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Abstract

Bike-sharing systems are becoming increasingly preva-
lent in urban environments. They provide a low-cost,
environmentally-friendly transportation alternative for
cities. The management of these systems gives rise to
many optimization problems. Chief among these prob-
lems is the issue of bicycle rebalancing. Users imbal-
ance the system by creating demand in an asymmet-
ric pattern. This necessitates action to put the system
back in balance with the requisite levels of bicycles at
each station to facilitate future use. In this paper, we
tackle the problem of maintaing system balance during
peak rush-hour usage as well as rebalancing overnight
to prepare the system for rush-hour usage. We provide
novel problem formulations that have been motivated
by both a close collaboration with the New York City
bike share (Citibike) and a careful analysis of system
usage data. We analyze system data to discover the best
placement of bikes to facilitate usage. We solve rout-
ing problems for overnight shifts as well as clustering
problems for handling mid rush-hour usage. The tools
developed from this research are currently in daily use
at NYC Bike Share LLC, operators of Citibike.

1 Introduction
Bike-sharing systems are a cost effective way of promoting
a sustainable lifestyle in urban areas. The number of bike-
sharing systems has more than doubled since 2008 (Larsen
2013). These systems generally consist of stations where
users can take out or drop off bikes, and may return a bike
to a free dock at any station. New York City launched the
largest bike-sharing system in North America, Citibike, in
May 2013 with over 300 stations and 5000 bikes. The sys-
tem has been a success with ridership approaching 40000
trips per day. With this success comes a set of manage-
ment problems. Chief among these is the issue of system
imbalance; bikes become clustered in certain geographic ar-
eas which leaves other areas devoid of bikes; for example,
the traders wake up early in their East Village apartments,
rapidly deplete the supply of bikes there, and then over-
whelm the capacity for docks in the Wall Street area. This
system imbalance necessitates moving bikes around the city

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to put the system back in balance. This is achieved either
by trucks, as is the case in most bike-share cities, or other
bicycles with trailers, as is being tested in New York.

Operators of bike-sharing systems have limited resources
available to them, which constrains the extent to which re-
balancing can occur. Hence, this domain is an exciting ap-
plication for the field of computational sustainability. Based
on a close collaboration with NYC Bike Share LLC, the
operators of Citibike, we have formulated several optimiza-
tion problems whose solutions are used to more effectively
maintain the pool of bikes in NYC. There is an expanding
literature on operations management issues related to bike-
sharing systems, but the problems addressed here are par-
ticularly suited to the complex blend of human and system
constraints that are present for Citibike. For these problems,
we shall present results utilizing different approaches: inte-
ger programming formulations that can typically be solved
(at scale) by off-the-shelf integer programming solvers, and
heuristic approaches that yield good solutions quickly.

We begin by tackling the problem of how best to use sys-
tem data to plan for usage. That is, we want to place bikes
at stations to handle the surge in usage experienced during
rush-hours. We approach the issue of inferring true demand
for trips and use these amounts to better plan for system
usage. From these computations we know both when and
where bikes are needed and progress to answering the ques-
tion: how do we get them there?

We focus on two very different rebalancing problems.
First, we tackle rebalancing the system during rush-hour,
developing novel methods for optimizing rebalancing re-
sources. During rush-hour, system usage is high, rendering
large truck routes unreliable as the system state might shift
dramatically before the route is completed. Traffic is also at
its peak during rush hour, which greatly limits the ability of
trucks to move easily through the city; this motivates the use
of bike trailers instead of large trucks. The nature of the mid-
rush balancing requires a drastically different approach than
the one used for the overnight problem. Our goal is not to
maintain system balance but to ensure that users are never
too far from either a bike or a dock. To achieve this, we for-
mulate a clustering problem that yields stations in the city
for which rebalancing resources can be targeted.

We then tackle the problem of moving bikes around the
city overnight. Overnight the system experiences low usage
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and as a consequence stockage levels are relatively constant.
Traffic is also at its lowest during these hours resulting in
trip times being both reliable and short. This allows a re-
balancing plan spanning the overnight shift to be computed
and executed without fear of users making it redundant or
counterproductive. We formulate an optimization problem
whose goal is to produce a series of truck routes to get the
system as balanced as possible during the overnight shift.
We provide both theoretical results as well as an empirical
approach to this problem based on a (relatively) tractable in-
teger programming formulation. The combination of these
two approaches yields a fast method of obtaining high qual-
ity solutions that can be used in practice.

