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Abstract 

Concept learning is a central problem for cognitive systems. 
Generalization techniques can help organize examples by 
their commonalities, but comparisons with non-examples, 
near-misses, can provide discrimination. Early work on 
near-misses required hand-selected examples by a teacher 
who understood the learner’s internal representations. This 
paper introduces Analogical Learning by Integrating 
Generalization and Near-misses (ALIGN) and describes 
three key advances. First, domain-general cognitive models 
of analogical processes are used to handle a wider range of 
examples. Second, ALIGN’s analogical generalization 
process constructs multiple probabilistic representations per 
concept via clustering, and hence can learn disjunctive 
concepts. Finally, ALIGN uses unsupervised analogical 
retrieval to find its own near-miss examples. We show that 
ALIGN out-performs analogical generalization on two 
perceptual data sets: (1) hand-drawn sketches; and (2) 
geospatial concepts from strategy-game maps. 

Introduction   

Learning concepts from examples is a core capability for 

cognitive systems. While many approaches learn over 

feature vectors, this work involves learning from more 

expressive relational representations, similar to inductive 

logic programming (Muggleton and De Raedt 1994; 

Cleuziou, Martin, and Vrain 2003). We focus here on 

similarity-based supervised learning, where labeled 

examples are available. Winston (1970) introduced the idea 

of a near-miss, a negative example that is very similar to a 

positive example. The small number of differences – 

ideally one – simplified the learner’s search for necessary 

conditions for category membership. Winston’s system 

used analogical matching to compare the structured 

representations of the positive and negative examples in 

order to find the difference(s). Winston’s system had some 

important limitations: it used a domain-specific analogical 

matcher; it required the teacher to know the internal 

representations of the concept; it required the teacher to 
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label near-misses; it learned one representation per concept 

and thus could not handle disjunctive concepts; and it was 

only tested on blocks-world scenes. 

 Since that time, the state of the art in knowledge 

representation and analogical reasoning has improved to 

the point where a more general model capable of using 

near-misses can be formulated over more general 

representations.  This paper describes Analogical Learning 

by Integrating Generalization and Near-misses (ALIGN), 

which is built on Gentner’s (1983) structure-mapping 

theory of analogy and similarity.  Computational models of 

human analogical matching, retrieval, and generalization 

(summarized below) are combined and extended to yield 

three important advantages: (1) ALIGN learns both 

characteristic properties (i.e., descriptions generalized over 

positive examples) and discriminative properties (i.e., strict 

membership criteria) of categories; (2) ALIGN can learn 

disjunctive categories; and (3) ALIGN automatically 

identifies near-misses via analogical retrieval, so the 

teacher does not need to provide them or know the 

underlying knowledge representations. 

 We provide empirical results to support these claims, 

using ALIGN to learn spatial concepts from hand-sketched 

examples in a sketch understanding system. We use 

sketched materials for two reasons. First, visual and spatial 

information is of great importance in domains such as 

science, engineering, and art, and typically involves rich, 

relational representations.  Second, encoding spatial 

representations automatically from raw ink reduces 

tailorability, as opposed to hand-generated representations.  

 We start by summarizing the analogical processing 

models that ALIGN uses, and the sketch understanding 

system we used to automatically encode examples for the 

experiments. We then describe ALIGN and two 

experimental analyses: (1) ALIGN learns concepts from 

sketches of everyday objects; and (2) ALIGN learns 

geospatial concepts from circled examples on a strategy-

game map.  We close with related and future work. 
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Figure 1: An example is added to the “Arch” generalization 

context and generalized with a previously unassimilated 

example. 

Background 

Computational models of Structure-Mapping 

Structure-Mapping is a psychological theory of analogy 

and similarity that has been used to explain how people 

compare visual stimuli (Markman and Gentner 1996; Sagi, 

Gentner, and Lovett 2012), learn abstract categories 

(Gentner and Namy 1999), and learn contrastive categories 

via difference detection (Smith and Gentner 2014). It 

defines analogical comparison as a process of aligning two 

structured representations, a base and a target, guided by 

mapping constraints. The matching process produces 

correspondences that specify which elements (i.e., entities 

and expressions) in the base go with which elements in the 

target. Structure-mapping also generates candidate 

inferences that project unshared structure (i.e., non-

corresponding expressions) from base to target or vice-

versa. 

