
Real-Time Predictive Optimization for Energy
Management in a Hybrid Electric Vehicle

Alexander Styler and Illah Nourbakhsh

Abstract
With increasing numbers of electric and hybrid vehicles on the
road, transportation presents a unique opportunity to leverage
data-driven intelligence to realize large scale impact in energy
use and emissions. Energy management in these vehicles is
highly sensitive to upcoming power load on the vehicle, which
is not considered in conventional reactive policies calculated
at design time. Advancements in cheap sensing and computa-
tion have enabled on-board upcoming load predictions which
can be used to optimize energy management. In this work,
we propose and evaluate a novel, real-time optimization strat-
egy that leverages predictions from prior data in a simulated
hybrid battery-supercapacitor energy management task. We
demonstrate a complete adaptive system that improves over the
lifetime of the vehicle as more data is collected and prediction
accuracy improves. Using thousands of miles of real-world
data collected from both petrol and electric vehicles, we evalu-
ate the performance of our optimization strategy with respect
to our cost function. The system achieves performance within
10% of the optimal upper bound calculated using a priori
knowledge of the upcoming loads. This performance implies
improved battery thermal stability, efficiency, and longevity.
Our strategy can be applied to optimize energy use in gas-
electric hybrids, battery cooling in electric vehicles, and many
other load-sensitive tasks in transportation.

Introduction
The advent of hybrid and electric vehicles yields a compelling
new platform for artificial intelligence. These vehicles offer
numerous high-level control opportunities managing state of
charge, power fulfillment, battery temperature, and various
other internal systems. As sensing and computation become
cheaper, more complex intelligent controllers can be utilized
to manage these high-level tasks in real-time. Intelligent con-
trol in these systems can yield improved energy efficiency,
reduced emissions, and increased vehicle longevity.

In this work we demonstrate a data-driven adaptive opti-
mization approach to manage energy in a passenger vehicle in
real-time. Cheap sensing technology allows rich state data to
be measured continuously, including GPS coordinates, speed,
and power load. This state data can be leveraged to make
real-time predictions of upcoming load based on prior ob-
served state and load data. Given a set of independent sample

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

load predictions, our approach calculates optimal controls in
real-time with respect to the distribution defined by that set.

With accurate predictions, our approach produces near-
optimal control decisions in hybrid vehicles, improving on
existing fixed and reactive policy architectures. The load pre-
dictions are based on prior observed data, so the performance
improves over the lifetime of a vehicle as more trips are
recorded. Over time, data set coverage improves and unique
trips become less likely. In practice, frequent commutes and
errands comprise the majority of trips for many drivers and
upcoming load is easily predicted. Continually collecting
trip data over the lifetime of the vehicle enables long-term
adaptation to changing routes, driver behaviors, and traffic
trends.

We evaluate our optimization approach on a simulated hy-
brid battery-supercapacitor energy management task. In this
vehicle, an electric battery acts as the primary energy source
for vehicle range and operation. A supercapacitor is coupled
to the system and acts as a small, highly efficient buffer. Ei-
ther can be used to power the electric motor or receive energy
from regenerative braking. The task is to minimize the sum of
the current-squared on the battery pack, which helps improve
battery pack longevity and thermal stability. The supercapac-
itor can be pre-charged from the battery before high-power
loads such as steep hills or rapid accelerations. This task is
analogous to other hybrid vehicle energy sourcing tasks, but
is highly sensitive to prediction or control error due to the
small size of the buffer.

We compare our predictive system to an prescient optimal
controller that is given the upcoming demand a priori. Using
real world data collected over thousands of miles of trips in
several U.S. states, we test each control system in a hybrid
electric vehicle simulation that can replay each trip. We com-
pare a batch system that has all other data available to make
predictions and an adaptive system that has only prior data
chronologically and grows its data set over time.

