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Abstract

Energy disaggregation, the task of taking a whole home
electricity signal and decomposing it into its compo-
nent appliances, has been proved to be essential in en-
ergy conservation research. One powerful cue for break-
ing down the entire household’s energy consumption is
user’s daily energy usage behavior, which has so far
received little attention: existing works on energy dis-
aggregation mostly ignored the relationship between
the energy usages of various appliances across differ-
ent time slots. To model such relationship, we com-
bine topic models with Hawkes processes, and propose
a novel probabilistic model based on marked Hawkes
process that enables the modeling of marked event data.
The proposed model seeks to capture the influence from
the occurrence and the marks of one usage event to the
occurrence and the marks of subsequent usage events
in the future. We also develop an inference algorithm
based on variational inference for model parameter es-
timation. Experimental results on both synthetic data
and three real world data sets demonstrate the effective-
ness of our model, which outperforms state-of-the-art
approaches in decomposing the entire consumed energy
to each appliance. Analyzing the influence captured by
the proposed model provides further insights into nu-
merous interesting energy usage behavior patterns.

Introduction
Energy conservation has become a critical issue in modern
society and data analysis methodology has recently been
applied to the analysis of energy consumption patterns in
households. Several prior studies (Darby 2006; Neenan and
Robinson 2009; Wytock and Kolter 2014) have shown that
consumers, i.e., household members are more likely to con-
serve their energy usage when provided with breakdown en-
ergy consumption records. However, such fine-grained en-
ergy consumption data is not readily available, since it re-
quires numerous additional meters installed on individual
appliances. Therefore there has been much interest in the
data analysis problem of energy disaggregation — the task
of taking a whole-house energy signal and separating it into
its component appliances. One powerful cue for breaking
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down the entire household’s energy consumption is user be-
havior in energy usage(Baptista et al. 2014), which is known
to be a major factor in determining the energy consumption
in households. Such energy usage behaviors can include:
how users perform their daily routines, how they share the
usage of appliances, and users’ habits in using certain types
of appliances. Understanding such energy usage behaviors
will significantly increase the accuracy of estimating the us-
age time of each appliance, which consequently benefits the
energy disaggregation task.

Despite of the importance of energy usage behaviors, they
have not received enough attention in the recent literature,
especially how a user’s current energy usage behavior influ-
ences his/her or other people’s future usage behavior. Mod-
eling such influence is important due to the following two
reasons: 1) energy usage behaviors rarely depend on the cur-
rent time slots only. One’s energy usage behaviors in the pre-
vious time slots also exert a significant impact. For instance,
a user’s usage time of washing machine can be different
from day to day, but his/her sequential behaviors in clothes
washing are always similar: first using the washer, and then
the dryer. 2) under many circumstances, a user’s behavior
is not just determined by himself/herself, but influenced by
other members in the same household. For example, when
parents wake up earlier than usual in the morning, they may
also wake up their children earlier than usual. Another in-
stance is that two household members are not able to use
the bathroom at the same time, and consequently one mem-
ber has to postpone his/her usage of the bathroom. Thus,
to understand energy usage behaviors, appropriate modeling
of influence among the energy usage behaviors of different
users in the same household across different time slots is es-
sential.

Unfortunately, the influence between energy usage be-
haviors is hard to model directly, since the state-of-the-
art smart-grid data rarely records the number of household
members, and the exact timestamp when a certain member
uses a certain appliance. Since the energy consumption of
each appliance is relies on the user behavior, we turn to mod-
eling the relationship between the energy usages of different
appliances across different time slots, and expect that such
relationship will be able to reveal the influence between the
energy usage behaviors of different users in the same house-
hold. We want to emphasize that such relationship has so
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far been largely ignored by existing works on energy disag-
gregation (Kolter, Batra, and Ng 2010; Kolter and Jaakkola
2012; Parson et al. 2012). Those works mostly focus on the
distribution of energy consumption of each appliance alone.
They either learned the energy usage patterns of each ap-
pliance within a certain period (for instance, a week), or
studied the influence between energy usage patterns from
one time slot to the next. Recent works discussed the depen-
dency between appliances in the same time slot only (Kim et
al. 2011). More importantly our method, while modeling the
influence between energy usage patterns, also pays attention
to the relationship between the energy usages of different
appliances across different time slots.