The Structure-Mapping Engine (SME) 

The Structure-Mapping Engine (Falkenhainer, Forbus, and 

Gentner 1989) is a computational model of structure-

mapping theory. SME operates via a local-to-global 

process, initially constructing local match hypotheses in 

parallel, followed by a serial phase that greedily coalesces 

islands of matches into globally consistent mappings, 

guided by a scoring process based on structure-mapping 

principles. Each mapping contains a set of correspondences 

and a similarity score that captures the overall similarity. 

The similarity score is normalized to the closed interval [0, 

1] by dividing by the mean of the scores of the self-

matches of base and target. Each mapping can contain 

candidate inferences, from base to target, and reverse 

candidate inferences, from target to base. Candidate 

inferences can include analogy skolems, which are entities 

hypothesized via projection because they lack a 

correspondent in the other case.    

MAC/FAC 

MAC/FAC (Forbus, Gentner, and Law 1995) is a model of 

similarity-based retrieval built on SME. The inputs are (1) 

a probe case and (2) a set of cases from which to retrieve, 

called a case library. MAC/FAC retrieves up to three 

similar cases from the case library based on similarity to 

the probe. The algorithm has two stages. The first stage 

(MAC) computes in parallel coarse similarity estimates 

between the probe and every case in the case library using 

content vectors, a redundant non-structured representation 

computed from the cases. Each dimension in a content 

vector is proportional to the number of statements using 

that predicate in the original case, thus the dot product 

estimates the number of local matches that SME will find 

between the probe and each case. This scales well to large 

case libraries. The cases with the highest dot product with 

the probe are passed to the second stage, FAC.  FAC uses 

SME to compare the probe to each MAC result, in parallel. 

The case with highest SME similarity score, plus up to two 

more if very close to the top scorer, are returned as the 

reminding(s).  

Sequential Analogical Generalization Engine (SAGE) 

The Sequential Analogical Generalization Engine (SAGE) 

is a model of analogical generalization built on SME, and 

the successor to SEQL (Kuehne et al. 2000). SAGE 

maintains a generalization context for each concept, where 

incoming training examples are incrementally clustered to 

form generalizations (two or more analogically mapped 

examples) and unassimilated examples (clusters of size 

one). SAGE generalizations are themselves cases, but each 

expression in a generalization is assigned a probability 

based on the frequency with which it corresponded to 

expressions in co-clustered examples. 

The SAGE algorithm consists of two stages: (1) select at 

most one existing cluster that is sufficiently similar to the 

incoming example, and (2) merge the incoming example 

into the cluster, if sufficiently similar. The select process 

uses MAC/FAC, with the new example as the probe and 

the generalization context as the case library. If the 

normalized similarity score of the best reminding is greater 

than the assimilation threshold of the generalization 

context, SAGE merges the example; otherwise, the new 

example is added as an unassimilated example. 

The merge process uses the correspondences in the SME 

mapping to (1) update the probabilities associated with 

each existing expression in the generalization, and (2) add 

new expressions from the example to the generalization. 

When non-identical entities correspond in the mapping, 

SAGE replaces them with generalized entities (i.e., 

symbols that represent multiple symbols from examples).  

A merge is illustrated in Figure 1, where corresponding 

expressions in the resulting generalization have p = 1.0, 

and non-corresponding expressions have a p = 0.5.  SME 

uses these probabilities to bias the local scores on match 
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Figure 3:  A water glyph (top-left) is decomposed into its 

skeleton edges (bottom right) by using a grassfire algorithm 

(top-right) to compute a medial-axis transform, which is 

pruned and segmented according to its radius function. 

 

hypotheses. As SAGE assimilates more examples into a 

generalization, some expressions will retain high 

probability, while others will diminish. Consequently, 

generalizations in SAGE express a probability distribution 

over their expressions, separating characteristic (high 

probability) structure from incidental (low-probability) 

structure.  SAGE uses a probability threshold to prune 

low-probability expressions from the generalization and 

maintain tractability. 

SAGE has been used to learn and classify musical 

genres (Dehghani and Lovett 2006), spatial prepositions 

(Lockwood, Lovett, and Forbus 2008), and sketched every-

day objects (Lovett, Dehghani, and Forbus 2007; McLure, 

Friedman, and Forbus 2012), suggesting that it provides a 

domain-general foundation for ALIGN. 