2 Related Work
Due to the increasing importance of bike-sharing programs,
and the operational difficulties in managing them, a great
deal of attention has been focused on a variety of problems
that relate to bike-sharing. In particular, work such as (Ra-
viv, Tzur, and Forma 2013), (Contardo, Morency, and L.-M.
Rousseau 2012), (Schuijbroek, Hampshire, and van Hoeve
2013), (Chemla, Meunier, and Calvo 2013) and (Shu et al.
2013) focus on the problem of (overnight) rebalancing. (Ra-
viv, Tzur, and Forma 2013) tackles the problem of finding
truck routes and plans for how many bikes to move between
stations. The paper minimizes an objective function tied to
both the operating cost of the vehicles as well as penalty
functions relating to station imbalance. The models pro-
vided are benchmarked on instances from both the Paris and
Washington DC bike-share systems. (Schuijbroek, Hamp-
shire, and van Hoeve 2013) combines both finding service
level requirements for stations with planning truck routes to
keep stations rebalanced. They use a clustering based heuris-
tic for routing on data from Boston and Washington DC to
produce truck routes. (Rainer-Harbach et al. 2013) take a lo-
cal search approach to finding both routes for trucks and the
number of bikes to be collected or dropped off at each sta-
tion. (Contardo, Morency, and L.-M. Rousseau 2012) iden-
tify that a different rebalancing approach needs to be taken
during rush hours. They formulate flow problems on space-
time networks. Solutions are generated using a combination
of Dantzig-Wolfe decomposition and quickly generated up-
per and lower bounds. (Chemla, Meunier, and Calvo 2013)
solves the static rebalancing problem, where a plan of where
to move bikes is created. They provide a branch-and-cut al-
gorithm for a problem realization and a tabu search to find
heuristic solutions. (Shu et al. 2013) uses a time-flow for-
mulation combined with stochastic modeling to tackle the
problem of rebalancing. These papers tackle the rebalancing
problem in a way that is similar to traditional inventory man-
agement and package routing problems, for example (Anily
and Bramel 1999), (Archetti et al. 2007) and (?). However,
in our work we approach the problem in a manner closer to
orienteering problems (Vansteenwegen, Souffriau, and Oud-
heusden 2011), (Chekuri, Korula, and Pál 2012). Our work
also handles full size instances; both in terms of number of
stations and trucks considered. Much of the previous work
has focused on instances for which two or three trucks are
available. Furthermore, our work builds on the understand-

ing of the practicalities of running Citibike, in their current
state, it is much simpler operationally to simply have trucks
go to an overloaded station, fill the truck with bikes, and then
deposit all of them at a (sufficiently) depleted station.

Other work creates models to analyze bike-sharing sys-
tems, specifically (Nair et al. 2013), (Vogel and Mattfeld
2011), (Kaltenbrunner et al. 2010) and (Lin and Yang 2011).
This work focuses on modeling how users will impact the
system, detecting usage patterns from behavior. This insight
into usage patterns is used to create stochastic models repre-
senting system usage. (Vogel and Mattfeld 2011) classifies
stations based on their usage patterns, identifying stations
used by commuters, tourists, etc. (Garca-Palomares, Gutir-
rez, and Latorre 2012), (Martinez et al. 2012) and (Romero
et al. 2012) aim to optimize the placement of stations in bike-
sharing systems.

Our work provides fundamentally different models of
bike rebalancing compared to previous approaches: for mid
rush-hour rebalancing, we focus on a covering problem
viewpoint, closely tied to the very small number of pairs of
stations that can be rebalanced by bike trailers; for overnight
rebalancing, we focus on full truck-load routes that give rise
to an problem of covering a bipartite graph with sufficiently
short alternating paths. These models are driven by obser-
vations obtained by our collaboration with New York Bike
Share LLC., the operators of Citibike.