One main challenge in modeling the influence among var-
ious appliances across different time slots is how to model
the influence between marked events, which is defined to
be events with marks that contain detailed information of
the corresponding event. Under our scenario of energy dis-
aggregation, events are the usage of a certain appliance in
a certain time slot, while their marks are the amount of
consumed energy. We leverage the general idea of marked
point process for our modeling purpose (Rasmussen 2013).
Specifically, we propose a novel probabilistic model named
marked Hawkes process (M-Hawkes) based on the combi-
nation of multivariate Hawkes processes and topic models.
This M-Hawkes is designed to model how the occurrence
and the mark of an event together influence the occurrence
and the mark of subsequent events in the near future. In
the proposed M-Hawkes model, the topic model part mod-
els the distribution of marks of observed events, designed to
find user behavior patterns underlying the amount of con-
sumed energy of each appliance in each time slot, while the
Hawkes process part models the occurrences of observed
events, and captures the influence between different appli-
ances under different energy usage behavior patterns across
different time slots.

In a nutshell, our major contributions include: (1) We fully
utilize both temporal and energy amount information in ad-
dressing the energy disaggregation task, emphasizing the
analysis of the underlying energy usage behavior patterns;
(2) We consider the relationship among the energy consump-
tion of different appliances across different time slots, which
existing works failed to model; (3) We propose a novel prob-
abilistic model that combines Hawkes processes with topic
models, which enables the modeling of the influence from
the occurrence and the mark of an event to the occurrence
and the mark of subsequent events in the future.

Problem Definition
Let us consider a typical scenario in energy disaggregation,
where M appliances are used in a sequence of N time slots
T = {tn, n = 1, . . . , N}. Multiple appliances can be used
simultaneously in one time slot, and certain appliance is not
necessarily always in use. Our paper considers the unsu-
pervised setting, i.e., we only observe the total amount of
consumed energy Xn in each time slot n, while the amount
of consumed energy xm,n of each appliance m used in that
time slot is unavailable. The target of energy disaggregation
is to predict each xm,n based on the observed T and X .

Instead of straightforwardly predicting xm,n fromXn, we
introduce a set of latent variables {Ym,n} to denote whether
the m-th appliance is used in the n-th time slot, and turn to
solving a much easier problem first: which appliances are
in use in each of the time slot. The basic intuition is that
the usage of one appliance raises the probability of the us-
age of related appliances (including itself) in the near fu-
ture. For instance, people are very likely to use dryer after
using washing machine. Such self- & mutually exciting na-
ture coincides with the self- & mutually exciting property of
the multi-dimensional Hawkes process, i.e., the occurrence
of one event in the past will trigger events happening in the
future.

Multi-dimensional Hawkes Process
The multi-dimensional Hawkes process is a class of self-
or mutually-exciting point process models (Hawkes 1971),
which are widely used to describe data that are localized
at a finite set of time points {t1, . . . , tN} (Schoenberg
2010). Formally, the multi-dimensional Hawkes process on
an event cascade {tl}Nl=1 is defined to be a M -dimensional
point process with the intensity of the m-th dimension given
by:

λm(t) = µm +
∑
tl<t

αml,mκ(t− tl)

Here µm denotes the base intensity of the m-th dimension,
κ(t − tl) is a time-decaying kernel, while αm,m′ denotes
the infectivity from events in the m-th dimension to events
in the m′-th dimension. Hawkes process has been widely
used in applications, such as earthquake prediction (Ogata
1988), sales modeling (Yan et al. 2015; Errais, Giesecke,
and Goldberg 2010), Asset management (Yan et al. 2013),
search behavior modeling (Li et al. 2014), crime modeling
(Stomakhin, Short, and Bertozzi 2011), and armed conflict
analysis (Mangion et al. 2012; Li and Zha 2013).