Related Work
The rapid adoption of hybrid electric vehicles (HEVs) has
sparked a great interest in the application of learning and
intelligence to this domain. Several works have demonstrated
that optimization of energy management in HEVs, using a
priori knowledge of the power loads, results in superior per-
formance over fixed reactive algorithms. The works show

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

737



that either dynamic programming (Mosbech 1980) (Oprean
et al. 1988) (Brahma, Guezennec, and Rizzoni 2000) or opti-
mal control theory (Lyshevski and Yokomoto 1998) (Delprat,
Guerra, and Rimaux 2002) can be used to effectively deter-
mine an upper bound on performance. The success of these
retrospective optimizations highlights the importance of com-
bining power load information with optimization techniques.
These efforts motivated our approach to combine predictions
of power loads with a dynamic programming optimization
that can execute in real-time.

For real-time controllers, successful control has been
demonstrated using rule-based and fixed point policies. An
overview of existing HEV control strategies and papers is
well covered in (Salmasi 2007). Rule based and reactive con-
trol can be successful using fuzzy logic controls or parameter
optimization, but generally do not approach the bound pro-
vided by retrospective optimization. A popular approach to
HEV control, known as Equivalent Consumption Minimiza-
tion Strategy (ECMS), calculates future fuel expenditure re-
quired to offset the present battery energy expenditure. Fixed
approaches are somewhat successful, but adaptive ECMS has
been shown to perform very well for charge-sustaining mode
(Musardo et al. 2005). These approaches are limited to charge
sustaining mode. For plug-in HEVs, utilizing the full range
of battery energy can pose significant improvement to fuel
consumption, but at the cost depending on charge recovery
from the grid while the car is parked. To optimally exploit
charge depletion in a plug-in HEV, the total trip energy use
and charging opportunities must be known.

Optimization of the energy management tasks using only
the present vehicle state has limited potential for success.
Driver variability and decision making has a large impact on
the inputs and performance of these tasks. Work has shown
that variability between drivers is significant (Ericsson 2000),
and these variabilities have a large impact on vehicle oper-
ation (Holmén and Niemeier 1998) (LeBlanc et al. 1995).
Additionally, researchers have shown that driver mood and
behavior yield significant variability to load (De Vlieger,
De Keukeleere, and Kretzschmar 2000). Due to the influ-
ence of the driver, optimization of vehicle management tasks
ideally consider the total system including both the vehicle
and driver. For instance, fuzzy logic controllers accounting
for driver behavior patterns or trip type have shown marked
improvement over reactive control (Langari and Won 2005),
simply by tessellating categories of driver control and trip
classification into a small number of discrete categories.

The importance of power loads and driver behavior for op-
timization has led many researchers to explore the potential
of prediction. Significant work exploring the use of stochas-
tic Markov chains to model driver behavior has achieved
remarkable success (Opila et al. 2013) (Liu and Pentland
1997). These Markov chains can then be used to generate
value functions and control policies using stochastic dynamic
programming. While some work trains the Markov chains
on a fixed set of federal driving data, the implementation by
Cairano allows dynamic adaptation to new driving data over
the life of the vehicle (Di Cairano et al. 2014). Furthermore,
the work demonstrates that the optimization programming
can be pushed offline, with simple table lookups at run-time

Measure Predict Optimize Execute

Figure 1: System Diagram of Control Loop. This four step
process loop runs continuously, generating new controls as
quickly as can be calculated. Changes in the measured state
result in new predictions that are then used to calculate new
controls.

to achieve rapid control. This leveraging of past data, real-
time optimal control, and dynamic adaptation inspired similar
goals for our system.

While these approaches use single stochastic Markov
chains, work has shown that training examples are more
informative as separate independent experts (Styler and Nour-
bakhsh 2013). Selecting a set of local predictions, based on
vehicle state, can achieve better performance than global
solutions or averaged solutions. The set of predictions main-
tains information about uncertainty of the upcoming load,
while avoiding the averaging effects of a single stochastic
Markov chain. We use a similar kNN matching approach to
load prediction. Our optimization approach exploits these
independent predictions to achieve real-time optimal control.