3 Data Analytics for Bike Share Systems
Our earliest goal for the collaboration with NYC Bike Share
LLC was to make their planning and decision making data
driven. Specifically, it is crucial to use the data available to
understand how the system is being used and where usage
is putting stress on the system. The first problem we tackled
was the problem of rush-hour planning. Weekday rush-hours
(6am-10am and 4pm-8pm) account for the majority of bike
trips taken in New York. Although mostly symmetric over
the course of a day, each rush-hour period in isolation is
highly asymmetric. In fact we observe many extremes of be-
havior with some areas of the city having a large outflow of
bikes and other areas having a large inflow of bikes. To deal
with this surge we aimed to answer the following question:
suppose we could click our fingers and have the system in
any state before the morning and evening rush hours, what
would that state be? To answer this question we used a num-
ber of methods, each of which raises deeper questions about
the analysis of bike-share usage.

Planning for Rush-Hour Usage To plan for a rush-hour
we need to know where we expect bikes to be taken from
and areas where we expect they will accumulate. We also
need to identify stations that are self-balancing, specifically
their flow of bikes in is roughly equal to their flow of bikes
out thus requiring no rebalancing actions. Out first approach
to discover the ideal system state before the morning and
evening rush-hours relied on clustering stations based on
their observed usage. The intuition is that stations that ex-
perience similar behavior during rush-hours will belong to
the same cluster, we then analyzed the type of behavior typ-
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ical of each cluster and label the cluster with a desired level.
These levels are used to inform the operators of Citibike
where bikes need to be placed to anticipate user demand.

This approach has been highly successful, by using the fill
levels generated by this computation the operations team at
NYC Bike Share have been able to tailor their rebalancing
operations to best serve the heavy rush-hour usage. How-
ever, although successful this method has a number of limi-
tations. Specifically there is a weakness related to exploita-
tion versus exploration. This method is slow to react to shifts
in usage, to illustrate this we will consider an example that
happened at a station in Brooklyn. The station was initially
self-balancing with low usage, thus it was assigned a low fill
level. However, over time the behavior of this station shifted
to become a consumer of bikes. This change was not re-
flected in its level as there were never enough bikes placed
there for high usage to be recorded. This station was iden-
tified by chance and this experience led us to believe that
there might be others in a similar situation. This caused us
to consider the question, assuming we could keep each sta-
tion stocked with bikes and spaces, what would a typical
day’s usage look like? This question is, in essence, what is
the true demand for bikes in the system?

Computing Demand for Bikes Although system data
gives us information on each ride taken by users in New
York these data might not be a true reflection of the actual
demand in the system. Consider a bike-share station at Penn
Station in the evening rush hour. A huge number of com-
muters want to return bikes and take a train from the station.
However if we were to not rebalance this station it would
quickly fill up and we may observe a fraction of the trips
that could have happened. This motivates the computation
of the underlying demand. Knowing the demand for bikes
and docks in the system allows us to plan more effectively
for usage.

Observed trip data differs from the true demand due to
censoring, that is stations being empty or full preventing
users taking or returning bikes at the station. For many days
we may observe zero trips for a time period but perhaps this
is related to the station being empty/full. These outage win-
dows are highly consistent as the morning and evening rush-
hour behavior patterns are similar from day to day, meaning
that the same stations are empty at the same time almost
every day. However due to rebalancing operations we have
days where we managed to replenish these stations with
bikes or remove excess bikes. Out aim is to rely on rebalanc-
ing operations having had sufficient impact to give us data
for most stations.

Consider a matrix of observations, O,where Oij is equal
to the number of bikes out on day i at time j and a level
matrix, L, where Lij is the number of bikes at the station
on day i at time j. We use the average number of trips for
each time window as a lower bound on the true demand. The
lower bounds we produce are first order approximations of
the true demand. Consider the impact of changing operations
to facilitate these demands, this could easily drive more rid-
ership as people see the system becoming more reliable.

Figure 1: Example mask matrix for a Penn Station bike-
share station over 60 days.

Figure 2: Example of the two lower bounds on true demand
for a station in the West Village.

Figure 3: Morning levels assigned based on different cost func-
tions. From left to right, minimizing max gap, minimizing the sum
of the gaps, minimizing the sum of the gaps squared all with six
thousand bikes. The color of stations corresponds to fill percent-
age, blue to 10%, red to 90% and purple to 50%.