In our tasks, building a multi-dimensional Hawkes pro-
cess on Y relates the inference ofm-th appliance usage state
in the n-th time slot Ym,n with that of other appliances in
different time slots, thus can be expected to sharply raise the
inference accuracy.

Marked Hawkes Process
Although the (multi-dimensional) Hawkes process has been
proved to be effective in modeling the influence between
event occurrences in many applications, we find it unable
to completely solve our energy disaggregation problem. For
one thing, the total amount of consumed energy in each
time slot has not been utilized; for another, it only predicts
whether an appliance is in use rather than the energy it con-
sumes. A better solution is modeling marked events instead
of normal events, where the mark of an event refers to those
additional features other than the temporal information that
describes the event.1 In energy disaggregation, taking the

1A mark can be the casualty of an armed conflict event, the
magnitude of an earthquake event, and in our application, the con-
sumed energy of an appliance usage event.

673



usage of an appliance in a time slot as an event, the cor-
responding amount of consumed energy is actually the mark
of that event. Such marked events are very common in cur-
rent social networks, as the descriptions of events are usually
available.

Since the marks of an event are very likely to be described
by numerous features — a vector with each feature repre-
sented by continuous or categorical variables, directly mod-
eling the relationship between marks and occurrences of dif-
ferent events is difficult. One widely used effective solution
is the topic model, which clusters all observed marks into
several topics/categories, with similar marks in the same cat-
egory.

To enable the modeling of marks of events in Hawkes
processes, we further introduce a new set of latent variables
{Zm,n,k} to denote whether the marks of an event from the
m-th dimension, whose occurrence is previously denoted by
Ym,n, belongs to the k-th category/topic, we propose the fol-
lowing novel multi-dimensional Hawkes process to model
the entire event sequence, with the intensity of an event from
the m-th dimension occurring in time slot t whose intensity
can be written as: whose intensity can be written as:

λm(t) = µm +
∑
tl<t

∑
m′

Ym′,l
∑
k,k′

Zm,n,kZm′,l,k′βm,m′,k,k′κ(t− tl).

(1)

Here the base intensity µm captures how often an event from
m-th dimension happens spontaneously, while βm,m′,k,k′
models the degree of influence between a event from dimen-
sion m with marks of category k to a event from dimension
m′ with marks of category k′. Notice that the proposed new
Hawkes process can handle events with multidimensional
marks, while in our application, only a single dimension, the
amount of consumed energy, is used.

According to the definition of Ym,n, we have Ym,n =
HawkesProcess(λm(tn)). Thus the proposed new Hawkes
process straightforwardly models the influence between
the occurrence and the mark pattern membership of past
events and those of the current event. Assume each ap-
pliance has K energy consumption patterns with the k-th
pattern denoted as θm,k, the entire amount of consumed
energy in the n-th time slot Xn can be approximated by∑
m Ym,n

∑
k θm,kZm,n,k. The approximation itself does

not provide much evidence for the inference of Y and Z,
and the learning of θ. However, by constructing a multi-
dimensional marked Hawkes process on Y and Z, we relate
the inference of Ym,n and Zm,n with that of other appliances
in different time slots, thus the inference/learning accuracy
can be expected to be increased.

Finally, we present our generative model that produces the
entire energy consumption as follows:
• Draw a vector µ of length M that denotes the base in-

tensity of each appliance and a MK × MK infectivity
matrix β that denotes the degree of influence between dif-
ferent appliances under different consumption patterns.

• For each appliance m,
– draw a K dimensional vector θm, where each dimen-

sion indicates a single energy consumption pattern of
the appliance.

