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Abstract

We consider the Social Ridesharing (SR) problem, where a
set of commuters, connected through a social network, ar-
range one-time rides at short notice. In particular, we focus
on the associated optimisation problem of forming cars to
minimise the travel cost of the overall system modelling such
problem as a graph constrained coalition formation (GCCF)
problem, where the set of feasible coalitions is restricted by
a graph (i.e., the social network). Moreover, we significantly
extend the state of the art algorithm for GCCF, i.e., the CFSS
algorithm, to solve our GCCF model of the SR problem. Our
empirical evaluation uses a real dataset for both spatial (Geo-
Life) and social data (Twitter), to validate the applicability of
our approach in a realistic application scenario. Empirical re-
sults show that our approach computes optimal solutions for
systems of medium scale (up to 100 agents) providing sig-
nificant cost reductions (up to −36.22%). Moreover, we can
provide approximate solutions for very large systems (i.e., up
to 2000 agents) and good quality guarantees (i.e., with an ap-
proximation ratio of 1.41 in the worst case) within minutes
(i.e., 100 seconds).

1 Introduction
The concept of real-time ridesharing, where people arrange
one-time rides at short notice with their private cars, is
rapidly shifting the way people commute for their daily
activities. Companies such as Uber or Lyft allow users to
quickly share their positions and arrange rides with other
people they know/trust within minutes, hence providing a
credible alternative to standard transportation systems (such
as taxis or public transport). A clear trend for such compa-
nies is to build a community of users, where commuters can
rate drivers/passengers, and then use such information to au-
tomatically form groups of commuters that know/trust each
other.

Following this trend, here we focus on providing an ap-
proach that, given the desired starting points and destina-
tions of a community of commuters, can share cars to lower
associated transportation costs (i.e., travel time and fuel),
while considering the constraints imposed by the social net-
work that connects such commuters. We call this problem
the Social Ridesharing (SR) problem.
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In particular, we provide a model for the SR problem cast-
ing this as a Graph Constraint Coalition Formation (GCCF)
problem, where commuters (i.e., riders and drivers) form
coalitions (i.e., join in a car) meeting the constraints im-
posed by the social network (i.e., users prefer to join a car
with their friends). Specifically, following relevant literature
on GCCF (Myerson 1977; Voice, Ramchurn, and Jennings
2012), we consider a coalition to be feasible, only if the com-
muters involved in such coalition form a connected subgraph
of the social network.

Recently, (Kamar and Horvitz 2009) addressed the com-
putational aspects related to ridesharing, proposing an in-
teresting model to evaluate ridesharing plans, on which we
base our model for SR. However, such work is mostly
focused on incentive design aspects for ridesharing while
here we focus on the optimisation problem posed by SR.
Moreover, they do not consider the role of the social net-
work in their work. Now, the optimisation problem related
to coalition formation (i.e., Coalition Structure Generation)
has been addressed by several researchers throughout the
years (Sandholm et al. 1999; Service and Adams 2011;
Rahwan, Michalak, and Jennings 2012; Shehory and Kraus
1998). Consequently the relevant literature offers a wealth
of optimal solution techniques as well as approximate al-
gorithms that can provide quality guarantees. However, as
pointed out in (Voice, Ramchurn, and Jennings 2012), all
such algorithms do not consider graph constraints that limit
feasible coalitions, hence they can not be applied to the
GCCF problem as their behaviour for such specific problem
is not well defined.

Recently, several approaches have been explicitly de-
signed to deal with the GCCF problem (Voice, Ramchurn,
and Jennings 2012; Voice, Polukarov, and Jennings 2012;
Bistaffa et al. 2014). Among these approaches, here we con-
sider as a solution technique the CFSS algorithm proposed in
(Bistaffa et al. 2014) which, unlike previous approaches, can
provide approximate solutions with quality guarantees for
large-scale systems (including thousands of agents). Hence,
this approach is particularly suitable for SR, in which good
solutions for a large number of agents are needed in near
real-time. On the other hand, one key element for the effi-
ciency of such approach is the possibility of finding an effec-
tive and efficient bounding function to prune significant part
of the search space. Now, such a bounding function is easy to
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provide only for specific characteristic functions which can
be decomposed into a sum of monotonic and anti-monotonic
functions (m + a). Unfortunately, the SR problem does not
exhibit such a property, hence we significantly extend the
CFSS algorithm to provide solutions for large-scale systems
(e.g., up to 2000 agents) in this scenario.