689



To compute more accurate lower bounds on demand we
need to take censoring of demand into account; to do this
we mask the observed trip matrices, removing elements
where the corresponding level element is at zero. That is
lower bound on true demand of bikes out at time j, T o

j =
avgi(Oij |Lij > 0) This in essence ensures that zeroes that
occur in the observed matrix are actual zeroes and not just
zeroes due to outages. Due to broken bikes and broken dock-
ing points we use a soft outage number, that is considering
a station to have a stockout if the number of bikes or docks
drops below a given threshold. In practice, the correct value
for this threshold is between two and five. An example of
such a mask matrix for one of the Penn Station locations is
shown in Figure 1. Using a threshold of four, the bounds on
true demand flows for a West Village station are shown in
Figure 2. From this figure we can see that the lower bound
obtained by the mask matrix is larger in both magnitude and
duration throughout the rush-hours.

Optimizing Resource Allocation Under the assumption
that the lower bounds we have computed are a good proxy
for the underlying user demand, optimization of manage-
ment decisions for the system becomes possible. We can
frame the question of how many bikes to place at a sta-
tion before the rush hour as an optimization problem. Given,
for each station, the expected number of bikes in and out
of the station for each minute of the rush hour, the station
capacities and the number of bikes that can be deployed
into the system we solve an optimization problem where for
each station we decide the number of bikes placed there,
Xs ∈ {0...c(s)} (where c(s) is the capacity of the sta-
tion). Given a budget of bikes B we need to ensure that∑

s Xs ≤ B. We then minimize some objective function
J(X), the structure of which impacts the quality of the so-
lution to the problem. One initial candidate is to compute
the net flow from the lower bounds for each station and look
at the smallest and largest value for this curve over the rush
hour. These values are the maximum imbalance the flow at
the station will create. We can then penalize a station’s level
for being too far under or over these values. This penalty
can take the form of minimizing a quadratic function of the
differences, minimizing the sum of the differences or mini-
mizing the maximum difference. Given for each station, s,
the net flow curve at each time t as fs

t , minimizing the maxi-
mum difference can be solved by the integer program below.

minD (1)

s.t.
∑
s

Xs ≤ B (2)

∀s D ≥ Xs + min
t

f
s
t (3)

∀s D ≥ c(s)−Xs −max
t

f
s
t (4)

∀s Xs ∈ {0...c(s)} (5)

D ≥ 0 (6)

Minimizing the sum of the differences and the sum of
the differences squared take similar forms with auxiliary
variables recording the amounts that each station is under-
and over-served, i.e., by constraints (3, 4). These auxil-
iary variables are then summed or squared and summed.
It is important to put a lower bound of zero on the differ-
ence variables since we concern ourselves only with trips

missed. Solutions to the optimization problem produced by
Gurobi (Gurobi Optimization 2014) using these three objec-
tive functions are shown in Figure 3. Both minimizing the
sum and sum of squared worse case imbalances result in a
solution that matches operator intuition about the system.

4 Rebalancing
Having computed the desired fill levels for stations before
the morning and evening rush-hours, as well as analyzing
their behavior during these rush-hours, we address the prob-
lem how to get them there? We take different approaches
for both planning for the rush-hour surge and managing this
surge in ridership. Both our approaches are novel and dras-
tically different from existing work.

Mid-Rush Rebalancing
The morning and evening weekday rush-hours account for
the majority of trips taken on New York’s bike-share sys-
tem. Usage is extremely high during these periods and asym-
metric; that is, the net flow of bikes out of many stations is
largely positive or largely negative and often matched by an
opposite symbol flow in the complementary rush-hour pe-
riod. From observation of data, the net flow of stations can
be computed. The behavior of stations from one day’s rush-
hour to the next is very consistent, allowing us to classify
them as either producers, consumers or balanced stations.

Our goal during the rush hour is to ensure that users of
the system are not too far from either a bike or a dock. A
criterion close to this is contained within the contract that
requires the operator of Citibike to maintain a specified level
of quality of service in a range of aspects; fines are imposed
for failing to meet certain levels. We will focus rebalancing
resources on covering the critical areas of the city and will
be able to rebalance only a small subset of stations. Using
historical data that indicate which stations accumulate bikes
(producers) and which lose bikes (consumers), we want to
ensure that each producer station is close to a producer sta-
tion that will be rebalanced, and that each consumer station
is close to some rebalanced consumer station. To rebalance a
consumer station, bikes must be delivered to it, ideally from
a producer station where bikes need to be removed for re-
balancing. We select producer and consumer stations to re-
balance, pairing them up so that rebalancing is achieved for
both producer and consumer simultaneously.