Figure 1: Graphical model representation of M-Hawkes and
the variational distribution that approximates the likelihood.
The upper figure shows the graphical model representation
of M-Hawkes, while the lower figure shows the variational
distribution that approximates the likelihood.

– draw a K dimensional membership vector πm ∼
Dirichlet(α).

• For the n-th time slot,
– For the m-th appliance in the n-th time slot,

* Draw whether it will be used by Ym,n ∼
HawkesProcess(λm(·)), where the intensity λm is
defined as in Eqn (1);

* Draw the user energy usage pattern membership
Zm,n ∼ Multinomial(πm);

* Draw the amount of consumed energy of device
xm,n ∼ Ym,nGaussian(

∑
k θm,kZm,n,k, σ);2

– Calculate the total amount of consumed energy in the
n-th time slot Xn =

∑
m xm,n.

Note that in our M-Hawkes model, the number of appliances
that can be simultaneously used in the same time slot is con-
strained by the total amount of consumed energy at that time.
Such a constraint not only benefits the inferring of energy
usage patterns of each appliance, but also enables the mod-
eling of several events occurring in the same time slot, which
existing Hawkes models hardly handled.

Under our M-Hawkes model, the joint probability of data
T = {N(·)} = {{tn}Nn=1}, X = {{Xn}Nn=1} and latent
variables π, Y , Z can be written as follows:

p(T,X, π1:M , Y, Z|α, θ, µ, β) = P (T, Y |Z, µ, β)
∏
n

P (Xn|Yn, Zn, θ)∏
n

∏
m

P (Zm,n|πm)
∏
m

∏
n

P (Ym,n|πm)
∏
m

P (πm|α).

Inference
In this section, we derive a mean-field variational Bayesian
inference algorithm for our proposed M-Hawkes model.

Variational Inference
Under M-Hawkes model, given observations of both tem-
poral information T = {N(·)} = {{tn}Nn=1} and
consumed energy X of energy consumption event se-
quences, the log-likelihood for the complete data is given
by log p(T,X|µ, β, α, θ). Since this true posterior is hard to

2In our experiments, we use a constant σ.
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infer directly, we turn to variational methods (Blei and Jor-
dan 2005), whose main idea is to posit a distribution over the
latent variables with variational parameters, and find the set-
tings of the parameters so as to make the distribution close
to the true posterior in Kullback-Leibler (KL) divergence.

q(π1:M , Y, Z|γ1:M ,Φ, ρ1:N )

=
∏
m

q1(πm|γm)
∏
m

∏
n

q2(Ym,n|φm,n)q2(Zm,n|ρm,n)

where q1 is a Dirichlet, q2 is a multinomial, and {γ1:M ,Φ, ρ}
are the set of variational parameters. We optimize those free
parameters to tighten the following lower bound L′ for our
likelihood:
log p(T,X|µ, β, α, θ) ≥Eq[log p(T,X, π1:M , Y, Z|α, θ, µ, β)]

− Eq[log q(π1:M , Y, Z)]. (2)

Isolating terms containing λ in Eqn (2), we have

Lh =

M∑
m=1

∑
n

Eq(log λ(Ym,n))−
M∑

m=1

∫ T

0

Eq(λ(s))ds, (3)

as the partial likelihood on temporal data assuming con-
sumption pattern distribution is known. On one hand,
we have

∑M
m=1

∫ T
0
Eq(λ(s))ds =

∑M
m=1 bmβm,m′k,k′ +

T
∑M
m=1 µm. Here

bm,m′,k,k′ =
N∑

n=1

n−1∑
l=1

rm,m′,lnkk′ (K(tn − tl)−K(tn−1 − tl)),

where K(t) =
∫ t

0
κ(s)ds, and we define function

rm,m′,lnkk′ = φm′,lρm,n,kρm′,l,k′ . On the other hand, in
order to update each Hawkes hyper-parameter µ and β
independently, we adopt the strategy in (Yang and Zha
2013), and break down the log sum Eq(log λ(tn)) based on
Jensen’s inequality as:

