
Predisaster Preparation of Transportation Networks

Hermann Schichl∗
Faculty of Mathematics

University of Vienna, Austria

Meinolf Sellmann
IBM Research

Yorktown Heights, NY, U.S.A.

Abstract

We develop a new approach for a pre-disaster planning
problem which consists in computing an optimal invest-
ment plan to strengthen a transportation network, given
that a future disaster probabilistically destroys links in
the network. We show how the problem can be for-
mulated as a non-linear integer program and devise an
AI algorithm to solve it. In particular, we introduce a
new type of extreme resource constraint and develop a
practically efficient propagation algorithm for it. Exper-
iments show several orders of magnitude improvements
over existing approaches, allowing us to close an ex-
isting real-world benchmark and to solve to optimality
other, more challenging benchmarks.

Earthquake Preparation
We consider a real-world pre-disaster planning problem that
was introduced in (Peeta et al. 2010). Given a transporta-
tion network, where links are subject to probabilistic fail-
ure, the task is to use a limited budget to decrease the
failure probability on selected links such that the overall
expected shortest-path distance between a number of ori-
gin/destination pairs (OD-pairs) is minimized. The origi-
nal model assumes independence between the failures of
links. Consequently, a priori an exact standard stochastic
programming approach would need to consider an exponen-
tial number of scenarios. Therefore, the approach in (Peeta
et al. 2010) solves the problem without guarantees on the
quality of the solution. Exploiting value-interchangeability,
a symmetry-notion from constraint programming, only very
recently (Prestwich, Laumanns, and Kawas 2013; 2014)
were able to reduce the number of scenarios massively to a
point where the benchmark introduced in (Peeta et al. 2010)
could be solved to optimality within a number of minutes.

The idea of combining scenarios that all lead to the same
value for the random variable considered (in our case: the
sum of all expected shortest path lengths between all ori-
gin/destination pairs) is very interesting for scenario genera-
tion in general. We build on this idea and formulate the pre-
disaster planning problem as an integer programming prob-
lem with a very simple constraint structure and a heavily
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non-linear objective. Due to the binary nature of investment
decisions the problem is obviously not convex. Furthermore,
we will show that it is hard to approximate and also neither
sub- nor super-modular. We then introduce a new type of ex-
treme resource constraint and develop a practically effective
propagator which allows us to solve the existing benchmark
instances in milliseconds, two to three orders of magnitude
faster than existing methods. This then paves the way for
tackling harder benchmark instances which consider several
orders more non-interchangeable scenarios as well as corre-
lated failure probabilities.

Problem Definition and Complexity
Definition 1. We are given an undirected graph G =
(N,E) with a node set N = {1, . . . , n} and an edge set
E = {{i, j} | i, j ∈ N, i < j}. Furthermore, we are
given four functions. An a priori survival probability func-
tion s : E → [0, 1], a survival probability after investment
function v : E → [0, 1], an edge length function l : E → IN,
and a cost of investment function c : E → IN. Finally,
we are given a budget limit C ∈ IN, as well as node pairs
(o1, d1), . . . , (ok, dk) ∈ N2 and penalties Moh,dh

∈ IN for
disconnecting the OD pair (oh, dh).

Given a set I ⊆ E, we denote with pI : E → [0, 1],
with pI(i, j) = v(i, j) if {i, j} ∈ I and pI(i, j) = s(i, j)
otherwise, the survival probabilities after investing in links
in I . We consider the probability space (Ω, PI) where Ω =
{F | F ⊆ E} and PI is the unique probability measure with
PI(F ) =

∏
{i,j}∈F pI(i, j)

∏
{i,j}/∈F (1− pI(i, j)). Finally,

for all o, d ∈ N let us denote with SPLI
o,d : Ω → IN a

random variable over (Ω, PI) such that SPLI
o,d(F ) returns

the shortest-path length from o to d in the weighted graph
(N,F, l), and Mo,d if no path from o to d exists in (N,F )
(we omit a formal definition of shortest paths due to limited
space).