In NYC, most of the mid-rush rebalancing is done by
special bicycles outfitted with trailers that can hold a few
Citibikes, typically three; due to the nature of this resource,
the most effective plan is to designate certain pairs of sta-
tions (i.e., with one producer and one consumer) to be tar-
geted for mutual rebalancing. These pairs must be suffi-
ciently close, so that the bicycles can be moved effectively
within the narrow timeframe of a quickly transpiring rush
hour. These considerations gave rise to the following opti-
mization model:

Definition Mid-Rush Pairing Problem We are given a com-
plete undirected graph G = (P ∪ C,E) with a non-
negative metric distance function d(e),∀e ∈ E, as well
as an integer k, and an integer T ; the goal is to select
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two subsets, P ′ ⊆ P and C ′ ⊆ C such that |P ′| =
|C ′| ≤ k, such that there exists a perfect matching in
{e ∈ E : d(e) ≤ T} between P ′ and C ′ which mini-
mizes max (maxp∈P d(p, P ′),maxc∈C d(c, C ′)) We define
d(p, P ′) to be the distance between p and the closest point
in P ′ to it.

Integer Programming Formulation Similar to the case
of the k-center problem, (Hochbaum and Shmoys 1985), the
objective function is determined by exactly one edge length.
Thus there are only a polynomial number of possible opti-
mal values - |P |2 + |C|2 . For each potential optimal value,
we either verify its infeasibility (by showing that the IP is
infeasible) or we have a solution.∑

u∈V

xu ≤ k, ∀V ∈ {P,C};

(7)∑
u∈V :(u,v)∈EV

y(u,v) = 1, ∀v ∈ V, ∀V ∈ {P,C};

(8)

y(u,v) ≤ xu, ∀(u, v) ∈ EV , ∀V ∈ {P,C};
(9)∑

c∈C:(p,c)∈EM

m(p,c) = xp, ∀p ∈ P ; (10)

∑
p∈P :(p,c)∈EM

m(p,c) = xc, ∀c ∈ C; (11)

xu ∈ [0, 1], ∀u ∈ V ; (12)

y(u,v) ∈ {0, 1}, ∀(u, v) ∈ EP ∪ EC ; (13)

m(p,c) ∈ {0, 1} ∀(p, c) ∈ EM . (14)

In the integer linear programming formulation of the Mid-
Rush Pairing Decision Problem, we wish to decide if there is
a feasible solution in which each producer is served within a
distance of dP and each consumer within dC , and that the
paired nodes are within input threshold T ; we let EP be
those pairs (u, v) ∈ P × P for which d(u, v) ≤ dP , EC

be those pairs (u, v) ∈ C × C for which d(u, v) ≤ dC , and
let EM be those pairs (u, v) such that d(u, v) ≤ T . In the IP
formulation, there exists a 0-1 decision variable xu for each
u ∈ P ∪C to indicate whether (or not) that node is selected
as one of the 2k paired stations; there is a 0-1 decision vari-
able y(u,v) for each (u, v) ∈ EP ∪ EC to indicate whether
node v is served by node u in the pairing. Finally, we have
a 0-1 decision variable m(p,c) for each (p, c) ∈ EM to indi-
cate whether producer p and consumer c are paired. Hence,
we get the integer programming relaxation as shown above.
We implemented the above model in Gurobi, by using a bi-
section search over the space of possible objective functions
we were able to solve instances from New York in under a
minute. We believe this performance to be due to the high
quality of the LP relaxation of the above IP, in most cases
the LP relaxation is integral.

