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Abstract

Applications in sustainability domains such as in en-
ergy, transportation, and natural resource and environ-
ment monitoring, increasingly use sensors for collect-
ing data and sending it back to centrally located pro-
cessing nodes. While data can usually be collected by
the sensors at a very high speed, in many cases, it can
not be sent back to central nodes at a frequency that is
required for fast and real-time modeling and decision-
making. This may be due to physical limitations of the
transmission networks, or due to consumers limiting
frequent transmission of data from sensors located at
their premises for security and privacy concerns. We
propose a novel solution to the problem of making short
term predictions in absence of real-time data from sen-
sors. A key implication of our work is that by using
real-time data from only a small subset of influential
sensors, we are able to make predictions for all sen-
sors. We evaluated our approach with a large real-world
electricity consumption data collected from smart me-
ters in Los Angeles and the results show that between
prediction horizons of 2 to 8 hours, despite lack of real
time data, our influence model outperforms the baseline
model that uses real-time data. Also, when using partial
real-time data from only ≈ 7% influential smart meters,
we witness prediction error increase by only ≈ 0.5%
over the baseline, thus demonstrating the usefulness of
our method for practical scenarios.

Introduction
Low cost wireless sensors are increasingly being deployed
in large numbers for performing monitoring and control in
many sustainability domains such as in smart electric grids,
transport networks, and natural resource and environment
monitoring. These sensors are located at geographically dis-
persed locations and periodically send back acquired data
to centrally located processing nodes (Ciancio and Ortega
2005) via wireless links and the Internet (Chong and Ku-
mar 2003). They include sensors for monitoring natural re-
source and environment such as biodiversity and atmosphere
(Lozano et al. 2009); smart meters for measuring energy
consumption (Simmhan et al. 2013), (Marascu et al. 2013);
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loop detectors installed under pavements for recording traf-
fic (Pan, Demiryurek, and Shahabi 2012); and meters on
wind turbines that record wind speed and turbines’ power
output (Bullis 2014).

Due to several factors, data from all sensors is not avail-
able at central nodes in real-time or at a frequency that is re-
quired for fast and real-time modeling and decision-making.
For example, wind turbines record data every few seconds,
but transmit data every five minutes to far-off research cen-
ters for use in forecasting algorithms (Bullis 2014). Phys-
ical limitations of existing transmission networks, such as
latency, bandwidth and high energy consumption (Ciancio
and Ortega 2005) are key factors that limit the frequency of
data transmission from sensors to central nodes (Bouhafs,
Mackay, and Merabti 2012). Sometimes, consumers may
also limit frequent transmission of information from sensors
located at their premises for security and privacy concerns
(McDaniel and McLaughlin 2009).

All these situations reflect the partial data problem,
where only partial data from sensors is available in real-
time, and complete high resolution data become available
only periodically, generally one or more times a day. With-
out addressing this problem, traditional solutions risk degra-
dation in performance and inaccurate interpretation of gen-
erated insights. For instance, time series prediction methods
are adversely affected by the prediction horizon length, and
in the case of partial data, the effective prediction horizon
for those sensors for which data is unavailable in real-time
becomes larger, which in turn leads to detrimental increase
in prediction error. Thus, the time series approach cannot be
used for accurate predictions, for example, for up to 8 hours
ahead. A possible approach - as we propose in this paper
- is to develop creative solutions using data from a small
subset of sensors selected on the basis of some heuristics
or learning methods, while minimizing information loss re-
sulting from leaving out data from remaining sensors. The
intuition behind this approach is the fact that sensors located
spatially close to each other or sensing activities driven by
similar schedules - such as those on an academic campus or
traffic on high density roads - are likely to be correlated. If
this information can be leveraged, it will obviate the need for
real-time transmission from all sensors to the central nodes,
and thereby reduce the load on the transmission network.
Also, it would make it simpler to add new sensors without
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straining the network.
We distinguish partial data from missing data, which is

arbitrary unavailability of data at random time periods due
to diverse factors, whereas partial data is systematic unavail-
ability of data for known time periods for a known subset of
smart meters, due to non-transmission of data in that period.
While selective missing data is lost, partial data becomes
available when batch transmission occurs, and can be used
to re-train our models.