The Predisaster Transportation Network Preparation
Problem (PTNP) consists in selecting a subset I ⊆ E
of links to invest in such that

∑
{i,j}∈I c(i, j) ≤ C and∑k

h=1 E(SPLI
oh,dh

) is minimized.

The PTNP is a probabilistic version of the determinis-
tic problem class of survivable network design problems
(SNDPs). Node- and link-survivable network design prob-
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lems have important applications in supply chain design,
telecommunication network design (Kerivin and Mahjoub
2005), and wildlife preservation (LeBras et al. 2013). The
SNDP helps to design networks that keep their functionality
in case of the failure of a small number of links or nodes. The
PTNP, on the other hand, optimizes networks for maximal
survivability in case of a disaster that may simultaneously
affect many links and nodes at the same time.

Later we will also study variants of this problem
where we consider correlations between link failures
(change in definition of PI ) or where we change the
objective and minimize the expected maximum relative
length increase maxk

h=1{E(SPLI
oh,dh

)/SPLI
oh,dh

(E)} or
where we minimize the sum of squares of these values∑k

h=1

(
E(SPLI

oh,dh
)

SPLI
oh,dh

(E)

)2

.

Theorem 1. The PTNP is APX-hard and, unless P = NP ,
cannot be approximated for any constant relative error
guarantee.

Proof. Reduction from Steiner trees (omitted).

Thus, not only is the PTNP NP-hard, it cannot even be
approximated. Moreover:
Theorem 2. The PTNP is neither sub- nor super-modular.

Proof. Assume there is just one OD-pair, connected by two
paths, the first consists of two edges a and b, the second has
just one edge c which directly connects origin and destina-
tion. All edges have length 1, a priori survival probability
0, and survival probability 1 after investment. Investing in
a by itself results in no improvement, yet after investing in
b investing in a helps. This is a case of increasing returns.
However, after investing in b and c, investing in a is again
useless as the shortest path, going directly via edge c, is al-
ready guaranteed to exist. This is a case of diminishing re-
turns.

Formulation as Non-linear Integer Program
Therefore, pre-disaster planning is hard and does not exhibit
some of the standard structural backdoors which would lead
to reasonably practically efficient algorithms. Consequently,
(Peeta et al. 2010) used a best-effort approach to tackle the
problem. (Prestwich, Laumanns, and Kawas 2013), on the
other hand, considered scenario bundles which led to the
first provably optimal solutions for the Istanbul benchmark
introduced in (Peeta et al. 2010).

We propose a non-linear integer programming model.
There is only one constraint in the problem, and that is the
limit on the budget which is exhausted linearly by the binary
investment decisions. Our objective is to state the problem in
the form

minimize f(x1, . . . , xm) such that
m∑
i=1

xici ≤ C,

where m is the number of links in the graph, x1, . . . , xm

are binary variables with xi = 1 if and only if we invest
in the link i, ci is the investment cost on link i, and C is

our total available budget. To achieve this simple structure
we need to formulate the objective function f which, given
the investment decisions, computes the sum of the expected
shortest path lengths over all OD-pairs.

Assume that, for each OD-pair (o, d), we know the list
P1, . . . , Pr of all simple paths from o to d, ordered by in-
creasing path lengths. Then, we can compute the expected
shortest path length for this pair by summing up, over all
paths Pi in the list, the product of the length of Pi times the
probability that all links in Pi survive while, for all paths Pj

with j < i, at least one edge in Pj does not survive. That is,
rather than considering scenarios and computing the short-
est paths given a scenario, we directly compute the proba-
bility that a given path determines the shortest-path length,
thus bundling all scenarios that lead to the same shortest path
(compare with (Peeta et al. 2010)).