Overnight Rebalancing
The majority of rebalancing operations occur overnight.
From our analysis of system data and underlying demand
we have computed the desired state of the system for start
of the morning rush-hour. Previous work has attempted to

compute routes for rebalancing trucks that allow a fully gen-
eral pattern of pickups and drop-offs, and specify the num-
ber of bikes to be collected from and dropped to each sta-
tion. We take a different approach that is motivated by work-
ing closely with the operators of the New York bike-sharing
system. We restrict ourselves to moving truckloads of bikes.
With this restriction, we formulate a model to optimize the
use of a given-size fleet of rebalancing trucks. We derive
an IP formulation that is reasonably tractable for fleets with
a small number of trucks, and then provide a heuristic ap-
proach that takes advantage of the fact that the IP finds high
quality solutions for the 1-truck special case.

During the overnight rebalancing shift, the goal is to get
the system ready for the morning rush hour. We aim to have
all stations at their desired level as specified by a balancing
plan. Often this is an unrealistic demand as the resources
available are inadequate to achieve this. This motivates the
problem of getting the system as close as possible to this
state with the resources available. To achieve this, we com-
pute a set of routes for rebalancing trucks that optimize
the number of stations rebalanced. We limit these routes
to move only full truckloads of bikes. Previous approaches
have focused on the number of bikes to move between sta-
tions. From analyzing system state at the beginning of the
overnight shift we observed that it is desirable to move only
full trucks of bikes. A full truck of bikes is, in most cases,
enough to bring a station to the required level. Also, the
travel time in Manhattan can dominate the loading time of
a truck, making it desirable from an operational standpoint
to move only full truck loads of bikes. Finally, the simplic-
ity of the instructions needed to implement full truckload
routes is an important element in the practicality of this ap-
proach. Using these observations, we formulate the problem
as trying to find a set of truck routes that rebalances as much
of the system as possible in the time available. We route
trucks in a bipartite graph, where one node set consists of
stations with a surplus of bikes and the other of stations with
a deficit of bikes. We now formally define the Overnight Re-
balancing Problem. The intuition for this model is that we
want to have routes for trucks that alternate between sur-
plus and deficit stations. The distance between a surplus and
a deficit station takes into account both the travel time and
loading/unloading time. The time limit is determined by the
length of a shift operated by rebalancing staff.

Definition Overnight Rebalancing Problem We are given a
complete bipartite graph G = (P ∪ M,E), a number of
trucks T , a non-negative metric distance function d(e) for
each e ∈ E, and a distance limit L, and the aim is to find T
vertex-disjoint paths P , each starting in P and ending in M ,
such that ∀p ∈P,

∑
e∈p d(e) ≤ L, so that the total number

of vertices visited by at least one path is maximized.

Empirical Solution Given the importance of having the
bike-share system in a good state before the morning rush
hour it is crucial to quickly produce high quality routes for
the overnight rebalancing shift. To achieve this we tackled
the Overnight Rebalancing Problem from an empirical per-
spective.
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max
∑

t∈{1,...,T}

∑
v∈P∪M

z
t
v subject to (15)

∑
p∈P

r
t
(dstart,p)

= 1 ∀t ∈ {1...T} (16)

∑
m∈M

r
t
(m,dend) = 1 ∀t ∈ {1...T} (17)

∑
u∈N(v)

r
t
(u,v) =

∑
u∈N(v)

r
t
(v,u) ∀v ∈ P ∪M, ∀t ∈ {1...T} (18)

∑
e∈E

r
t
e · d(e) ≤ L ∀t ∈ {1...T} (19)

∑
t∈{1,...,T}

z
t
v ≤ 1 ∀v ∈ P ∪M (20)

∑
u∈P∪M

r
t
(u,v) = z

t
v ∀v ∈ P ∪M, ∀t ∈ {1...T} (21)

f
t
e ≤ r

t
e · |P ∪M | ∀e ∈ Ē, ∀t ∈ {1...T} (22)∑

u∈N(v)

f
t
(u,v) =

∑
u∈N(v)

f
t
(v,u) + z

t
v ∀v ∈ P ∪M, ∀t ∈ {1...T} (23)

r
t
(u,v) ∈ {0, 1} ∀(u, v) ∈ Ē, ∀t ∈ {1...T} (24)

f
t
(u,v) ∈ {0...|P ∪M |} ∀(u, v) ∈ Ē

v 6=dend

, ∀t ∈ {1...T} (25)

z
t
v ∈ {0, 1} ∀v ∈ P ∪M, ∀t ∈ {1...T} (26)