CogSketch 

Sketching is a powerful way to express visual and spatial 

ideas. CogSketch (Forbus et al. 2011) is an open-domain 

sketch understanding system. Users draw digital ink, which 

they segment into visual entities (glyphs) and label with 

concepts drawn from a large (OpenCyc-derived) 

knowledge base.1  Conceptual labeling is a practical 

vehicle for information that is often conveyed with 

language during human-to-human sketching (e.g., “this is a 

block”). CogSketch constructs visual representations from 

what is drawn (e.g., that two glyphs have intersecting 

edges) and spatial representations from both the visual and 

conceptual information (e.g., that the objects depicted by 

the glyphs are touching). Figure 2 shows six examples. 

CogSketch’s extensive vocabulary of representations is 

motivated by human spatial cognition, including relations 

                                                 
1 www.cyc.com/platform/opencyc 

for adjacency, relative position and size, and topological 

relationships. It is capable of analyzing the same sketch at 

multiple levels of description (i.e., edges, objects, and 

groups). 

 CogSketch interacts with the strategy game Freeciv to 

encode qualitative structured representations for regions on 

the map. CogSketch renders the map and creates glyphs for 

units, cities, and terrain blobs (i.e., polygons that outline 

groups of tiles that share some property). The user selects a 

region by drawing a glyph on the map (e.g., the red circle 

in Figure 3). When the user assigns a conceptual label to 

the selection glyph, CogSketch automatically encodes a 

case. The encoding scheme used in our geospatial 

classification task (illustrated in Figure 3) begins by 

detecting and recording topological relationships between 

the selection glyph and overlapping land or water terrain 

blobs. Any blob glyph that overlaps the selection glyph is 

decomposed into a skeleton based on the Medial Axis 

Transform (MAT). Each skeleton is further segmented at 

points corresponding to qualitative changes in the radius 

function (i.e., the distance from each point to its closest 

points on the exterior) – a strategy inspired by shock 

graphs (Siddiqi et al. 1999). The result for each blob glyph 

is a network of edges directed from its wider sections to its 

narrower sections. The scheme encodes qualitative 

properties over these edges including length, radius 

function, curvature, and various aspects of connectivity. 

Finally, topological relationships between each edge and 

the selection glyph are encoded. 

 CogSketch has been used to model visual problem 

solving (Lovett, Forbus, and Usher 2010), including 

 

Figure 2: Three pairs of sketched objects with decreasing 

normalized similarity scores, from top to bottom. All three 

pairs are potential near-misses because their labels differ. 
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cultural differences (Lovett and Forbus 2011). It has also 

been used as a platform for sketch-based educational 

software (Yin et al. 2010).  These experiments suggest that 

the representations it produces are both realistic and useful. 

ALIGN 

Similarity can be deceptive. Isthmuses are similar to straits, 

bays are similar to peninsulas, and bridges are similar to 

arches.  In this section, we describe how ALIGN leverages 

these deceptive similarities as opportunities to learn and 

represent category boundaries. We begin by discussing 

how ALIGN detects and exploits deceptive similarities, 

then we describe how it represents and revises its 

hypotheses, and finally we describe how it classifies 

examples with a mix of similarity and hypothesis-testing. 

Detecting & Exploiting Near-Misses with Analogy 

Given a labeled training example (e.g., of an arch), 

ALIGN uses MAC/FAC to retrieve similar training 

examples with different labels (e.g., bridge) or a null label.2  

High-similarity pairs of examples with different labels 

above a similarity threshold (equal to SAGE’s assimilation 

threshold) are near-misses.  Using the best SME mapping 

between the positive (arch) and negative (bridge or null) 

example, ALIGN uses the candidate inferences (i.e., 

projected expressions across cases) to produce hypotheses 

about category boundaries. 

 ALIGN distinguishes between two types of candidate 

inferences (CIs) that produce different hypotheses: 

1. Positive-to-negative CIs (PNCIs) project relations from 

the positive example in terms of the negative 

example’s entities.  ALIGN converts these to inclusion 

hypotheses: necessary criteria for asserting category 

membership. 

                                                 
2 In this paper, categories are mutually exclusive, and some training and 
testing examples have a null label (i.e., they are confusers). 