The objective becomes simpler if we reorder events.
Let us denote with l(Pi) the length of path Pi and with
pi(x1, . . . , xm) the probability, given the investment de-
cisions x1, . . . , xm, that at least one edge in each path
P1 . . . Pi−1 does not survive. To simplify the notation, let
us also set l(P0) = 0 and l(Pr+1) = Mo,d, where l(Pr) ≤
Mo,d ∈ IN ∪ {∞} is the penalty for losing all connections
between o and d. Then the expected shortest-path length for
the pair (o, d) is

E(SPL
{i | xi=1}
o,d ) =

r+1∑
i=1

(
l(Pi)− l(Pi−1)

)
pi(x1, . . . , xm),

and it holds f(x1, . . . , xm) =
∑

(o,d) E(SPL
{i | xi=1}
o,d ). Our

task thus reduces to
• computing the r shortest simple paths between o and d

which have length lower than Mo,d, and
• computing the terms pi(x1, . . . , xm).
For the first task we conduct a simple best-first search in the
given graph, whereby we prune paths that have no chance of
obeying the threshold Mo,d using shortest-path distances to
the destination (see (Sellmann 2003b)) as well as those that
are not simple (meaning that no node is visited more than
once).

Our second task is a bit more involved. In pi(x1, . . . , xm),
to assess the probability that the first i − 1 paths are all
blocked, we enumerate all disjoint events where this is the
case. To keep the objective somewhat reasonable in size, we
will need to find mutually disjoint blocking events which
quickly partition all possible cases.

Assume we have to compute the term pi+1(x1, . . . , xm)
and we have the list of paths P1, . . . , Pi. We can view these
paths as sets of links. Then, each blocking event will select
at least one element in each set, one link for each path that
is failing. Therefore, we are actually looking for set cover-
ing solutions: The sets to be covered are the paths, and the
elements in the sets are links in the graph. Once we arrive at
this view it is easy to devise a very simple yet surprisingly
effective greedy heuristic to enumerate all mutually exclu-
sive events which will block paths P1, . . . , Pi: In each step
we select a link that will cover as many paths as possible
that are currently not covered, with ties broken randomly.
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Once all paths are covered, we store the respective set of
links. Then we backtrack our last decision and decide not to
include this link this time. Then, we try to add other links
to achieve a full cover. If we find a new cover, we store the
set of all links in the cover, as well as the set of links we
actively decided not to include. The latter is necessary to
ensure that the probabilistic events, whose cumulated prob-
ability we are aiming to assess, are mutually disjoint. Only
then can we simply add their probabilities to arrive at the
joint probability pi+1(x1, . . . , xm).

Of course, we can improve this greedy tree-search enu-
meration by adding early pruning whenever it is clear that a
full cover can no longer be achieved down a branch. More-
over, the independence of link failures allows us to stop the
generation of covers early when each remaining link can
only cover at most one path currently not covered. Then, for
each such path, we can assess the probability of its failing as
1 minus the product of all survival probabilities of remain-
ing links on this path. The probability of all remaining paths
being covered is then simply the product of these values.

Despite these improvements, the entire procedure may
appear prohibitively expensive. However, it turns out that
it is extremely efficient in practice. For the real-world Is-
tanbul scenario introduced in (Peeta et al. 2010), for ex-
ample, we find 24 shortest paths total for five OD-pairs.
To formulate the entire objective, using the greedy strat-
egy described above, we need to consider a mere 156 cov-
ers in total. Not only is this number of covers less than the
341 remaining scenarios which are eventually considered
in (Prestwich, Laumanns, and Kawas 2013), but also the en-
tire computation of these scenarios takes milliseconds com-
pared to 5 minutes reported in (Prestwich, Laumanns, and
Kawas 2013).1 Most importantly, we arrive at a non-linear
integer program with an extremely simple constraint struc-
ture which we are going to exploit in the next section.

Extreme Constraints
We established that our pre-disaster planning problem is nei-
ther sub- nor super-modular. However, we make a simple ob-
servation: In order to achieve a minimal shortest path length
it never hurts to invest in another link if the budget allows
us to do so. Consequently, we only need to consider selec-
tions of links to invest in which fully exhaust our budget.
By that we do not mean that there is necessarily no money
left, but that the remaining money would not suffice to invest
in any additional link. Formally, we introduce the following
extreme constraint for linear resources.
Definition 2. Given n binary variables x1, . . . , xn, costs
c1, . . . , cn ∈ IN, and a budget C ∈ IN, the
ExtremeLinearResource(x1, . . . , xn) constraint is true if
and only if

∑
i xici ≤ C and ∀i : xi = 0 → ci >

C −
∑

j xjcj .