One approach to solving the Overnight Rebalancing Prob-
lem is to formulate it as an integer program; we give a for-
mulation for which standard IP software typically computes
high-quality solutions for modest-sized inputs within rea-
sonable time bounds. Given the input graph G = (P ∪
M,E), we construct an augmented (directed) graph Ḡ: we
start with the input bipartite graph, bidirecting its edges, and
add a start depot vertex dstart as well as a finish depot dend.
In addition to two directed copies of each edge (u, v) ∈ E,
there is an edge from dstart to each vertex in P and an edge
from each vertex in M to dend. Let Ē denote the augmented
set of edges, and for each u ∈ P ∪ M , we let N (u) de-
note the set of vertices v for which there exists an edge
(u, v) ∈ Ē. In constructing an integer programming for-
mulation, there will be three type of integer variables. First,
there are 0-1 variables ztv that indicate whether the truck
t ∈ {1, . . . , T} rebalances node v. We also have a set of 0-1
variables rt(u,v) that indicate whether the edge (u, v) is on
the route traversed by truck t, t = 1, . . . , T . Hence, we have
flow conservation constraints (16), (17), and (18), which en-
sure, respectively, that the path starts at a node in P , ends
at a node in M , and that whenever the path enters a node,
it must exit that node as well. Similarly, it is natural to have
the length constraint (19) to upper bound the length of the
path, and disjointness constraint (20) to ensure that at most
one truck rebalances a given node v. Finally, it is clear that
the node v is visited by t, if there is some edge e = (u, v)
for which rte = 1; hence, we get the constraints (21).

However, if one considers the feasible solutions to just
these constraints, then it is easy to forget that a feasible 0-1
solution for rt might not correspond simply to a path, but to
a path plus a collection of cycles. The role of the final set of
variables is to enforce that the only nodes that are serviced
by t are those nodes on the path indicated by r. For each
edge e = (u, v) ∈ Ē, where u ∈ dstart ∪ P ∪ M , and

v ∈ P ∪M , the integer variable f t
e counts the number of

nodes in P ∪M yet to be traversed in its path (and so, for
example, if the path for truck 1 rebalances 8 nodes, starting
node u ∈ P , then f1

(dstart,u) = 8). First, each variable f t
e is

positive (and of course is at most |P ∪M |) only when rte is
1; this is enforced by constraints (22). Finally, if the count
entering node v is `, then the count exiting it `−1 (provided
the truck traverses node v); this is exactly captured by the
constraint (23). And notice the effect of this constraint on a
potential cycle selected by the variables r; its corresponding
f value must decrease by 1 for each edge traversed in the
cycle, but clearly this is impossible. Hence, this additional
set of flow variables and constraints preclude the possibility
of selecting cycles.

Heuristic Approach As the number of trucks increases,
the time it takes to solve the IP increases. From experimental
results shown below, one truck is solvable by the IP, whereas
larger number of trucks require more than the modest time
limit given to the solver. This leads us to investigate a heuris-
tic approach to the problem, specifically a greedy algorithm.
In this greedy algorithm, we repeatedly solve the IP for one
truck, and then remove those vertices from the graph and
solve again. Removing the vertices covered by the route is
valid, since the bipartite graph is complete, and once chosen
no other truck will be able to use the removed vertices.

Framing this optimization problem as a covering problem
allows us to analyze properties of the greedy heuristic. In
this case we are choosing a subset from a ground set of all
possible truck routes, paths starting in P , ending in M of
distance at most L, to cover another set, the set of all ver-
tices. Given a subset of truck routes, the number of vertices
covered is equal to twice the number of (p,m) pairs cov-
ered by trucks, where each p and each m can appear in at
most one pair. To compute this, consider ordering the truck
routes and take all pairs defined by the first route. For all
subsequent routes, if a vertex on the route has already been
visited we shortcut the pair it belongs to in the route and
continue. We observe that this objective function is submod-
ular (Lemma 4.1). This property allows a greedy approach,
where at each step the best possible route for a truck is taken,
to yield a

(
1− 1

e

)
solution, as shown in Nemhauser, Wolsey

and Fisher (Nemhauser, Wolsey, and Fisher 1978).
Typically, when maximizing a submodular function over

a finite ground set, at each stage the element from the set that
increases the objective function the most is added. However,
in this case, the ground set is exponential in size requiring a
different approach than iterating through the elements of the
ground set. Given a problem instance, it is clear that solv-
ing the problem for one truck yields the best route from the
ground set. For the following iterations, by removing routes
we have already taken, the best route for one truck is equal
to the best element from the ground set to add. Thus solving
the 1-truck IP to find the best route at each stage gives us a
(1− 1

e ) approximation to the original problem (though albeit
without any guarantee on how efficient the algorithm is).