In more detail, this paper advances the state of the art in
the following ways:
• We provide a formalisation of the ridesharing optimisa-

tion problem as GCCF.
• We significantly extend the state-of-the-art approach for

solving GCCF to provide optimal solutions, as well as
approximate solutions with quality guarantees for large-
scale systems.

• We evaluate our approach with realistic datasets, i.e., Geo-
Life from Microsoft Research for the geospatial data and
Twitter for social networks. Results show that our ap-
proach computes optimal solutions in minutes for systems
including up to 100 agents, and provides approximate so-
lutions for systems including up to 2000 agents, with good
quality guarantees (i.e., with an approximation ratio of
1.41 in the worst case).

In what follows, we first provide necessary background on
the GCCF problem and on the CFSS algorithm, then we de-
scribe our model of the SR and our solution technique. Fi-
nally we present the results of our empirical evaluation.

2 Background
The purpose of this section is twofold. First, in Section 2.1
we define the GCCF problem. Second, in Section 2.2 we
provide some background on the state of the art algorithm
for solving GCCF, namely the CFSS algorithm.

2.1 GCCF Problem Definition
A coalitional game or characteristic function game1 con-
sists of a finite set of players A and a characteristic function
v ∶ 2A → R, that maps each coalition C ∈ 2A to its value,
describing how much collective payoff a set of players can
gain by forming a coalition. A coalition structure CS is a
partition of the set of agents into disjoint coalitions. The set
of all coalition structures is Π(A). The value of a coalition
structure CS is assessed as the sum of the values of its com-
posing coalitions:

V (CS) = ∑
C∈CS

v (C) (1)

The coalition formation problem (Shehory and Kraus 1998;
Sandholm et al. 1999) (or coalition structure generation
problem) takes as input a coalitional game and aims at
identifying CS∗, the most valuable coalition structure, i.e.,
CS∗ = arg maxCS∈Π(A) V (CS).

Now, given a graph G = (A,E), where E ⊆ A ×A is a
set of edges between agents, representing their relationships

1Note that, to be consistent with relevant literature (Myerson
1977), here we use the name game. However, we do not consider
stability of coalitions and we do not address issues such as payment
schemes for the agents, which are typical of mechanism design.

(i.e., friendship), (Myerson 1977) considers a coalition C
to be feasible if all of their members are connected in the
subgraph of G induced by C. That is, if for each pair of
players from a, b ∈ C there is a path in G that connects them
without going out of C. Given a graph G the set of feasible
coalitions is

FC(G) = {C ⊆ A ∣ The subgraph induced by C on G
is connected } .

Consequently, a graph constrained coalition formation
(GCCF) game is a coalitional game together with a graph G,
where a coalition C is considered feasible if C ∈ FC(G). In
GCCF games a coalition structure CS is considered feasible
if each of its coalitions is feasible, i.e.,

CS(G) = {CS ∈ Π(A) ∣ CS ⊆ FC(G)}.
Hence, the goal for a GCCF problem is to identify CS∗,
which is the most valuable coalition structure, i.e., CS∗ =
arg maxCS∈CS(G) V (CS).

After the definition of the GCCF problem, we now present
the state of the art algorithm to solve it, namely the CFSS
algorithm.