We extend prior work by creating a solution that can
achieve real-time optimal control with respect to distribu-
tions defined by sets of predictions. We present a complete,
dynamic system that learns driver behavior, traffic trends, and
routes to optimize towards efficiency, longevity, or emissions.

Algorithm
The control algorithm chooses discrete controls based on its
sensor readings of the vehicle state and environment. Due
to the high frequency of changing inputs and demands on a
vehicle, the algorithm must be able to react quickly in real-
time. It operates as a simple control loop described in the
diagram shown in Figure 1. The vehicle state measurement is
an instantaneous snapshot of the vehicle state, and does not
directly inform an optimal control decision. However, this
state measurement can be informative of the upcoming loads.
The algorithm matches the present state to similar histori-
cal states in its dataset. Recorded power loads that followed
each of these historical states are used as predictions of up-
coming load on the vehicle. Given these sample predictions,
and a candidate set of discrete controls, and a cost function,
the algorithm calculates the one-step optimal control that
minimizes expected cost-to-go. This control is executed con-
tinuously while the process repeats, until a new control is
calculated, as shown in Algorithm 1. Fast computation is
important to achieve rapid, responsive controls that can react
to new information.

If the actual upcoming sequence of power loads were
known a priori, the cost-to-go function would be an accu-
rate representation of total cost that would be incurred over
the remainder of a trip given a state and control. Choosing
the cost-to-go minimizing control at each timestep would be

738



Algorithm 1 High-Level Control Algorithm. The feature
vector, xt, is matched to historical states to get a weighted
set of predictions, {Z0, w0}...{Zk, wk}. The corresponding
precomputed cost-to-go functions Ji are fetched for each
prediction Zi. The control ut that minimizes the one step
cost plus the expectation of cost-to-go is executed

loop
xt ← COMPUTEFEATUREVECTOR(sensorvalues)
{Z0, d0}...{Zk, dk} ← KNN(xt, k)
w0...wk ← 1/d0...1/dk
w0...wk ←NORMALIZE(w0...wk)
{J0...Jk} ← LOOKUPCTGFUN(Z0...Zk)
{ut} ← ARGMINu(c(xt, u) +

∑
i wiJi(x

′
i, t+ 1))

EXECUTE(ut)
end loop

optimal, barring any discretization error. For a predictive con-
troller, it is unlikely that a single prediction would accurately
describe the upcoming load. A set of weighted predictions
is used to account for noise and uncertainty inherent in the
driving domain from intersections, traffic, or driver behavior.
These weighted predictions define the predicted distribution
of upcoming load. When they are in agreement, the algorithm
will be very aggressive with its controls due to the certainty of
the distribution. When the predictions disagree, however, the
controls will be more conservative to mitigate the uncertainty.
For example, when a vehicle approaches an uncertain inter-
section, the controls will be conservative, considering each
likely possibility. As the intersection is decided, confidence
increases and the controls can be more aggressive.

Computing a cost-to-go function using Dynamic Program-
ming can be very expensive as the number of states, con-
trols, or timesteps increases. However, most vehicles have
significant downtime, often overnight, which yields plenty of
opportunity for offline computation. Our optimizer utilizes
this explicitly by computing cost-to-go function tables of-
fline that are simply referenced at run-time. This allows the
agent to use rapid interleaved planning and execution without
sacrificing solution quality.

State Measurement
The algorithm initially takes a measurement of the present
vehicle state. The state space can consist of many potential
features that can be measured with a handful of cheap sen-
sors. Features accessed from the vehicle computer include
speed, acceleration, and power demand. GPS coordinates,
bearing, and time of day require external sensors. Such fea-
tures are invaluable to make load predictions in vehicles.
Hybrid and electric vehicles can also provide information on
battery state of charge, temperature, and current load. Addi-
tional meta-features, such as recent variance in acceleration,
may be calculated if needed. The system architect should
instrument the vehicle and select the features necessary to
make informed predictions using historical data. This feature
vector representing the instantaneous vehicle state is then
passed to a prediction system. More features that inform the
upcoming duty can yield better predictions and performance.