2. Negative-to-positive CIs (NPCIs) project relations from 

the negative example, in terms of the positive 

example’s entities. ALIGN converts these to exclusion 

hypotheses: sufficient criteria for blocking category 

membership. 

ALIGN associates hypotheses with the positive example, 

and represents hypotheses in terms of the positive 

example’s entities.  For PNCIs, this requires a translation 

step that replaces the entities mentioned (from the negative 

side) with their corresponding (positive) entities.  In Figure 

4 (top), H1 is an inclusion hypothesis for the category arch 

resulting from the PNCI (isa e Block), and H3 is an 

exclusion hypothesis resulting from the NPCI (touches 

f g). 

ALIGN also represents skolems in its hypotheses.  A 

skolem in a PNCI is replaced with the positive entity from 

which it was projected, e.g. (AnalogySkolemFn m) 

translates to m. In contrast, NPCIs with skolems result in 

more complex exclusion hypotheses, because they need to 

 

Figure 4: A near-miss pair and hypothesis revision 

CL = {} ;; a case library for training examples 

;; S = similarity threshold, MYX = reverse mapping of MXY 

TrainOn(example P, label LP) ;; label may be null 

 if LP 

  GCP = Label→GeneralizationContext (LP) 

  {GP, MGP} = SageAdd (P, GCP, S) ;; if unassimilated, 

                    ;; GP=P & MGP=null 

 for each {N, MNP} in MacFacRetrieve(P,CL) 

  LN = Example→Label(N) 

  {GN, MGN} = Example→Generalization (N) 

  if LP ≠ LN and NormScore(MNP) > S ;; a near-miss 

   GenerateNewCriteria(LP, GP, P, N, MNP, MPG) 

   GenerateNewCriteria(LN, GN, N, P, MPN, MNG) 

 CL = CL + P 
 

GenerateNewCriteria(label L, gen G, pos P, neg N, 

                                       mapping MNP, mapping MPG)  

 if L and not BlockedByCriteria(N, G, MGP, MPN) 

  HPL = ExtractCriteria(P, L, MNP) 

  AddCriteria(G, GeneralizeCriteria(HPL, MPG)) 
 

TestOn(unlabeled example U) 

 D = {} ;; discarded remindings 

 for 1 to 3 

  R = MacFacRetrieve(U, (CL – D)) 

  for each {E, MEU} in SortByGenSimilarity(R, U) 

   LE = Example→Label(E) 

   {GE, MGE} = Example→Generalization(E) 

   if BlockedByCriteria(U, GE, MGE, MEU) 

    D = D + E 

   else return LE 

 return Example→Label(LeastBlocked(D)) 

Figure 5: ALIGN’s top-level training and testing procedures. 
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specify criteria about extra entities that aren’t represented 

in the positive case while remaining embedded in the case. 

For these NPCIs, ALIGN replaces each skolem with a 

variable, and constrains each variable so that it cannot bind 

to any entity from the positive example that entered into 

the near-miss mapping.  Thus, a NPCI such as (touches 

j (AnalogySkolemFn x)) is translated to capture the 

hypothesis that there cannot be something extra that 

touches j, as follows (cannot is implicit because it is an 

exclusion hypothesis): 

(and (different i ?skolem) 

   (different j ?skolem) 

   (different k ?skolem) 

   (different l ?skolem) 

    (touches j ?skolem)) 

 

 ALIGN discards near-miss pairs that are explained away 

by existing hypotheses associated with the positive 

example. 

 In practice, hypotheses produced from a single 

comparison can be over-specific, and must be revised to be 

practically useful.  We describe this process next. 

Revising Hypotheses with Analogical Generalization 

ALIGN maintains one SAGE generalization context for 

every (non-null) label encountered, and each training 

example is added to the generalization context 

corresponding to its label, if any. If SAGE assimilates the 

example into a generalization, its associated hypotheses are 

generalized to refer to the entities in the generalization. 

Generalized hypotheses are pruned if they include 

conditions not true of all examples assimilated into the 

generalization (i.e., expressions with p < 1.0 for inclusion 

hypotheses, and p > 0 for exclusion hypotheses).  Figure 4 

(bottom) demonstrates pruning an inclusion hypothesis. 