2.2 CFSS
CFSS (Bistaffa et al. 2014) is based on the concept of edge
contraction on the graph G, which represents the merging
of the coalitions associated to its incident vertices. Such an
operation can be used to generate the entire search space
CS(G) and organise it as a rooted tree TG, which can be
traversed with polynomial memory requirements in order to
find the optimal solution. Each feasible coalition structure
CS ∈ CS(G) is represented only once, one per each node
of TG, by means of a 2-coloured graph Gc, in which the
nodes of Gc represent the coalitions of CS and the edges
are marked either in green (i.e., such edge can still be con-
tracted) or in red, meaning that a previous contraction of that
edge has already been done, and its endpoints must not be in
the same coalition in the following phases of the algorithm.
Figure 1(a) shows an example of a 2-colour graph in which
edge ({A} ,{D}) is red: hence, in any subsequent step of
the algorithm it is impossible to contract it. This marking en-
sures that each feasible coalition structure is represented in
TG without any redundancy. In particular, given a node TG
representing a feasible coalition structure CS, its children
are assessed contracting each green node in the correspond-
ing 2-colour graph Gc. We refer to the subtree of TG rooted
at CS as ST (CS).

{A}

{B}

{C}

{D}

{F}

{B}{A,C}{D}

{F}

Figure 1: Example of a green edge contraction.

In the next section, we show how we represent a Social
Ridesharing (SR) problem as a GCCF problem.
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3 Social Ridesharing Model
In this section we define our model for the SR problem. In
particular, we consider a set of riders R = {r1, . . . , rR},
where R > 0 is the total number of riders, and a non-empty2

set of drivers D ⊆ R, containing the riders owning a car.
Every driver ri ∈ D can host up to s (ri) riders in his car, in-
cluding himself, where the function s ∶R→ N0 provides the
number of seats of each car. If ri ∉ D, then s (ri) = 0. Given
a set of riders C ⊆ R, C is said to be valid if the following
constraint holds:

Constraint 1. ∣C ∣ > 1 Ô⇒ ∃ri ∈ C ∶ s (ri) ≥ ∣C ∣, i.e., at
least one rider has a car with enough seats for all the riders.

Notice that such a constraint allows a rider ri ∉ D to be in
a singleton. In fact, if the total number of available seats is
less than the total number of riders in the system, such a
rider might need to resort to public transport paying a cost
k ({ri}) for the ticket. Formally, the function k ∶ R0 → R−
provides such a cost, where R0 = {{ri} ∣ ri ∈ R −D} is the
set of all the singletons excluding the drivers, as we assume
that such riders always prefer to use their car w.r.t. public
transport.

Now, in several ridesharing online services (e.g., Lyft and
Uber) a commuter declares whether he is available as a
driver or as a rider, hence the two sets are disjoint and a
valid set of riders C contains at most one driver. Formally,
the following additional constraint must hold:

Constraint 2. ∣C ∩ D∣ ≤ 1, i.e., the number of drivers per
car can be at most 1.

Notice that Constraint 2 is optional, but it holds in several es-
tablished real-world services, arising from aspects of practi-
cal nature. Nonetheless, since our approach supports a more
general model, it can also be applied to scenarios where such
a constraint does not hold.

We consider a map of the geographic environment in
which the SR problem takes place, represented by a con-
nected graphM = (P,Q), where P is the set of geographic
points of the map andQ is a set of edges (each associated to
a positive weight) among these points. In what follows, we
assume that a path going through n points is represented as
a tuple P ∈ Pn, denoting as P i the i-th point in such a tuple.

Each rider ri ∈ R has to move from a starting point pai ,
i.e., its pick-up point, to a destination point pbi in the mapM
and each car drives through a path that contains all the start-
ing and destination points of his passengers. Not all paths
are valid, and a valid path must fulfil two constraints to cor-
rectly accommodate the needs of all the passengers. For-
mally, given a valid set of riders C and a path P of n points,
P is said to be valid if the following constraints hold:

Constraint 3. ∃ri ∈ C ∶ s (ri) ≥ ∣C ∣ ∧ P 1 = pai ∧ Pn = pbi ,
i.e., P goes from the driver’s starting point to its destination.

Constraint 4. ∀ri ∈ C ∃x, y ∶ P x = pai ∧ P y = pbi ∧ x < y,
i.e., for each rider, its starting point precedes its destination.

Henceforth, we refer to the set of all valid paths for a given
set of riders C with VP(C).

2If D = ∅ the problem is trivial and it is not taken into account.