Figure 2: Example kNN State Matching. In this 2D example,
the present state, in gray, matches to the three closest training
examples in white. These states are from historical trips, and
each contains an index into a specific time in that trip.

Load Prediction
Given this state feature vector, the algorithm then make pre-
dictions of the vehicle’s upcoming power load. These predic-
tions are difficult to calculate analytically, requiring a known
route, topology data, driver behavior, and traffic information.
Instead, the algorithm uses prior observed loads from previ-
ous trips as predictions. The present state vector is matched
to similar states in the dataset, and the observed loads that
followed those similar states are used as predictions. This is
only accurate if upcoming load is informed by the instanta-
neous state vector. This assumption is central to the success
of the algorithm: if the state measurement is independent of
the upcoming load, the predictions will be useless.

The prediction step matches the present vehicle state to
historical training data using a nearest neighbor comparison,
as shown in Figure 2. The dataset is searched to find the k
states that have the lowest weighted Euclidean distance, d, to
the present state, x:

d =
√
w1(x1 − z1)2 + ...+ wm(xm − zm)2 (1)

For each training state, z, the distance is computed in
the feature space of dimensionality m. Each feature has an
importance weight, w, that can be defined by the architect or
tuned using a simple optimizer such as gradient descent. The
features should be normalized to be on the same scale so that
the relative weights have physical meaning when inspected.

Each of the k matches is assigned an importance weight
calculated as the inverse of this distance. Therefore, training
states with very similar features to the present state will have
high importance weight associated with their prediction. The
distance function can be modified to suit the application, but
non-linear distance functions can preclude many kNN algo-
rithms. For our linear distances, a standard kd-tree approach
is used to minimize computation time for matching. The pre-
dictor returns the importance weight and indices identifying
the source trip and time index for each training state match.
Each of these indices references an exact point in time in a
prior trip in the dataset, for which all power load data has
been recorded. These weighted predictions are then passed
to the optimizer system.

739



Figure 3: Example Cost-To-Go Function. The function en-
codes the expected cost-to-go for a given state at each
timestep. Brighter values represent higher cost-to-go. In this
example, an empty capacitor at 700s will result in very high
cost being incurred.

Control Optimization
Given a set of predictions, we want to choose the optimal
control that minimizes expected cost-to-go. For a discrete
set of controls and discrete timesteps, a brute force approach
that tests each control at each timestep is exponential in the
lookahead time and quickly becomes intractable. Instead, for
each separate prediction, we compute the cost-to-go function,
J(x, t), for each task state, x, and timestep, t, using Dynamic
Programming and the Bellman Equation:

J(x, t) = min
u

[c(x, t, u) + γJ(x′, t+ 1)] (2)

Here, γ is a discount factor, x′, denotes the state resulting
from executing the control, u, and c represents the one-step
cost function. The state transition function, H , is calculated
using the predicted load, Lt, at each timestep in simulation:

x′ = H(x, u, Lt) (3)

For our tested domain, x is the state of charge of the capac-
itor. Our transition function is a simple model that calculates
the change in state of charge for a given load power, Lt, and
charging power, u.

An example cost-to-go function is shown in Figure 3. Us-
ing Dijkstra’s Algorithm, computing this function and calcu-
lating all the state transitions requires O(X ∗ U ∗ T ) simu-
lations, where X is the number of states, U the number of
possible controls, and T the number of timesteps. It is unre-
alistic to compute these functions for multiple predictions at
run-time.