Eq(log(λm(tn))) ≥ ηm,nn log(µm)− ηm,nn log(ηm,nn)

+

n−1∑
l=1

∑
m′,k,k′

ηm,m′,lnkk′ log(rm,m′,lnkk′βm,m′,k,k′κ(tn − tl))

−
n−1∑
l=1

rm,m′,lnkk′ηm,m′,lnkk′ log(ηm,m′,lnkk′ ),

where {η} is a set of branching variables constrained by:

ηm,m′,lnkk′ ≥ 0, ηm,nn +

n−1∑
l=1

∑
m′,k,k′

rm,m′,lnkk′ηm,m′,lnkk′ = 1.

Under a coordinate descent framework, we optimize the
lower bound as in Eqn (2) against each variational latent
variable3 and the model hyper-parameter. For variational la-
tent variables, we have the following process
• update rules for ρ’s as:

ρm,n,k ∝ exp(
∑
m

(Ψ(γm,k)−Ψ(
∑
k

γm,k))

+ log([Xn −
∑

m′ 6=m,k′ 6=k

φm′,nρm′,n,k′θm′,k′ ]+)

− log(φm,nθm,k) +

n−1∑
l=1

fl,n +

Nm∑
l′=n+1

fn,l′ ),

3Here we categorize branching variables η as variational latent
variables.

where we define

fl,n =
∑

m′,k′
(ηm,m′,lnkk′φm′,l log(

βm,m′,k,k′κ(tn − tl)
ηm,m′,lnkk′

)

− φm′,l(K(tn − tl)−K(tn−1 − tl)))ρm′,l,k′

• update rules for γ’s as:

γm,k = αk +
∑
n

ρm,n,k;

• update rules for φ’s as:

φm,n ∝ exp(ηm,nn log(µm)− log(
∑
k

ρm,n,kθm,k)

+ log([Xn −
∑

m′ 6=m,k

φm′,nρm′,n,kθm,k]+)

+

n−1∑
l=1

∑
m′,k,k′

ηm,m′,lnkk′ log(bmm′,lnkk′ )

+
N∑

l=n+1

∑
m′,k,k′

ηm′,m,nlkk′ log(bmm′,nlkk′ )).

where bmm′,lnkk′ = rm,m′,lnkk′βm,m′,k,k′κ(tn − tl).
• and update rules for η as:

ηm,nn =
µm

µm +
∑n−1

l=1

∑
m′,k,k′ bmm′,lnkk′

,

ηm,m′,lnkk′ =
βm,m′,k,k′κ(tn − tl)

µm +
∑n−1

l=1

∑
m′,k,k′ bmm′,lnkk′

.

Learning
We use a variational expectation-maximization (EM) algo-
rithm (Dempster, Laird, and Rubin 1977) to compute the pa-
rameters in our M-Hawkes model. This variational EM al-
gorithm iteratively approximates the posterior by fitting the
variational distribution q and optimizes the corresponding
bound against the parameters.

In updating α, we use a Newton-Raphson method, since
the approximate maximum likelihood estimate of α doesn’t
have a closed form solution. The Newton-Raphson method
is conducted with a gradient and Hessian as follows:

∂L′

∂αk

= N(Ψ(
∑
k

αk)−Ψ(αk)) +
∑
m

(Ψ(γm,k)−Ψ(
∑
k

γm,k)),

∂L′

∂αk1
αk2

= N(I(k1=k2)Ψ
′
(αk1

)−Ψ
′
(
∑
k

αk)).

The maximum likelihood estimation of energy usage pat-
tern θ can be derived through calculating the first deriva-
tive of lower-bound L′ against corresponding parameters.
We obtain the update formulas given as follows:

θm,k = (ATA)−1x.

where A = [φm,nρm,n,k]n,mk is a matrix of size n ×mk,
and x = [Xn]n is a vector of length n.