Following (Kamar and Horvitz 2009), we define the total
cost v (C) of a valid set of riders C as:

v (C) = { t (PC) + c (PC) + f (PC) , if C ∩D ≠ ∅
k (C) , otherwise. (2)

where PC is the optimal path for C, and t ∶ Pn → R−, c ∶
Pn → R− and f ∶ Pn → R− are negative3 cost functions
respectively representing the time cost, the cognitive cost4
and the fuel cost of driving through a given path. We denote
the sum of these three cost functions as cost (⋅). Notice that
if C ∩ D = ∅, Constraint 1 imposes that C is formed by a
single rider without a car, hence its cost is provided by k (⋅).
Furthermore, PC is defined as follows:

PC = arg max
Pi∈VP(C)

cost (Pi) (3)

Finally, as mentioned before, a key aspect of ridesharing is
the presence of a social network G that restrict the formation
of groups. Hence, our SR model considers the previous def-
inition of feasible coalition from Section 2.1 and we define
a valid set of agent as a set that does not violate Constraint 1
and whose members induce a connected subgraph on G.

Such SR problem can be easily translated into a GCCF
problem, as each valid set of riders is indeed a coalition and
v (⋅) provides its coalitional value. Hence, CS∗ represents
the optimal coalition structure which maximises the social
welfare (i.e., minimises the total cost) for the system. How-
ever, the computation of the optimal path in Equation 3 rep-
resents a hard problem, which could be not solvable in re-
alistic scenarios. Hence, in the next section we show how
a reasonable assumption on the cost functions allows to re-
duce this complexity making such computation tractable.

4 Route computation
The computational complexity of Equation 3 derives from
the lack of assumptions on the cost functions t (⋅), c (⋅) and
f (⋅). However, in many urban scenarios the cost of driving
through a path is determined by the length of the path itself,
and longer paths usually result in higher costs. Hence, we
assume that t (⋅), c (⋅) and f (⋅) are antimonotonic functions,
i.e., given two paths Pi and Pj , if the length of Pi is greater
than the length of Pj , then t (Pi) < t (Pj), c (Pi) < c (Pj)
and f (Pi) < f (Pj). Against this background, the following
proposition holds:

Proposition 1. If t (⋅), c (⋅) and f (⋅) are antimonotonic
functions, the optimal path PC for a set of riders C is the
shortest path Pi ∈ VP (C).

Proof. See Appendix.

Given a path P ∈ Pn, the function best ∶ Pn → Pm is de-
fined as⊕n−1

k=1 sp (P k, P k+1), where the function sp (⋅) pro-
vides the shortest path between two points, ⊕ represents the

3Since we consider a maximisation problem, we represent costs
as negative values.

4Following (Kamar and Horvitz 2009), this cost represents the
fatigue incurred by the driver during the trip.
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concatenation of tuples and m is the number of points result-
ing from all such concatenations. The function best (⋅) can
be computed efficiently in O ((n − 1) ⋅ (∣Q∣ + ∣P ∣ log ∣P ∣)),
assuming that sp (⋅) is implemented using Dijkstra’s algo-
rithm. Moreover, if M is an euclidean graph sp (⋅) can be
computed in O ((n − 1) ⋅ ∣Q∣) with an A* algorithm.

Proposition 2. Given a tuple of points T , best (T ) is the
shortest path going through such points in order.

Proof. See Appendix.

Finally, given a set of riders C, we define VT (C) as the set
of tuples which contains only and all the start and destination
points of its riders (without repetitions) and which satisfy
Constraints 3 and 4. Against this background, we prove the
following theorem:

Theorem 1. If t (⋅), c (⋅) and f (⋅) are antimonotonic func-
tions, the optimal path PC for a car C is P ∗

C , the shortest
among all paths in {best(Pi) ∣ Pi ∈ VT (C)}.

Proof. See Appendix.