In this paper we address the partial data problem in the
context of smart electricity grids, where high volume elec-
tricity consumption data is collected by smart meters at con-
sumer premises and securely transmitted back to the electric
utility over wireless or broadband networks. There, they are
used to predict electricity consumption and to initiate cur-
tailment programs ahead of time by the utility to avoid po-
tential supply-demand mismatch. Partial data problem arises
when data from smart meters is only partially available in
real-time. To address this, we propose a two-stage solution:
first, we learn the dependencies among time series of dif-
ferent smart meters, then, we use data from a small subset
of smart meters which are found to have high influence on
others to make predictions for all meters. Our main contri-
butions are:

1) We leverage dependencies among time series sensor
data for making short term predictions with partial real-time
data. While time series dependencies have been used previ-
ously, the novelty of our work is in extending the notion of
dependencies to discover influential sensors and using real-
time data only from them to do predictions for all sensors.

2) Using real-world electricity consumption data, we
demonstrate that despite lack of real time data, our predic-
tion models perform comparably to the baseline model that
uses real-time data, thus indicating their usefulness for prac-
tical sustainability domain scenarios.

Related Work
Many predictive modeling methods are designed for ideal
scenarios where all required data is readily available. For
example, time-series prediction methods such as Auto-
Regressive Integrated Moving Average (ARIMA) (Box and
Jenkins 1970) and Auto-Regressive Trees (ART) (Meek,
Chickering, and Heckerman 2002) require observations
from recent past to be readily available in real-time to
make short-term future predictions. However, this assump-
tion does not hold true for many sensor-based applications
involving ”big data” that is only partially available in real
time. The solutions proposed to address this problem can
be categorized into two types: 1) Reduce the volume of
transmitted data by techniques such as data compression
(Marascu et al. 2013), (Razzaque, Bleakley, and Dobson
2013), data aggregation (Karimi, Namboodiri, and Jadli-
wala 2013), model-driven data acquisition (Deshpande et
al. 2004), and communication efficient algorithms (Sanders,
Schlag, and Muller 2013); 2) Estimate missing real-time
data by techniques such as interpolation based on regression
(Kreindler and Lumsden. 2006), or through transient time
models that use differential equations to model system be-
havior (Cuevas-Tello et al. 2010). Main challenge with these

methods is that estimates depend on the accuracy of models
and interpolation errors get propagated to subsequent analy-
sis and decision-making steps. Another method for estima-
tion is using spectral analysis of time series, though it is a
more complex and involved process that is suitable only for
periodic time series (Bahadori and Liu 2012). We use an or-
thogonal approach where instead of trying to estimate miss-
ing real-time data, we first discover influential sensors and
then do predictive modeling using real time data from only
these sensors.

Our approach involves learning dependencies among time
series data from different sensors. Several techniques have
been proposed to learn dependencies among time series
data; the more popular among them are based on cross-
correlations (Box and Jenkins 1970) and Granger Causal-
ity (Granger 1969). The latter has gained popularity in many
domains such as climatology, economics, and biological sci-
ences due to its simplicity and robustness (Bahadori and Liu
2012). It is however time consuming for evaluating pairwise
dependencies when large number of variables are involved.
Lasso-Granger (Arnold, Liu, and Abe 2007) is proposed to
provide a more scalable and accurate solution. In our work,
we leverage the Lasso-Granger method to discover depen-
dencies among time series from different sensors, and then
identify influential sensors based on these dependencies.

Our work brings the much needed focus to efficient data
collection methods for sustainability domains. In smart grid,
data streams from thousands of sensors are monitored for
predictive analytics (Balac et al. 2013), and demand re-
sponse (Kwac and Rajagopal 2013). With large scale adop-
tion of smart meters, most cities would soon have millions
of smart meters recording electricity consumption data every
minute. For utilities, real-time data collection from meters
all over a city would be prohibitive due to limited capacity
of current transmission networks. Such scenarios necessitate
development of alternative methods, such as ours, that could
work with only partial data that is available in real-time.

Preliminaries
Consider a large set of sensors S = {s1, ..., sn} collecting
real-time1 data. Due to network bandwidth constraints, only
some of these sensors can send data back to the central node
in real-time, while the rest send the collected data in batches
every few hours (Fig. 1). The problem we address is to use
this partial data to make predictions for all sensors.