Lemma 4.1 The function mapping a set of paths of length at
most L that start in P and end in M to the number of (p, c)
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Figure 4: Average time taken by the IP and greedy
approaches for different numbers of trucks on real
instances.

Figure 5: Solution quality found by the IP and
greedy approaches for different numbers of trucks
on random instances.

pairs (where each p and each c can appear in at most one
pair) visited by at least one path is monotone submodular.

Proof Consider adding a path to the set of paths and re eval-
uating the objective function. There can be no decrease in the
objective function as we are not removing any paths. Given
two sets of paths A,B with A ⊆ B we can not gain more by
adding another path to B than by adding it to A as any pairs
visited by A are visited in B and shortcutting that must take
place in A must take place in B.

Experimental Results We tested the integer program-
ming approaches on real world instances gathered from
actual system data. We implemented the IP in Gurobi
(Gurobi Optimization 2014) and carried out a number of
experiments. The experiments were run on Linux machines
with 2 Intel x5690s running at 3.46GHZ, a 128GB SSD and
96GB RAM. To generate the real world instances we took
a series of system snapshots of the system state at the 8pm
start of the overnight shift during June 2013. We used a stan-
dard plan for the system state at the start of the morning
rush hour to compute the stations that make up the bipartite
graph, specifying the surplus and deficit nodes P and M .
The instances typically had 50 P vertices and 50 M ver-
tices. With station location GPS information, we can com-
pute an estimated travel distance between the stations. For
each instance we vary the number of trucks available for re-
balancing and analyze both the runtime taken by the solver
as well as solution quality; in total, the data set contained 50

Figure 6: Average time taken by the IP and greedy
approaches for different instance sizes in random
instances.

Figure 7: Solution quality found by the IP and
greedy approaches for different instance sizes in
random instances.

instances. We ran the IP with a 900 second cutoff and re-
stricted the greedy to use only 300 seconds for each greedy
call to the IP. The results can be seen in Figures 4 and 5.
From this it is clear that as the number of trucks increases,
the greedy approach produces higher quality solutions in
less time than the IP. In Figure 5 we compare the solutions
returned by both methods to the best bound found by the
solver in 900 seconds. It is interesting to note that although
one can solve the 1-truck inputs to optimality (say, with an
hour of computation time), it is typically the case that this
only shows the incumbent solution to be optimal.

We also conducted experiments on randomly generated
instances where we fix the number of trucks at 5 (a realistic
number of available trucks) and we vary the number of P
and M vertices. The results of this experiment are shown in
Figures 6 and 7. Again the greedy approach outperforms the
MIP. The performance of the greedy solution, both in terms
of time taken and solution quality allows it to be used in
practice.

5 Conclusion and Future Work
In this paper, we provide a novel way of thinking about
bike rebalancing in bike-share systems. Our models are mo-
tivated by operational constraints and observations gleaned
from a close collaboration with bike-share operators. We
provide solution methods for our models that are sufficient
to provide high quality, usable solutions to real world in-
stances from New York City as well as providing provable
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guarantees on solution quality. Solutions to the mid-rush re-
balancing problem are already in use in New York and the
tools developed to solve the Overnight Rebalancing Prob-
lem are currently being integrated into the truck dispatching
system. Our approaches provide ”the overarching vision for
how we like our system to look,” according to Citibike di-
rector of operations Michael Pellegrino (Wald 2014).

The collaboration with New York Bike Share LLC. is on-
going: a wealth of other operational challenges remain to be
tackled, such as optimizing battery replacement for stations
and developing models for future system expansion. Fur-
thermore, we are continuing to improve the solution meth-
ods for the models presented in this paper, refining both
the computational results as well as improving the models
through feedback from people in the field.
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