Theorem 1 provides an affordable algorithm to compute
the optimal path for a set of riders assuming that the cost
functions are antimonotonic. Notice that its search space is
VT (C), whose size is significantly smaller than VP(C) of
Equation 3, and although being still exponential w.r.t. ∣C ∣,
∣VT (C)∣ is manageable for reasonably sized groups of rid-
ers. In fact, it is only 2520 for ∣C ∣ = 5 (i.e., the number of
seats of an average car).

In the following section, we detail how the CFSS algo-
rithm, can be adapted to tackle the above defined problem.

5 CFSS for Ridesharing
In order to solve the SR problem, the original version of
CFSS must be modified to correctly assess the additional
constraints introduced in Section 3. In particular, to ensure
that Constraints 1 and 2 hold, we must avoid the formation
of coalitions which are not valid sets of riders. This can be
achieved by avoiding the contractions of the green edges
which would result in the violation of such constraints. No-
tice that such edges must be marked in red, even if we are not
visiting the corresponding subtrees: in fact, this is equivalent
to traversing such search spaces and discarding any possible
solution they may contain, because such solutions would vi-
olate one of the above mentioned constraints.

A key enhancement for the efficiency of CFSS is the use
of a branch and bound search strategy to prune significant
parts of the search space. In (Bistaffa et al. 2014), authors
provide a general bounding technique for a particular class
of characteristic functions, namely m + a functions.

Unfortunately, the characteristic function defined in Equa-
tion 2 is not an m + a function, since it depends on PC , and
in particular on the actual position of the start and destina-
tion points of the riders. As an example, consider Figure 2,
which shows the start and destination points for 3 riders, i.e.,
R = {r1, r2, r3}, in which only r1 owns a car, i.e.,D = {r1}.
For simplicity, we assume that v (C) is equal to the length
of PC , and k ({r2}) = k ({r3}) = −1.

pa1 pa2 pb2 pb1 pa3 pb3

1 km

Figure 2: Example start and destination points for 3 riders.

In this example, v ({r1}) = −3, v ({r2}) = −1, v ({r3}) =
−1. However, we notice that pa2 and pb2 are actually part of
the path travelled by r1, hence it is reasonable for r2 to join
r1 in the coalition {r1, r2}. In fact, v ({r1, r2}) = v ({r1}) =
−3 > v ({r1}) + v ({r2}) = −3 − 1 = −4. On the other
hand, r3 start and destination points are outside r1’s path,5
hence ridesharing is not effective in this case: v ({r1, r3}) =
−7 < v ({r1}) + v ({r3}) = −3 − 1 = −4. Notice that this
particular characteristic function cannot be seen as the sum
of a monotonic and an antimonotonic part, since it exhibits
a monotonic behaviour for some coalition structures, i.e.,
v ({r1, r2}) > v ({r1})+v ({r2}), while it is antimonotonic
for some others, i.e., v ({r1, r3}) < v ({r1}) + v ({r3}).6

Hence, in the next section we provide alternative bound-
ing techniques that can be used in our ridesharing scenario.

5.1 Bound Computation
Given a feasible coalition structure CS in our search tree, we
now show how to compute an upperbound M(CS) for the
values assumed by the characteristic function in ST (CS),
i.e., M (CS) ≥ V (CSi) ∀CSi ∈ ST (CS). This value can
be used to avoid visiting ST (CS) if M (CS) is not greater
than the current best solution.

First, we provide a method to compute M (CS) in sce-
narios where Constraint 2 holds. In these environments it
is not possible to merge coalitions both containing a driver,
since only single riders not owning a car are allowed to join
existing groups. Notice that the addition of a rider to car can
only result in a greater cost, if we consider antimonotonic
cost functions. Therefore, the sum of the costs of all the cars
(i.e., all the coalitions containing a driver) can only increase
after such an addition. More formally:
Proposition 3. If cost (⋅) is an antimonotonic function and
Constraint 2 holds, then M(CS) = ∑C∈Rd(CS) v (C),
whereRd (CS) = {C ∈ CS ∣ C ∩D ≠ ∅}.
We now detail how to compute an upperbound with-
out assuming Constraint 2. We define S1 as the set
of the start and destination points of all the riders,
i.e., {pi ∈ P ∣ ∃rj ∈R ∶ pi = paj ∨ pi = pbj}, and S2 as the
set of all the couples of different points in S1, i.e.,
{(pi, pj) ∈ S1 × S1 ∣ pi ≠ pj}. Then, we define S1,a (ri) as
the set of all the shortest paths from r1’s starting point
to the start and destination points of any other rider, i.e.,
{Pi ∈ Pn ∣ Pi = sp (pai , pj) ∀pj ∈ S1 ∶ pj ≠ pai }. Similarly,
we define S1,b considering r1’s destination point.

