: A computa-
tional model of the emergence of early constructions. Ph.D.
Dissertation, University of California at Berkeley.
Embley, D. W.; Kurtz, B. D.; and Woodfield, S. N. 1992.
Object-Oriented Systems Analysis: A Model-Driven Ap-
proach. Englewood Cliffs, NJ: Yourdon Press.
Embley, D. W.; Liddle, S. W.; and Lonsdale, D. W. 2011.
Conceptual modeling foundations for a web of knowledge.
In Embley, D. W., and Thalheim, B., eds., Handbook of Con-
ceptual Modeling. Springer. chapter 15.
Euzenat, J., and Schvaiko, P. 2007. Ontology Matching.
Berlin: Springer.
Feldman, J. A. 2006. From Molecule to Metaphor: A Neural
Theory of Language. Cambridge, MA: MIT Press.
Gruber, T. R. 1993. A translation approach to portable on-
tology specifications. Knowledge Acquisition 5(2):199–220.
Hoffman, T., and Trousdale, G., eds. 2013. The Oxford
Handbook of Construction Grammar. New York: Oxford
University Press.
Hruschka, E. R. J. 2013. Machine reading the web. Tuto-
rial given at the 22nd International World Wide Web Con-
ference, Rio de Janeiro, Brazil, 13-17 May, 2013.
Jackendoff, R. 1990. Semantic Structures. The MIT Press.
Jackendoff, R. 1996. Semantics and cognition. In Lappin,
S., ed., The Handbook of Contemporary Semantic Theory.
Blackwell.
Jackendoff, R. 2002. Foundations of Language: Brain,
Meaning, Grammar, Evolution. Oxford University Press.
Jackendoff, R. 2003. Précis of foundations of language:
Brain, meaning, grammar, evolution. Behavioral and Brain
Sciences 26:651–707.
Johnson, M. 1987. The Body in the Mind: The Bodily Basis
of Meaning, Imagination, and Reason. Chicago: The Uni-
versity of Chicago Press.

Laird, J. E. 2012. The Soar Cognitive Architecture. Cam-
bridge, MA: The MIT Press.
Lakoff, G., and Johnson, M. 1980. The metaphorical struc-
ture of the human conceptual system. Cognitive Science
4:195–208.
Lewis, R. L. 1993. An Architecturally-based Theory of Hu-
man Sentence Comprehension. Ph.D. Dissertation, Carnegie
Mellon University.
Lonsdale, D.; Hutchison, M.; Richards, T.; and Taysom, W.
2007. An NLP System for Extracting and Representing
Knowledge from Abbreviated Text. In Selected Proceed-
ings of the Deseret Language and Linguistics Society Sym-
posium, 37–44. Brigham Young University.
Lonsdale, D.; Tustison, C.; Parker, C.; and Embley, D.
2008. Assessing clinical trial eligibility with logic expres-
sion queries. Data & Knowledge Engineering 66(1):3–17.
Melby, A. K., and Warner, C. T. 1995. The Possibility of
Language: A Discussion of the Nature of Language, with Im-
plications for Human and Machine Translation. Benjamin
Translation Series. John Benjamins.
Mitra, P.; Noy, N. F.; and Jaizwal, A. R. 2004. Omen: A
probabilistic ontology mapping tool. In Proceedings of the
Meaning Coordination and Negotiation workshop at the In-
ternational Semantic Web Conference (ISwC), 537–547.
Mohan, S.; Mininger, A. H.; Kirk, J. R.; and Laird, J. E.
2012. Acquiring grounded representations of words with
situated interactive instruction. Advances in Cognitive Sys-
tems 2:113–130.
Newell, A. 1990. Unified Theories of Cognition. Cam-
bridge, MA: Harvard University Press.
Rytting, A., and Lonsdale, D. 2006. An operator-based ac-
count of semantic processing. In Lenci, A.; Montemagni,
S.; and Pirrelli, V., eds., Acquisition and representation of
word meaning: theoretical and computational perspectives.
Pita/Rome: Istituti Editorialie Poligraphici Internazionali.
117–137.
Sarawagi, S. 2007. Information extraction. Foundations and
Trends in Databases 1(3):261–377.
Sleator, D. D., and Temperley, D. 1993. Parsing English
with a Link Grammar. In Proceedings of the Third Interna-
tional Workshop on Parsing Technologies (IWPT).
Vanderpoel, G. B. 1902. The Ely Ancestry: Lineage of
Richard Ely of Plymouth England, who came to Boston,
Mass., about 1655, & settled at Lyme, Conn, in 1660. New
York: The Calumet Press.

564