However, each training example, or prior trip, has a fixed
sequence of loads and thus fixed transitions. Therefore, this
cost-to-go function can be precomputed offline and stored for
each trip. For typical state and timestep resolutions, this can
be done overnight with reasonable simulation complexity. At
run-time, the fixed cost-to-go function for each trip matched
by the predictor is simply loaded from memory. This pushes
the bulk of optimization computation offline as these cost-to-
go functions do not need to be computed on-the-fly.

Given a set of weighted predictions, {Z0, w0}...{Zk, wk},
and a starting state, x, the algorithm calculates the expected
cost-to-go of each candidate discrete control and selects the
best:

ut = argmin
u

c(x, t, u) + EZ [J(x
′, t′)]

ut = argmin
u

c(x, t, u) +
∑
i

(wiJi(x
′, t′)) (4)

Here, Ji represents the cost-to-go function for prediction
Zi and wi denotes its weight; x′ and t′ represent the resulting
state and timestep when executing control u given the state
transition function for that prediction. The resulting ut is
the one-step cost-to-go optimal control with respect to the
set of weighted predictions. As the cost-to-go and transition
functions are precomputed offline, very little computation is
required at each timestep.

Execution
The selected control that minimizes the expected cost-to-go
is then executed. The control loop repeats, starting with a
new state measurement, to calculate the next control.

Training
After a trip is complete, the observed data is added to the
the training dataset. This training occurs offline when the
vehicle is not in use, so as not to monopolize computational
resources. This continual training enables the vehicle to adapt
to new routes, traffic patterns, or driver behaviors.

For a trip, the vehicle states measured at each timestep are
added to the kNN tree. Then, the loads over the course of the
trip are used to calculate the state transition function. Using
Dynamic Programming, this transition function is used to
calculate the cost-to-go function, J(x, t), at each state and
timestep. This function is then added to the database to be
referenced at run-time.

Experiment
We test performance on a simulated prototype hybrid elec-
tric vehicle (EV), using real-world power data from drivers.
The simulated vehicle combines a high-power supercapacitor
with a high-energy battery pack. The optimization task is
to minimize current-squared on the battery pack by leverag-
ing the capacitor as a buffer. We implement our algorithm
and compare its performance at various parameterizations
to an prescient optimal controller that has a priori knowl-
edge of upcoming power loads. We additionally compare the
performance of dynamic learning with leave-one-out batch
learning.

Data Collection
To evaluate our algorithm, we used a dataset of real-world
trips collected daily from a set of volunteer drivers. We
needed repeated data collected from individual vehicles so we
could test long-term learning and prediction. We constructed
the dataset by instrumenting eight different petrol vehicles

740



Figure 4: Simplified Diagram of Supercapacitor Buffer. The
supercapacitor in this hybrid electric vehicle system can act
as a buffer on the battery pack.

with sensors and collecting data from them over the course
of ten months.

This data was run through a standard longitudinal vehicle
model to calculate the expected power loads on an EV battery
pack at each timestep. The model was calibrated using three
different EVs by collecting real-world power load data at the
terminals of their battery packs. The EVs were instrumented
in the same way as the petrol vehicles, and the model was
tuned to minimize RMS error between the calculated power
load and observed power load. Validation and explanation
of this model and data can be found in our previous work
(Styler et al. 2011).

State data was recorded every second, limited by the fre-
quency of the data supplied by the GPS receiver. The state
data recorded from the vehicles include GPS coordinates,
time, elevation, speed, acceleration, and power load. Using
this data, we can simulate our algorithm on each of these
vehicles.

Hybrid Electric Vehicle Prototype

The hybrid EV prototype combines a battery and superca-
pacitor to create a heterogeneous energy pack, as shown in
Figure 4. This pack can handle high power loads with ease
while offering high energy density for sufficient driving range.
The supercapacitor pack in this prototype EV has a much
higher power density than the battery pack. This allows it
to meet high power demands, such as rapid accelerations or
regenerations, with great efficiency. However, these superca-
pacitors have very low energy density, and cannot be used for
long before depletion. The battery pack is extremely energy
dense but performs poorly at high power loads. Under high
load, such as accelerating up a hill, the battery pack gener-
ates a significant amount of heat and loses efficiency due
to the Peukert Effect. External cooling systems also require
additional energy, reducing overall vehicle efficiency.