Problem Definition Given a set of sensors S with time
series outputs {xij}, j = 1, ..., t, i = 1, ..., n, make short-
term predictions {xij}, j = t + 1, ..., t + h, i = 1, ..., n for
each sensor si ∈ S, when readings {xok}, k = t−r+1, ..., t
for o ∈ O are unavailable for a subset O of sensors, O ⊂ S .

For simplicity, we assume all time-series sensor outputs
to be sampled at the same frequency and be of equal length.

We hypothesize that we can learn dependencies in past
time series outputs from sensors and use them to identify the
set of sensors that are more helpful in making predictions for

1In the context of this paper, data collected at 15-min intervals
are considered real-time, even though our models would be appli-
cable (with even greater impact) to data at smaller resolutions.
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Figure 1: Some sensors can send readings to a central node
in real-time, while the rest send every few hours resulting in
partial real time data.

other sensors, so that we can collect real-time readings from
only these sensors.

Definition 1 A dependency matrixM is an n × f matrix,
where each element M[i, j] represents the dependence of
time series Ti on time series Tj .

Here, n is the number of sensors and f is the number of
features used for each sensor.
Definition 2 The influence Ik of a time series Tk is defined
as the sum of all values in the column k in the dependency
matrixM.

Ik =
n∑

j=1

M[j, k] (1)

Definition 3 Compression Ratio, CR is defined as the ra-
tio between the total number of sensor readings that would
be required for real-time prediction and the number of read-
ings actually transmitted from selected influential sensors
for prediction with partial data.

CR =

∑n
i=1 |Pi|∑n

i=1 |Pi| −
∑

o∈O |Po|
(2)

where Pi is the sequence of past values from sensor si used
for prediction and |Pi| is the length of this sequence;O is the
subset of sensors with unavailable real-time readings and n
is the total number of sensors. For simplicity, we consider
same length l of past values for all sensors. Hence, |Pi| =
l,∀i and above equation can be simplified as CR = n

n−|O| .

Methodology
We propose a two-stage process, where we first learn de-
pendencies from past data and determine influence for indi-
vidual sensors, and then use this information for selecting
influential sensors for regression tree based prediction.

Influence Discovery
We cast the problem of making predictions for a sensor si ∈
O in terms of recent real time data from other sensors as a
regression problem. In ordinary least squares (OLS) regres-
sion, given data (xi, yi), i = 1, 2, ..., n, the response yi is es-
timated in terms of p predictor variables, xi = (xi1, ..., xip)
by minimizing the residual squared error.

We identify sensors that show stronger influence on other
sensors using the Lasso Granger method. We thus use Lasso

Granger as a novel way for feature selection. The lasso
method is used in regression for shrinking some coefficients
and setting others to zero by penalizing the absolute size of
the coefficients (Tibshirani 1996). The OLS method gen-
erally gives low bias due to over-fitting but has large vari-
ance. The Lasso improves variance by shrinking coefficients
and hence may reduce overall prediction errors (Tibshirani
1996).

Given n sensor outputs in form of time series
x1, x2, ..., xn, with readings at timestamps t = 1, ...T , for
each series xi, we obtain a sparse solution for coefficients w
by minimizing the sum of squared error and a constant times
the L1-norm of the coefficients:

w = arg min
T∑

t=l+1

∥∥∥∥∥∥xit −
n∑

j=1

wT
i,jP

j
t

∥∥∥∥∥∥
2

2

+ λ‖w‖1 (3)

where Pj
t is the sequence of past l readings, i.e., Pj

t =

[xjt−l, ..., x
j
t−1], wi,j is the j-th vector of coefficients wi rep-

resenting the dependency of series i on series j, and λ is a
parameter which determines the sparseness of wi and can be
determined using cross-validation method.

Influence Model (IM)
We first learn the dependency matrix Mj for each day as
follows. Each sensor’s data is split into a set of q daily se-
ries {Di

j}i=1,...,n,j=1,...,q . Longer time series data is usu-
ally non-stationary, i.e., the dependence on preceding val-
ues changes with time. Splitting into smaller day-long win-
dows ensures stationarity for time series data in each win-
dow. Dependency matrix is re-calculated daily to account
for changes in influence over time. Weights for daily series
for each day are calculated using eqn. 3. The weight vectors
wi form the rows of the dependency matrixM. We set di-
agonals of the dependency matrix to zero, i.e.,M[i, i] = 0
in order to remove self-dependencies and simulate the case
of making prediction without a sensor’s own past real-time
data. Given M, influence I of all series can be calculated
using eqn. 1.