5The optimal path for C = {r1, r3} is PC = (pa1 , pa3 , pb3, pb1).
6This notion of antimonotonic function should not be confused

with the one previously defined for t (⋅), c (⋅) and f (⋅), which take
paths as arguments, while characteristic functions are defined on
coalition structures.
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Also, we define S2,a (ri) as the concatenation of all the
couples of shortest paths from r1’s starting point to the start
and destination points of any other rider, i.e., {Pi ∈ Pn ∣
Pi = sp (pai , pj) ⊕ sp (pai , pk) ∀ (pj , pk) ∈ S2 ∶ pj ≠ pai ∧
pk ≠ pai }. Again, we define S2,b considering r1’s destination
point. Finally, we define m ∶R→ R− as:

m (ri) =
⎧⎪⎪⎨⎪⎪⎩

max
Pi∈S1,a

cost (Pi) + max
Pi∈S1,b

cost (Pi) , if ri ∈ D
max

Pi∈S2,a
cost (Pi) + max

Pi∈S2,b
cost (Pi) , otherwise.

We can now state the following proposition:

Proposition 4. If cost (⋅) is an antimonotonic function, then
M (CS) = 1

2
⋅∑ri∈Rd(CS)m (ri).

Sketch of proof. See Appendix.

These results allow us to bound V (⋅) in all the coalition
structures in ST (CS). In the next section we detail how
our bounding techniques, underlying our optimal branch and
bound search strategy, can also be adapted to compute ap-
proximate solutions with quality guarantees.

5.2 Approximate Solutions
The bounding techniques described in previous section al-
low to prune significant parts of the search space, thus pro-
viding optimal solutions for system of significant size (i.e.,
up to 100 agents, see Section 6 for further details). How-
ever, a realistic application might involve community of
thousands of agents, and, following the concept of real-time
ridesharing, the system should be able to provide solutions
in minutes. Consequently, for realistic applications approx-
imate solutions must be considered. Now, following the ap-
proach proposed in (Bistaffa et al. 2014), the bounding tech-
niques detailed above can be used to implement an approx-
imate version the SR problem. In particular, we stop the
search process after an amount of time ts and compute the
bound M(CS) for all the leaf configurations of the search
tree, the maximum among all these values is an admissible
bound for the approximate solution found within ts.

The quality of this approximate approach, together with
a performance analysis of our optimal solution algorithm,
will be object of our experimental evaluation, presented in
the following section.

6 Experimental Evaluation
Having described and analysed our branch and bound ap-
proach for the SR problem, we now present the empirical
evaluation. In what follows, we first present our evaluation
methodology, then we discuss the achieved results.

6.1 Evaluation Methodology
The main goals of the empirical analysis are: i) to esti-
mate the social welfare improvement when our ridesharing
method is employed, ii) to evaluate the performance of our
optimal algorithm in terms of runtime and scalability, iii) to
evaluate the approximate performance and guarantees that
our approach can provide when scaling to very large num-
ber of agents, i.e., up to 2000 agents.