Ideally, the supercapacitor would handle all high power
loads, and the battery pack would only handle low power
loads and low power charging of the capacitor. Intelligent
predictive control is needed to optimally pre-charge or dis-
charge the capacitor. For the simulated hybrid EV prototype,
the control lever is the total power drawn from the battery.
Any excess or shortage of power, with respect to the de-
manded power load, is handled by the supercapacitor buffer.
This allows the vehicle to charge or discharge the supercapac-
itor, while meeting the driver power demands, with a single
control variable.

Cost Function and Setup
The system architect defines a degree of freedom for control
and an objective cost function to minimize. For this experi-
ment, the algorithm will control the charging and discharging
of the capacitor by controlling battery pack output. It is con-
strained to meet all demands created by the driver and to
operate within the safety limits of the energy pack.

To minimize high power loads on the battery, the one-step
cost function calculates the square of current on the battery
given the voltage, Vt

c(x, u, t) =
u

Vt

2
(5)

The difference between the battery power output, u, and
the load demand is handled by the supercapacitor. The battery
power output can be constrained if the supercapacitor is at or
near its charge limits.

The total cost incurred for a trip is the integral of the
current squared from the battery over time. Using this cost
function results in the desired behavior of pre-charging of the
capacitor during idle or low power loads in order to handle
upcoming high power loads later. This will result in lower
thermal output and possibly longer longevity of the battery,
but neither are modeled in the scope of this work.

The state feature vector used for our prediction is:∣∣∣∣GPS Bearing T ime Day
Speed Acceleration EnergyUsed

∣∣∣∣ (6)

The frequency of control decisions for the simulation is set
to 1Hz, to match the frequency of the state data contained
in a dataset. In an actual implementation, it can operate at
higher frequency if the sensors measuring vehicle state can
supply new information faster.

Each driver dataset is tested independently and the results
are combined into a single performance measure.

Results
We test and analyze the performance in our simulator using
the real-world data. We compare performance against an
upper bound calculated by a prescient optimal controller with
a priori knowledge of the upcoming load. We also compare
to a simple buffer method and a controller optimizing against
the mean of the weighted predictions. We compare varying
number of predictions k with a fixed 50Wh capacitor size.
We also show sensitivity to varying capacitor size with a fixed
k = 7. Finally, we compare the dynamic dataset that grows
chronologically with a leave-one-out batch dataset of all the
data.

Performance Comparison
The results of various methods are compared with the algo-
rithm, shown in Figure 5. The baseline represents the total
cost incurred for a battery pack without a supercapacitor. The
buffer method only stores regenerated energy and spends it as
soon as possible. It simply demonstrates an additional base-
line with no intelligent control, and is not meant to reflect the
performance of fixed point or reactive policies.

741



Figure 5: Comparison of Methods. This shows the improve-
ment in current squared for each method over the baseline.
High number of predictions, such as k = 30, approach the
upper performance bound. Marked improvement over mean
or mode predictions is observed.

The mode method only uses the single most likely pre-
diction for optimization, and it is thus more subjective to
prediction error and noise. The mean method averages the
load predictions of k = 7 neighbors into a single prediction
and calculates the optimal control. Due to this combination
of predictions at run-time, offline computation of the cost-
to-go function is not possible and the algorithm cannot run
in real-time. These approaches serve as an indication of the
limits of approaches that do not consider uncertainty.

We observe the predictive algorithm achieves > 91% of
the performance improvement possible with k = 30.

Sensitivity
The sensitivity of performance to number of neighbors and
capacitor size was tested. The number of neighbors increases
performance, with diminishing returns, at the cost of marginal
computation time. The size of the supercapacitor affects the
ability to buffer large demands and the sensitivity of the
algorithm to prediction error.