 ALIGN uses generalized hypotheses to block labels and 

explain away new near-misses. An extra analogical 

translation step is required to project these hypotheses from 

the generalization to an unlabeled or negative example, via 

the positive (assimilated) example. The degree to which a 

failed hypothesis blocks a label is weighted using the size 

of the generalization it is associated with, with the intuition 

being that hypotheses that persist after more generalization 

operations are more accurate, all else being equal. 

 Since SAGE can produce multiple clusters from the 

positive examples of a single concept, ALIGN can 

maintain alternative sets of hypotheses for a given concept, 

resulting in a disjunctive category structure. Structural 

similarity (via analogical retrieval) determines which 

disjunct(s) get tested against a given unlabeled example.  

Classification via Analogy 

To classify an unlabeled example, ALIGN retrieves similar 

labeled examples from memory. Those retrieved examples 

that have been assimilated during learning are exchanged 

for their associated generalizations. Starting with the most 

similar case, ALIGN tests each of the case’s associated 

hypotheses by: 

1. Translating the hypothesis to refer to entities in the 

unlabeled example, using the entity correspondences 

of the best mapping. 

2. Testing whether the translated condition holds. If an 

exclusion hypothesis holds or an inclusion hypothesis 

fails to hold (skolems count as failures), do not infer 

that label. 

If these hypotheses are consistent with the new example, 

ALIGN classifies the new example with the retrieved label. 

Otherwise, ALIGN iterates to the next retrieved example. 

This is important for distinguishing similar categories. 

 Because we assume that the set of concepts is 

collectively exhaustive, ALIGN conducts repeated 

retrievals during classification until it finds an unblocked 

label. If no unblocked label is found after 3 retrievals, then 

the label of the most highly supported retrieval is chosen. 

Support is determined by subtracting the cumulative 

weight of the inconsistent hypotheses from that of the 

consistent hypotheses. Since null-labeled retrievals cannot 

have associated hypotheses, they have neutral (0) support. 

Evaluation 

To evaluate the extension of analogical generalization with 

near-misses, we ran two classification tasks under different 

conditions: (1) ALIGN is the full system described above; 

(2) Prototypes is ALIGN without near-miss analysis; and 

(3) Examples is ALIGN without near-misses and also 

without analogical generalization, so classification is 

reduced to similarity-based retrieval over the library of 

training examples. For moderately high similarity 

thresholds (0.6-0.9), we expected Prototypes to outperform 

Examples and ALIGN to outperform both. 

Experiment 1 

ALIGN was compared with the Prototypes and Examples 

conditions in a classification task involving objects 

sketched in CogSketch. There were 44 sketches distributed 

over 6 mutually exclusive labels, where 16 of the sketches 

had null labels (i.e., no positive labels) but were potential 

near-misses for some of the concepts (e.g., false arches are 

nearly arches) as summarized in Table 1. The cases 

produced by CogSketch each contained, on average, 4.5 

Arches: 8 Bridges: 4 False arches: 8 

Skeletal arms: 4 Triangles: 4 False triangles: 4 

Skeletal legs: 4 Quadrilaterals: 4 False quads: 4 

Table 1: A dataset of sketched concepts. “False” categories 

were negative examples of all categories. 
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unique entities and 31 facts. The task was to choose one or 

none of the 6 labels, with chance at 21% accuracy.   

Performance was evaluated via 4-fold cross-validation. 

Statistical significance was measured using a one-tailed, 

paired t-test. The similarity threshold for ALIGN was set to 

0.8. This was also the assimilation threshold used for the 

Prototypes condition.  

Results 

Figure 6 shows the results of Experiment 1. The Prototypes 

and Examples approaches performed identically at 55% 

accuracy, well above chance (p < 0.01). ALIGN 

demonstrated a 7% improvement over these conditions (p 

< 0.01).  

Experiment 2 

This experiment evaluated classification performance in a 

task involving geospatial concepts. Examples were circled 

on a Freeciv map using CogSketch as described above. The 

dataset consisted of 60 examples evenly distributed over 6 

mutually exclusive and collectively exhaustive categories: 

Isthmus, Peninsula, Strait, Bay, Archipelago and Island. 

The cases produced by CogSketch each contained, on 

average, 8 unique entities and 60 facts. 10-fold cross-

validation was used. ALIGN was compared to the 

Prototypes approach over a range of similarity thresholds. 