Predictions for a given day are based on training data from
a previous similar day sim. We consider two cases of sim-
ilarity: 1) previous week - same day in the preceding week,
which captures similarity for sensor data related to periodic
(weekly) human activities; 2) previous day, which captures
similarity for sensor data related to human activities and nat-
ural environments on successive days.

We apply a windowing transformation to the daily se-
ries {Di} in both training and test data to get a set of
〈predictor, response〉 tuples. Given time-series x with k val-
ues, the transformation of length l results in a set of tuples
of the form 〈(xt−l+1, ..., xt), xt+h〉 such that l ≤ t ≤ k−h.

The prediction model for a sensor si is a regression tree
(Breiman et al. 1984) that uses predictors from all sensors
with non-zero coefficients in the dependency matrix learned
from a similar day, i.e., predictors are taken from {Dk},∀k :
Msim[i, k] 6= 0. Since M[i, i] = 0, sensor si’s own past
values are not used as predictors. Hence, a key benefit of this
model is that we are able to do predictions for a sensor in
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(a)

(b)

(c)

Figure 2: Influence/dependency w.r.t
(a) time, (b) size, and (c) distance:
higher values observed for weekdays
than for weekends.

(a)

(b)

(c)

Figure 3: LIM’s performance: (a)
MAPE; and percentage change in
MAPE with respect to (b) IM and
(c) ART. (Negative change implies in-
crease in error.)

(a)

(b)

(c)

Figure 4: GIM’s performance: (a)
MAPE; and percentage change in
MAPE with respect to (b) IM and
(c) ART. (Negative change implies in-
crease in error.)

absence of its own past values by using past values of its
influential sensors.

Local Influence Model (LIM)
In the previous section, we discussed how IM resolves the
problem of partial data availability by using influential sen-
sors (a small subset of sensors) to transmit data in real time.
However, without restricting the number of influential sen-
sors, the subset of influential sensors considered by IM may

include the total number of sensors. Next, we discuss a pol-
icy to ensure that only a fraction of sensors is considered for
real-time predictions. For each sensor si, we sort the corre-
sponding rowM[i, ] in the dependency matrix and consider
only readings from the top τl sensors in this model.

Global Influence Model (GIM)
In LIM, because local influencers are selected for each sen-
sor, overall it may still require real-time data from a large
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number of sensors, thus defeating the goal of getting real-
time data from only a few influencers. Thus, we are inter-
ested in finding global influencers. Using dependency matri-
cesMj , we calculate daily influence Iij for each sensor si as
described in equation 1. After sorting the sensors based on
their influence values, we consider only readings from the
top τg sensors in the influence model.

Experiments
Datasets
1) Electricity Consumption Data2: collected at 15-min inter-
vals by over 170 smart meters installed in the USC campus
microgrid (Simmhan et al. 2013) in Los Angeles.
2) Weather Data: temperature and humidity data taken from
NOAA’s (NOAA 2013) USC campus station, linearly inter-
polated to 15-min resolution.

Performance Comparison
We evaluate our models for up to 8 hour-ahead prediction3.
Given the short horizon, the length of previous values used
was set to 1-hour. Out of two choices of similar day for
training, previous week and previous day, we found previ-
ous week to perform better.

Baseline Model We use the Auto-Regressive Tree (ART)
Model as the baseline. Our proposed models are also based
on regression tree concept so ART provides a natural base-
line to compare performances. ART uses recent observa-
tions as features in a regression tree model and has been
shown to offer high predictive accuracy on a large range of
datasets (Meek, Chickering, and Heckerman 2002). ART’s
main advantage is its ability to model non-linear relation-
ships in data, which leads to a closer fit to the data than a
standard autoregressive model. We implement a specialized
ART (p, h) model that uses recent p observations of a vari-
able for making h interval ahead prediction. While ART uses
a variable’s own recent observations, our models only use
other variables’ observations to make predictions.

Evaluation Metric We used MAPE (Mean Absolute Per-
centage Error) as the evaluation metric, as it is a relative
measure and therefore scale-independent (Aman, Simmhan,
and Prasanna 2014). MAPE = 1

n

∑n
i=1

|xi−x̂i|
xi

where xi is
the observed value and x̂i is the predicted value.