To obtain the approximate maximum likelihood estima-
tion of Hawkes hyper-parameters, we optimize the lower
bound as in Eqn (2) against each hyper-parameter, and up-
date µ and β independently with closed-form solutions as:

βm,m′,k,k′ =
1

bm

∑
n,l<n

rm,m′,lnkk′ηm,m′,lnkk′ , µm =
1

T

N∑
n=1

ηm,nn
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In real world scenario β is usually a sparse matrix, as influ-
ence only exist in limited pairs of appliances and patterns.
Thus to select effective influence and avoid overfitting, we
enforce the sparsity of β by imposing lasso type of reg-
ularization as ‖β‖1, and employ the widely used alternat-
ing direction method of multipliers (ADMM) (Boyd 2010;
Li and Zha 2014) to address the constraint optimization
problem.

Our variation inference algorithm, named Marked-
Hawkes (M-Hawkes), can be interpreted intuitively in the
following way. The mark pattern distribution γ of each ap-
pliance is determined by both the topic/pattern prior and the
pattern assignment of each appliance at each time slot. The
probability φ of an appliance m used in the n-th time slot is
jointly determined by: (a) other appliances used in the cur-
rent time slot; (b) how likely an appliance was used sponta-
neously; (c) the influence from the occurrence and the mark
pattern of past events to the current occurrence; and (d) the
influence from the occurrence and the mark pattern of future
events to the current occurrence. The energy consumption
pattern ρ of an appliance m used in the n-th time slot is
jointly determined by: (a) the pattern prior of this appliance;
(b) the mark patterns of other appliances; (c) past/future in-
fluence to the current mark pattern.

In our mean-field variation inference algorithm, the
computational cost of inferring variational variables is
O(NM2K2). The computational cost of the estima-
tion of topic hyper-parameters is O(NM2K2 + M3K3).
The computational cost of the estimation of Hawkes
hyper-parameters is O(N2M2K2), which can be reduced
to O(NM2K2) by only considering the influence in
temporally-close time slots. Thus the total computational
cost of our algorithm is O(NM2K2 + M3K3). Since in
real-world scenarios, influence exists only among limited
pairs of appliances and patterns, M2K2 can be reduced to
some much smaller constant, thus the above cost can be
viewed as linear in the number of events or time slots.

Experiments
We evaluated our M-Hawkes model on both synthetic and
real-world data sets, and compared the performance with the
following baselines:
Hawkes: This is a normal multi-dimensional Hawkes pro-
cess that models the occurrence of events only and no marks
of events;
AFAMAP: This method proposed an approximation in-
ference algorithm, named Additive Factorial Approximate
MAP, to efficiently solve the additive factorial hidden
Markov model by looking at the observed difference in con-
sumed energy, and incorporating a robust mixture compo-
nent that can account for unmodeled observation (Kolter and
Jaakkola 2012).
NIALM: This method, named non-intrusive load monitor-
ing, iteratively separated individual appliances from an ag-
gregate energy consumption record, and updated prior mod-
els of general appliance types for each specific appliance in-
stance (Parson et al. 2012).

Synthetic data
Data Generation. Given parameters (M,N,K,α, θ, µ, β),
the synthetic data is sampled according to the proposed gen-
erative model. Here each element µm and βm,m,k,k′ are
randomly generated in [0.5µ̂, 1.5µ̂] and [0.5β̂, 1.5β̂] respec-
tively before the simulation. In addition, α is a vector of size
K, where the element αk is generated in [0.5α̂, 1.5α̂] before
the simulation. Our synthetic data are simulated with two
different settings:
• Small: M = 10, N = 120, K = 3, µ̂ = 0.01, β̂ = 0.5,
α̂ = 0.1, θ̂ = 10. Simulations were run 1,000 times using
the pre-generated parameters µ, β;