At a threshold of 1, both reduce to Examples. 

Results 

As shown in Figure 7, ALIGN achieved a peak accuracy of 

77%, significantly outperforming the Prototypes peak 

performance of 62% (p < 0.05). The Prototypes condition 

where similarity threshold (S) is 1 is by definition the 

Examples condition, since S = 1 effectively prevents 

generalization and near-miss analysis.  Here, Examples 

performed significantly worse than ALIGN with an 

accuracy of 53% (p < 0.05), which was not significantly 

different from the peak of Prototypes. 

Discussion 

This data demonstrates that extending analogical 

generalization with near-misses can improve classification 

for spatial concepts represented as structured, qualitative 

descriptions. The interaction between the similarity 

threshold and the marginal benefit of near-misses suggests 

that there is a “sweet spot” for comparison; when the 

threshold is too low, more distant near-miss comparisons 

are generated, resulting in more hypotheses, most of which 

are incidental differences and should be pruned. When the 

similarity threshold is too high, the generalizations in 

SAGE end up smaller in size and more numerous, 

providing less basis for pruning bad hypotheses. 

 Using analogical generalization alone (Prototypes) did 

not significantly improve performance over simple 

retrieval (Examples) as we expected. The identical 

performance in Experiment 1 is likely related to the size of 

the categories; out of a group of four bridges, at least three 

must be sufficiently similar for two to generalize in the 

training set and a third to match with the resulting 

prototype during classification. Also recall that Experiment 

1 contains examples without any positive label, which are 

not given a chance to generalize. Thus, their incidental 

similarities to other categories are not suppressed. 

Related Work 

ALIGN is capable of learning with relatively few 

examples. It requires orders of magnitude fewer examples 

than existing connectionist models (e.g., Elman 1998; 

Krizhevsky, Sutskever, and Hinton 2012). We believe 

ALIGN makes more realistic demands. 

The IDeAL system (Bhatta and Goel 1997) learned by 

analogy over structured representations similar to those 

used by ALIGN, but it was applied to a design problem-

solving task instead of recognition. Its retrieval mechanism 

indexed previous designs by their function, whereas 

retrieval in ALIGN uses domain-general similarity-based 

 

Figure 6: Classification performance of ALIGN compared to 

Examples and Prototypes. 
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Figure 7: Classification accuracy on a geospatial dataset. 
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retrieval. IDeAL learned generic teleological mechanisms 

by comparing a correct solution provided by a teacher to 

designs retrieved from memory – similar to near-miss 

discovery in ALIGN – but it relied on design-specific 

background knowledge to abstract the appropriate aspects 

from the design pair. Hypothesis production in ALIGN is 

domain-general, so instead it relies on finding similar 

positive examples to properly refine its hypotheses. 

Cleuziou, Martin and Vrain (2003) described an 

inductive logic programming (ILP) approach to learning 

disjunctive concepts that bore similarities to ALIGN.  

Positive examples were clustered into subconcepts 

according to a similarity measure, and a separate 

conjunctive definition was learned for each subconcept 

based on the negative examples. Its representations, 

similarity metric, and hypothesis generation were all based 

in first order logic; the rules learned contained logical 

variables and were tested deductively, in contrast with the 

hypotheses here, which are embedded in learned models 

and tested via analogical projection. Winston (1982, 1986) 

also explored learning rules from analogies, producing 

logical rules via generalizing on one example. His if-then 

rules and censors were functionally similar to our inclusion 

and exclusion hypotheses, respectively. 

Another analogous approach is K-Means+ID3 (Gaddam, 

Phoha, and Balagani 2007), which cascaded k-means 

clustering and ID3 decision trees for anomaly detection. 

While their approach used feature-vector data, it shared the 

idea that rule-based class boundaries can apply better when 

trained locally in some similarity space.  

Conclusions and Future Work 

This paper describes ALIGN, a concept learning model 

that extends analogical generalization with near-misses. It 

is capable of automatically finding its own near-miss 

examples, and we have shown evidence from two 

experiments that near-misses significantly improve 

performance over analogical generalization and retrieval 

alone. We plan on experimenting with ALIGN in other 

domains, as well as expanding the range of concepts in 

sketched domains. 
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