Influence Variation
Fig. 2(a) shows influence variation for the top 4 influencer
sensors. Given this variation, we decided to re-calculate in-
fluence for each day in our experiments, rather than use a
static value calculated over a large number of days. Fig. 2(b)
shows the distribution of influence for each sensor with the
size of sensor readings. It is interesting to note that build-
ings with smaller consumption values have higher influence.

2Available from the USC Facilities Management Services.
3Smart Grid applications such as Demand Response usually

require up to 6 hours ahead predictions (Aman, Simmhan, and
Prasanna 2014).

Figure 5: Prediction performance: partial data vs. complete
data. For ART, recent values used as predictors at the time of
prediction become increasingly ineffective for longer hori-
zons, when IM’s use of more recent real-time values of other
sensors become more useful.

Also, influence for weekdays is higher possibly due to more
activity and movement of people between buildings.

Fig. 2(c) shows average dependency decreasing with in-
crease in the distance between the sensors. This validates
our intuition about greater dependency among closely lo-
cated sensors. This can be attributed to greater movement
of people between neighboring buildings, and hence greater
dependency in their electricity consumption. Also, there is
more movement on weekdays, hence we observe that aver-
age dependency is higher for weekdays than for weekends.

Prediction Performance
Fig. 5 shows prediction errors of the influence model, aver-
aged over all days and for all sensors. ART performs well
up to 6 intervals (1.5 hour), as due to the very short pre-
diction horizon, electricity consumption is not expected to
drastically change from its previous 4 values. ART performs
well as it has access to real-time data. Instead, IM achieves
comparable accuracy despite the lack of real-time data. IM’s
accuracy also increases with the prediction horizon, where
it consistently outperforms ART. While increase in IM’s er-
ror is subdued, ART’s error increases rapidly with increasing
horizon implying that the previous 4 values used as predic-
tors at the time of prediction become increasingly ineffective
for predicting values beyond 1.5 hours ahead in time. Here,
more recent real-time values of other sensors become more
useful predictors than a sensor’s own relatively older values.
That IM achieves good accuracy despite the lack of real-time
data is an important result and its main advantage.

For comparison, we used an additional baseline (shown
as IM++ in Fig. 5), where we include both other sensors’
real-time data as well a sensor’s own real-time data. IM++
outperforms IM initially, but beyond 2 hours its performance
is similar to that of IM. This implies that even in absence of
a sensor’s own data, IM can achieve same results as when
this data is available, again indicating its advantage.

For local influence model (Fig. 3(a)), we consider real-
time values from top τ influential sensors for each sensor
(τ = 4, 8, 12, 16, 20). ART performs well initially due to
very short prediction horizon, but its errors increase rapidly
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(a) (b)

Figure 6: Lift in MAPE for LIMs w.r.t (a) IM and (b) ART.
Positive lift is observed w.r.t. ART beyond Top 8. (Positive
lift indicates reduction in MAPE.)

(a) (b)

Figure 7: Lift in MAPE for GIMs w.r.t (a) IM and (b) ART.
Positive lift is observed w.r.t. ART beyond Top 12. In (b)
Only ≈ 0.5% increase in prediction error over ART is wit-
nessed while using just top 8 (≈ 7%) of smart meters.

with increasing horizon. The LIMs show performance com-
parable to IM, while using real-time values from fewer sen-
sors. Using increasingly fewer predictors increases the pre-
diction error for LIMs, but only slightly. LIM’s performance
deteriorates compared to IM in terms of percentage change
(Fig. 3(b)) with increasing horizon. This can be the effect
of very few sensors remaining influential over longer hori-
zons. When averaged over all horizons, we observe 4.71%
increase in error compared to IM for Top 4 model which
comes down to 1.97% increase for Top 8 and less than 1%
increase for Top 12, 16, and 20 models (Fig. 6(a)). We ob-
serve that beyond 1-2 hour horizon, all LIMs outperform
ART (Fig. 3(c)) as for ART, the effective horizon now in-
cludes the prediction horizon and the unavailable real-time
data. When averaged over all horizons, we observe that for
Top 4, there is an increase in error by 2.24%, but for Top 8
(and Top 12, 16, 20), the error actually decreases (Fig. 6(b))
with respect to ART. Thus, we conclude that for this dataset,
we need at least 8 influential sensors for each sensor to im-
prove performance over the baseline.