• Large: M = 50, N = 10,000, K = 5, µ̂ = 0.01,
β̂ = 0.5, α̂ = 0.1, θ̂ = 10. Simulations were run 10
times.
To test the robustness of our method, we add two types of

noise to the original synthetic data:
Event Noisy: We generate additional 10% of total num-
ber of events randomly in the time window of each already
sampled event sequence, and add them to the sequence;
Mark Noisy: Instead of using the simulated Xn as the
consumed energy at the n-th time slot, we use a noisy value
X ′n which is obtained by adding Gaussian noise on Xn:

X ′n = max(0.1e+ 1, 0)Xn, e ∼ N (0, σ′). (4)

The default value of σ′ is set to be 1.
Evaluation metrics. We consider the following evaluation
metrics: 1) first, we compare the average log predictive like-
lihood on events falling in the final 10% of the total time

Table 1: Inference and Estimation of M-Hawkes on Syn-
thetic data

Data set MAE(µ) MAE(β) MAE(Y ) MAE(Z)

S-Synthetic 0.065 0.197 0.9251 0.9432
S-E-Noisy 0.077 0.281 0.9042 0.9229
S-M-Noisy 0.092 0.313 0.8847 0.9085
L-Synthetic 0.148 0.346 0.8718 0.8942
L-E-Noisy 0.163 0.353 0.8503 0.8642
L-M-Noisy 0.187 0.386 0.8284 0.8372

”S-” stands for data setting Small, ”L-” stands for Large, ”E-”
stands for Event Noisy, and ”M-” stands for Mark Noisy.

Table 2: Log Predictive Likelihood on Both Synthetic and
Real-world Data

Data set M-Hawkes Hawkes AFAMAP NIALM
S-Synthetic -96.23 -136.26 -104.28 -108.63
S-E-Noisy -109.21 -148.32 -120.94 -125.27
S-M-Noisy -116.93 -161.24 -134.27 -140.05
L-Synthetic -152.39 -194.38 -168.03 -173.26
L-E-Noisy -165.82 -208.43 -181.46 -186.85
L-M-Noisy -171.47 -224.06 -186.94 -191.27

Smart* -145.39 -182.55 -157.83 -160.35
Pecan -192.17 -234.88 -209.12 -216.43
REDD -171.37 -210.26 -182.37 -187.51

676



(a) Smart* (b) REDD (c) Pecan

Figure 2: Performance Comparison of Energy Disaggrega-
tion on Real World Data Sets.

(a) Smart* (b) REDD (c) Pecan

Figure 3: Energy Usage Pattern on Real World Data Sets.
Indice of significant appliances: Smart*: 2-lamp, 3-ac, 4-fan,

9-toaster, 15-refrigerator, 17-microwave. REDD: 1-main,
6-dishwaser, 15-kitchen outlets, 17-light, 19-washer-dryer. Pecan:

1-ac, 2-dishwasher, 13-microwave, 16-refrigerator.

of each event cascade; 2) next we compare the average rela-
tive distance between the estimated parameters and ground-
truth ones by Mean Average Error (MAE). For instance, the
MAE of parameter β and 1

M

∑
m |

µm−µ̂m

µm
|, which we de-

note as MAE(β). 3) finally, we measure the performance
of energy disaggregation by the MAE between the ground-
truth consumed energy of each appliance xm,n and the esti-
mated consumed energy x̂m,n, which is calculated based on
the inferred ρm,n and the estimated θ̂m.
Inference and Estimation. Table 1 evaluates both the ac-
curacy of our proposed variational inference algorithm in
parameter estimation and latent variable inference on the
synthetic data. We find that, on the small synthetic data, M-
Hawkes can recover the Hawkes parameters µ and β very
well, and accurately estimate the model’s hyper-parameters.
On the large synthetic data, M-Hawkes’s performance on pa-
rameter estimation becomes worse. The shapely increased
number of appliances makes the event occurrence predic-
tion more difficult, and further affects the learning of users’
energy usage behavior patterns. On both noisy data sets, M-
Hawkes’s performances in both inference and estimation be-
come worse. We also find that the performance of energy
disaggregation become worse with respect to the increase of
the number of appliances, which shapely increases the com-
plexity of the problem.