The sensitivity to the number of neighbors is shown tangen-
tially in Figure 5. Here we observed improved performance
as k increases, but with diminishing returns. Each additional
neighbor has a lower importance weight attached to the pre-
diction. As k increases, these weights become insignificant
to the overall optimization and have negligible effect on the
control outcome.

Supercapacitor size greatly affects the performance of the
agent, shown in Figure 6. Excessively large capacitors have
significant headroom, allowing control mistakes to occur with
little penalty to overall performance. As the capacitor size is
reduced, the algorithm is more susceptible to prediction error,
and mistakes in control from inaccurate predictions can incur
significant cost. The performance relative to the optimal pre-
scient agent is shown at six sizes, {5, 10, 50, 100, 200, 1000}
Wh.

Dynamic Performance
The performance results shown so far were calculated using a
batch leave-one-out cross validation (LOOCV) test. For each
trip tested, every other trip in the dataset is used as training

Figure 6: Sensitivity to Supercapacitor Size. The graph shows
the sensitivity of performance to the capacitor size. Larger
capacitors are less sensitive to prediction error as the large
buffer allows for many mistakes.

Figure 7: Performance Comparison of Batch and Dynamic
Systems. The graph compares individual trip performance
using the batch or dynamic learners. In most cases the batch
learner performs better due to better coverage.

data. This eliminates any possible bias effects due to data
ordering or dataset division, but demonstrates results after
months of driving data has been collected. To evaluate the
dynamic performance, we also tested how well the algorithm
performs through a simulated lifetime of the vehicle. The
data was tested chronologically, in the order it was collected,
and each trip was added to the training data after testing.

The results comparing the batch performance to the dy-
namic performance are shown in Figure 7. Each point repre-
sents the performance of a trip, relative to an optimal upper
bound, for the batch and dynamic case. The majority of trips
perform better in the batch case, with more training data,
and only a few outliers perform significantly better in the
dynamic case due to noise.

Future Work
The next extension to this work is implementation on a high
fidelity plug-in HEV simulator. A common problem in plug-
in HEV control is sustaining charge over the course of a
trip, so electric power is always available. Our algorithm
can predict charging events to optimally deplete the battery
when appropriate. Also, it can optimally distribute the use

742



of electric power between charging cycles. This extension
would allow the direct comparison of this approach to many
existing methods.

Other sustainability domains sensitive to spatiotemporal
loads may also be optimized by leveraging past data. One
such possible application is HVAC control in an office build-
ing, where human behavior patterns influence load.

Conclusions
In this work, we have demonstrated we can achieve real-
time near-optimal control of an energy management task by
leveraging predictions from prior data. A dynamic system can
constantly improve performance by expanding the dataset
to improve data coverage. Future uncertainty and prediction
error will bound the performance of this approach.

Our optimization approach, the independent combination
of the cost-to-go functions at run-time, allows almost all com-
putation to be done offline. A handful of simulations, a tree
search, and a few table lookups are computed at run-time,
which can be done faster than real-time on even modest hard-
ware. This real-time prediction and optimization approach
achieves performance close to retrospective optimizations
using a priori knowledge of the upcoming power loads.

In simulation, we achieved > 91% of the improvement
achieved by the prescient upper bound. This performance is
excellent and suggests our optimization approach could be
successful for other high-level vehicle optimization tasks.

We have demonstrated the potential for data-driven in-
telligence and real-time optimization in this transportation
sustainability task. Our approach could be used for other load-
sensitive sustainability problems with adequate predictions.
The environmental implications of this work can be realized
with further research.

Acknowledgments
The authors gratefully acknowledge the contributions of
BMW, Bosch, Bombardier, Google, the ChargeCar team, the
CREATE Lab, our data volunteers, and reviewers. This mate-
rial is based upon work supported by the National Science
Foundation under Grant No. (0946825).