The global influence model uses real-time values from
only top τ influential sensors selected globally for all sen-
sors (τ = 4, 8, 12, 16, 20) GIM outperforms ART beyond 8
intervals (Fig. 4(a)). However as the number of predictors
is reduced when moving from Top 20 to Top 4 model, we
observe that increase in errors is more pronounced for GIM
(Fig. 4(a)) than for LIM (Fig. 3(a)) as the number of unique

influential sensors is significantly lower in the case of GIM
as compared to LIM and IM. While LIM used influential sen-
sors selected separately for each sensor, GIM uses the same
set of influential sensors for all sensors and still achieves
comparable performance. Top 20 and Top 16 GIMs outper-
form IM (Fig. 4(b)) for 1 interval ahead and later for 28 and
32 intervals. This could be due to the large number (20 and
16) of predictors selected in these models overlapping with
those of IM. This is further supported by the average result
over all horizons, where both Top 20 and Top 16 models
show less than 1% increase in errors compared to IM (Fig.
7(a)). We also observe that all GIMs outperform ART be-
yond 12 intervals, i.e., 3 hour horizon (Fig. 4(c)). When at
least 12 influential sensors are available, improvements are
observed over the baseline across all horizons (Fig. 7(b)).
We also found that as compression ratio (eqn. 2) was in-
creased from 5 to 30, increase in MAPE was only by ≈ 1%.
GIM is able to provide a practical solution using real-time
values from only a small fraction of sensors, thus achieving
great compression ratio.

Conclusion and Future Work

We address the partial data problem in sustainability do-
main applications that arises when data from all sensors is
not available at central nodes in real time, either due to net-
work latency or data volume, or when transmission is limited
by the consumers for security and privacy reasons. Standard
models for short term predictions are either unable to predict
or perform poorly when trying to predict with partial data.
We propose novel influence based models to make predic-
tions using real-time data from only a few influential sen-
sors, and still provide performance comparable to or better
than the baseline. Thus, we provide a practical alternative to
canonical methods - which assume real-time data availabil-
ity for all sensors - for dealing with unavailable real-time
readings in sensor streams. These models are generalizable
to applications in several domains, and provide a simple and
interpretable solution that is easy to understand and apply
for domain experts.

Future extension of this work is towards a two stage pro-
cess for influence discovery, guided by heuristics, and by a
combination of local and global selection of influential sen-
sors to further improve prediction performance. Another di-
rection of research is for scenarios when time series data
from different sensors is not sampled at equally spaced time
intervals resulting in irregular time series.

Acknowledgments

This material is based upon work supported by the
United States Department of Energy under Award Number
DEOE0000192, and the Los Angeles Department of Water
and Power (LA DWP). The views and opinions of authors
expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof, the LA
DWP, nor any of their employees.

606



References
Aman, S.; Simmhan, Y.; and Prasanna, V. 2014. Holistic
measures for evaluating prediction models in smart grids.
IEEE Transactions in Knowledge and Data Engineering
PP(99).
Arnold, A.; Liu, Y.; and Abe, N. 2007. Temporal causal
modeling with graphical granger methods. In Interna-
tional conference on Knowledge discovery and data mining
(KDD’07). ACM.
Bahadori, M. T., and Liu, Y. 2012. Granger causality anal-
ysis in irregular time series. In SIAM International Confer-
ence on Data Mining (SDM 2012). SIAM.
Balac, N.; Sipes, T.; Wolter, N.; Nunes, K.; Sinkovits, R. S.;
and Karimabadi, H. 2013. Large scale predictive analytics
for real-time energy management. In IEEE International
Conference on Big Data.
Bouhafs, F.; Mackay, M.; and Merabti, M. 2012. Links to
the future: communication requirements and challenges in
the smart grid. IEEE Power and Energy Magazine 10(1).
Box, G. E. P., and Jenkins, G. M. 1970. Time series analysis,
forecasting and control. Holden-Day.
Breiman, L.; Friedman, J.; Stone, C. J.; and Olshen, R. A.
1984. Classification and regression trees. CRC press.
Bullis, K. 2014. Smart wind and solar power. MIT Technol-
ogy Review.
Chong, C., and Kumar, S. P. 2003. Sensor networks: Evolu-
tion, opportunities, and challenges. Proceedings of the IEEE
91.
Ciancio, A., and Ortega, A. 2005. A distributed wavelet
compression algorithm for wireless multihop sensor net-
works using lifting. In IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP’05).
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