Real-world Data
We also conducted extensive experiments on two real-world
data sets. The first data set is Smart* (Barker et al. 2012),
which is a high-resolution data set from three homes in-
cluding over 50 appliances.. The second data set is Refer-
ence Energy Disaggregation Dataset (REDD) (Kolter and
Johnson 2011). This data set comprises six houses includ-
ing around 20 appliances. The third data set is Pecan Street

4. This data set collects one-minute resolution disaggregated
data for 450+ homes including around 20 appliances, dating
from late 2012 to early 2014.
Model Fitness. Table 2 shows the log predictive likelihood
on energy consumption falling in the final 10% of the to-
tal time of data. According to Table 2, M-Hawkes fits both
synthetic and real-world data better than alternative proba-
bilistic models. The comparison on synthetic data is mean-
ingful since we add noise into it. AFAMAP performs better
than the normal multi-dimensional Hawkes process, which
shows the importance of modeling marks of events besides
the occurrences. On both noisy data sets, the performances
of all models become worse. However, the decrease of the
performance of M-Hawkes is smaller than baselines, which
demonstrates the robustness of our proposed model. Thus
when the usage timestamps and the amounts of consumed
energy of some appliances are misrecorded, M-Hawkes per-
forms better in energy disaggregation, and learns energy us-
age behaviors better.
Performance on Energy Disaggregation. To illustrate the
effectiveness of the proposed model in energy disaggre-
gation, we compare it with all baselines measured by
MAE(X). Here we use M-Hawkes-NS to denote the M-
Hawkes model with no sparsity constraint on Hawkes hyper-
parameter β. According to Figure 2, M-Hawkes performs
at least 5% better than all compared methods with compa-
rable time costs. Also, M-Hawkes outperforms compared
methods on all categorized appliances. Such results demon-
strate the importance of modeling the relationship between
the consumed energy of different appliances across differ-
ent time slots. M-Hawkes’s advantage over M-Hawkes-NS
illustrates that only a limited number of dependencies exist
between appliances in real world energy consumption.
Energy Usage Behavior Pattern Analysis. Based on the
parameters learned by the proposed M-Hawkes model, we
analyze the energy usage behavior patterns detected in real
world energy consumption. According to Figure 3, influ-
ences exist in only limited pairs of appliances. Moreover, the
degrees of those influences are very different. In the Smart*
data, the influence between lamp and ac is greater than those
between all other pairs of appliances. The influence between
refrigerator and microwave is greater than that between re-
frigerator and toaster, which implies that people are more
likely to cook food using microwave than toaster. Notice that
Smart* data only recorded significant energy consumptions
of refrigerator, which makes its usages easily detectable. In
addition, the self-influence on some appliances, such as ac,
are also very significant. The interpretation is that those ap-
pliances are often used for a long time continuously. The re-
sults on REDD also show that rarely used appliances, such
as dishwaser and washer-dryer influence much less other ap-
pliances than those frequently used appliances, such as light
and kitchen outlets. Moreover, the influence between a cer-
tain pair of appliances is not always symmetric. In Pecan,
the influence from refrigerator to microwave is greater than
the influence from microwave to refrigerator. One explana-
tion is that people are used to open refrigerator to fetch food

4http://www.pecanstreet.org/
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before turn on the microwave to cook them. We also find
such phenomenon in Smart* data.

Conclusion and Future Work
In this paper, we formulated the task of energy disaggrega-
tion into the modeling of marked event sequences. Our paper
presented a probabilistic model that integrates topic models
with Hawkes processes to capture the influence from the oc-
currence and the mark of an event to the occurrences and
the marks of future events. In future work, it would be inter-
esting to consider other marks, e.g., the attributes of appli-
ances, into this framework, and investigate the performance
of M-Hawkes in other domains. In addition, we’ll attempt to
directly model the behavior of users instead appliances, and
the influence inbetween.
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