References
Brahma, A.; Guezennec, Y.; and Rizzoni, G. 2000. Optimal
energy management in series hybrid electric vehicles. In
American Control Conference, 2000. Proceedings of the 2000,
volume 1, 60–64. IEEE.
De Vlieger, I.; De Keukeleere, D.; and Kretzschmar, J. 2000.
Environmental effects of driving behaviour and conges-
tion related to passenger cars. Atmospheric Environment
34(27):4649–4655.
Delprat, S.; Guerra, T. M.; and Rimaux, J. 2002. Control
strategies for hybrid vehicles: optimal control. In Vehicular
Technology Conference, 2002. Proceedings. VTC 2002-Fall.
2002 IEEE 56th, volume 3, 1681–1685. IEEE.
Di Cairano, S.; Bernardini, D.; Bemporad, A.; and Kol-
manovsky, I. 2014. Stochastic mpc with learning for driver-
predictive vehicle control and its application to hev energy

management. Control Systems Technology, IEEE Transac-
tions on 22(3):1018–1031.
Ericsson, E. 2000. Variability in urban driving patterns.
Transportation Research Part D: Transport and Environment
5(5):337–354.
Holmén, B. A., and Niemeier, D. A. 1998. Characterizing the
effects of driver variability on real-world vehicle emissions.
Transportation Research Part D: Transport and Environment
3(2):117–128.
Langari, R., and Won, J.-S. 2005. Intelligent energy man-
agement agent for a parallel hybrid vehicle-part i: system
architecture and design of the driving situation identifica-
tion process. Vehicular Technology, IEEE Transactions on
54(3):925–934.
LeBlanc, D. C.; Saunders, F.; Meyer, M. D.; and Guensler, R.
1995. Driving pattern variability and impacts on vehicle car-
bon monoxide emissions. Transportation Research Record
(1472).
Liu, A., and Pentland, A. 1997. Towards real-time recogni-
tion of driver intentions. In Intelligent Transportation System,
1997. ITSC’97., IEEE Conference on, 236–241. IEEE.
Lyshevski, S. E., and Yokomoto, C. 1998. Control of hybrid-
electric vehicles. In American Control Conference, 1998.
Proceedings of the 1998, volume 4, 2148–2149. IEEE.
Mosbech, H. 1980. Optimal control of hybrid vehicle. In
Proc., International Symp. on Automotive Technology & Au-
tomation (ISATA80), volume 2, 303–320.
Musardo, C.; Rizzoni, G.; Guezennec, Y.; and Staccia, B.
2005. A-ecms: An adaptive algorithm for hybrid electric
vehicle energy management. European Journal of Control
11(4):509–524.
Opila, D. F.; Wang, X.; McGee, R.; and Grizzle, J. 2013. Real-
time implementation and hardware testing of a hybrid vehicle
energy management controller based on stochastic dynamic
programming. Journal of Dynamic Systems, Measurement,
and Control 135:021002.
Oprean, M.; Ionescu, V.; Mocanu, N.; Beloiu, S.; and Stanciu,
C. 1988. Dynamic programming applied to hybrid vehicle
control. In Proc. of the International Conf. on Electric Drives
(ICED 88), volume 4, D2.
Salmasi, F. R. 2007. Control strategies for hybrid elec-
tric vehicles: Evolution, classification, comparison, and fu-
ture trends. Vehicular Technology, IEEE Transactions on
56(5):2393–2404.
Styler, A., and Nourbakhsh, I. 2013. Model predictive control
with uncertainty in human driven systems. In Twenty-Seventh
AAAI Conference on Artificial Intelligence.
Styler, A.; Podnar, G.; Dille, P.; Duescher, M.; Bartley, C.;
and Nourbakhsh, I. 2011. Active management of a het-
erogeneous energy store for electric vehicles. In Integrated
and Sustainable Transportation System (FISTS), 2011 IEEE
Forum on, 20–25. IEEE.

743