Our experimental evaluation considers realistic datasets,
both for spatial and social data. In particular, our mapM =
(P,Q) is a realistic representation of the city of Beijing,
with ∣P ∣ = 8330 points and ∣Q∣ = 13290 edges, equivalent to
an average resolution of a point every ∼10 meters. This map
has been derived from the GeoLife7 dataset provided by Mi-
crosoft, which comprises 17621 trajectories with a total dis-
tance of about 1.2 million km, recorded by different GPS
loggers and GPS-phones with a variety of sampling rates.
This pool of trajectories is also adopted to sample random
paths used to provide the start and destination points of the
riders in our experiments. Moreover, in each experiment the
graph G is a subgraph of a large crawl of the Twitter social
graph completed in 2010. We adopted the Twitter dataset
since it is freely available, free from privacy restrictions (un-
like Facebook) and has been presented in a well established
paper (Kwak et al. 2010). In particular, G is obtained by
means of a standard algorithm (Russell 2013) to extract a
subgraph from a larger graph, i.e., a breath-first traversal
starting from a random node of the whole graph, adding
each node and the corresponding arcs to G, until the desired
number of nodes is reached. In our experimental evaluation
there is no mapping between the trajectory data and the so-
cial graph, since they belong to independent projects.

In our experiments we adopt a cost model that only con-
siders fuel expenses, i.e., v (C) = Kfuel ⋅ PC , where PC

represents the length of PC in km, Kfuel = −0.06 e/km
(considering a fuel cost of −1e per litre and an average con-
sumption of 1 litre of fuel every 15 km) and k ({ri}) = −3 e
∀ri ∈ R, which represents the average public transportation
cost, i.e., a bus or a train ticket. Moreover, we assume that
each car has a capacity of 5 seats, i.e., s (ri) = 5∀ri ∈ D.

All our experiments are done considering Constraint 2
(drivers always drive their cars), as it models many real-
world online services, e.g., Lyft and Uber. Hence, we em-
ploy both the bounding techniques detailed in Section 5.1
and we take the minimum one, since both are admissible.
Each experiment is repeated on 20 random instances, and
we report the average and the standard error of the mean of
the results. Our approach is executed on a machine with a
quad-core 3.40GHz processor and 16 GB of memory.

6.2 Social Welfare Improvement
Here we consider the improvement of the social welfare (i.e.,
the cost reduction for the overall system) when using our
automatic car formation approach as compared to the sce-
nario in which every rider adopts its own conveyance (i.e.,
no ridesharing). This gives an indication of what gain can be
achieved by the overall community when using our system
for ridesharing. More formally, we define the social welfare

improvement as 100⋅∣V (CS∗)−V (R0)
V (R0) ∣. Such an improvement

is influenced by the percentage of drivers in the system (Fig-
ure 4), which determines the number of available seats and
the number of riders which can share a ride without having
to resort to public transport. Moreover, with more drivers it
is more probable that a rider can join a car whose path is

7http://research.microsoft.com/en-us/projects/geolife
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closer to him/her. On the other hand, if the majority of the
riders own a car (i.e., > 80%), ridesharing is not very effec-
tive since too few riders without a car can benefit from shar-
ing their commutes with a driver. In particular, when only
the 10% of the total riders own a car, the average cost re-
duction (computed over 20 random instances with ∣R∣ = 50
for each driver percentage) is −23.49%, reaching −36.22%
when half of the riders owns a car.

To show the importance of an optimal approach, we
benchmark our algorithm against a greedy one, in which
every driver chooses its next stop as the closest among the
destinations points of his current passengers and the starting
points of the remaining riders. This choice is made consider-
ing the constraints imposed by the social network, avoiding
the formation of unfeasible coalitions. As Figure 4 shows,
our method allows superior cost reductions w.r.t. such a
greedy approach, which can provide a maximum improve-
ment of −19.55% for ∣D∣ = 20%. When the majority of the
riders owns a car, such an algorithm provides solution whose
costs are higher than the reference ones. In this scenario,
where only few riders do not own a car, the greedy approach
does not perform well since it might assign a rider to a sub-
optimal coalition before considering the optimal one.

6.3 Optimal Performance
Figure 6 shows the runtime needed to compute the opti-
mal solution when increasing the number of agents. Our ap-
proach is tested in 3 scenarios, i.e., with low (10%), medium
(50%) and high (80%) percentage of drivers, showing that
this parameter has a significant influence on the performance
of our algorithm. In fact, the size of the search space is de-
termined by the the number of available seats (reduced when
such a percentage is low) and the number of riders without
a car who can benefit from sharing their commutes (reduced
when the majority of the agents owns a car), consistently
with the behaviour of the social welfare improvement de-
tailed in the previous section. Notice that, in any case, our
approach can solve systems with 100 agents in a reasonable
amount of time, i.e., about 2 hours at most for ∣D∣ = 50%.
This runtime is suitable for services with day-ahead or week-
ahead requests (e.g., Lyft). Such a performance is possible
thanks to our bounding techniques (see Section 5.1), which

allow to prune a significant part of the search space. In
more detail, such techniques allow an average pruning of the
97.5% of the search space (resulting in an average runtime
improvement of about 4 hours) on 20 random instances with
∣R∣ = 60 and ∣D∣ = 50%.

6.4 Approximate Performance

Figure 8 shows the value of the approximation ratio (i.e., the
ratio between the bound and the approximate solution) pro-
vided by our approach when used to solve large systems with
∣R∣ ∈ {500,1000,2000}. In particular, we adopted the ap-
proximate technique explained in Section 5.2, stopping the
traversal of the search tree after ts = 100 seconds. Our ex-
periments show that, for ∣R∣ = 500 and ∣D∣ = 80%, the pro-
vided bound is only 6.65% higher than the solution found
within the time limit, reaching a maximum of +29.92%
when ∣R∣ = 2000 and ∣D∣ = 50%. In the worst case, CFSS
provides an approximation ratio of 1.41 and thus solutions
that are at least 71% of the optimal.

7 Conclusions
We considered the Social Ridesharing problem, showing
how it can be modelled as a GCCF problem and extend-
ing the state of the art algorithm for GCCF, i.e., CFSS, to
solve it. Our empirical evaluation shows that our approach
can lead to a cost reduction for the entire system that reaches
the −36.22% and that our approximate technique can com-
pute solutions for very large systems (i.e., up to 2000 agents)
with good quality guarantees (i.e., with an approximation ra-
tio of 1.41 in the worst case), hence being suitable for real-
istic applications.

Future work will look at extending our model to include
more complex routing scenarios with traffic information,
time constraints for riders as well as multi-hop ridesharing
(Drews and Luxen 2013).
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Appendix.
We report here the proofs of the propositions and the theo-
rem stated in our paper.

Proposition 1. If t (⋅), c (⋅) and f (⋅) are antimonotonic
functions, the optimal path PC for a set of riders C is the
shortest path Pi ∈ VP (C).

Proof. Since t (⋅)+c (⋅)+f (⋅) is an antimonotonic function,
such a proposition follows as a direct consequence.

Proposition 2. Given a tuple of points T , best (T ) is the
shortest path going through such points in order.

Proof. By contradiction. Suppose there is a path P ′ going
through all the points of T in order which is shorter than
best (T ). Hence, there must exist two consecutive points in
T , namely pi and pj , such that the subpath of P ′ going from
pi to pj is shorter than the subpath of best (T ) going from pi
to pj , which is a contradiction since it violates the definition
of best (T ).

Theorem 1. If t (⋅), c (⋅) and f (⋅) are antimonotonic func-
tions, the optimal path PC for a car C is P ∗

C , the shortest
among all paths in {best(Pi) ∣ Pi ∈ VT (C)}.

Proof. By contradiction. Suppose there is an optimal path
P ′ ≠ P ∗

C . Then, P ′ must be shorter than P ∗
C (Proposition 1).

Since P ∗
C is the shortest among all the paths going through

all the tuples in VT (C) (Proposition 2), then it does not
exists a tuple T ∈ VT (C) such that P ′ goes through all its
points, which is a contradiction since T can be computed
from P by removing any point which is neither a starting
nor a destination point of a rider in C.

Proposition 4. If cost (⋅) is an antimonotonic function, then
M (CS) = 1

2
⋅∑ri∈Rd(CS)m (ri).

Sketch of proof. This proof can be derived from the proof
of the bound for the TSP problem with triangle inequality
(Cormen et al. 2009; Brassard and Bratley 1996).
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