Before we study this constraint and develop a propaga-
tor, let us briefly compare it to other constraints. For opti-

1All experiments were conducted on 1.6 GHz Intel Core i7
Q170 machines with a 4-core CPU, 6 MB cache, and 12 GB RAM,
running 64-bit Fedora 20. The code was compiled with g++ 4.8.3
and full optimization. No external software was used.

mization problems, in CP so-called global optimization con-
straints are considered. Prominent examples are the allDif-
ferent constraint with costs (Régin 1999; Focacci, Lodi, and
Milano 1999; Régin 2002; Sellmann 2002), the knapsack
constraint (Trick 2001; Sellmann 2003a; Trick 2003), the
shorter path constraint (Sellmann 2003b; Sellmann, Geller-
mann, and Wright 2007), or the not-too-heavy spanning tree
constraint (Dooms and Katriel 2006; 2007).

Typically these constraints consider a particular constraint
in conjunction with a bounded (often linear) objective. That
is, apart from enforcing the basic constraint (allDifferent,
bounded linear resource, directed path, spanning tree, etc)
these optimization constraints merely consider a bound on
the objective, yet they do not require an optimal assign-
ment. This also explains some rather unusual names, such
as shorter path instead of shortest path constraint, or not-too-
heavy spanning tree instead of minimum spanning tree con-
straint. The reason why bounds are considered rather than
optimal assignments is that there may be other constraints
in the problem which prohibit solutions that would be opti-
mal with respect to the basic constraint in isolation. For the
problem at hand, we can enforce the extreme variant of the
linear resource constraint. We believe that the same idea can
also be applied in many other applications and for classical
combinatorial optimization problems, e.g., in bin packing.
Theorem 3. Achieving generalized arc-consistency (GAC)
for the ExtremeLinearResource Constraint is NP-hard.

Proof. We reduce Number Partitioning to GAC on Extreme-
LinearResource. Given n natural numbers a1, . . . , an, we
need to decide whether there exists a set I ⊆ {1, . . . , n}
such that

∑
i∈I ai = S with S =

⌊∑n
i=1 ai

2

⌋
. We construct

an ExtremeLinearResource constraint over n + 1 binaries
with weights a1, . . . , an associated with x1, . . . , xn and 1
associated with xn+1. The budget capacity is S.

Now, we must filter 0 from the domain of xn+1 if and only
if the number partitioning instance has no solution: Assume
that 0 must be filtered from the domain of xn+1. This means
that there is no way of fully exhausting the resource (without
overfilling!) using the first n items with weights a1, . . . , an.
Consequently, there is no solution to the number partitioning
problem. On the other hand, if there is no way of exhausting
the budget exactly, then in any selection of items that obeys
the budget constraint there is always room to add item xn+1.
Consequently, GAC must infer that xn+1 = 1 and thus filter
value 0 from the domain of xn+1.

Theorem 4. GAC for the ExtremeLinearResource con-
straint is achievable in pseudo-polynomial time O(n2C),
where n is the number of items and C the available budget.

Proof. We set up a three-dimensional dynamic program
(DP): the first dimension is the item index (size n + 1), the
second is the index of a skipped item with smallest weight
(size n + 1) and the last dimension is the total weight of the
selection (size C). Then, node Ni,m,k is reached by branch-
ing on items 1, . . . , i such that (m = 0 or (xm = 0 and
cm ≤ {cj | 1 ≤ j ≤ i, xj = 0})) and

∑i
j=1 xj = k. The

construction starts at node N0,0,0. Now, we iterate through
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Figure 1: Illustration of the two-dimensional dynamic pro-
gram with four items with costs 50, 40, 30, and 20, the bud-
get limit is 100. Dashed lines and hollow nodes depict nodes
and edges which are removed. In the situation shown no val-
ues can be filtered from variable domains. However, after
deciding, e.g., not to invest in link 2, it is immediately in-
ferred that we must invest in links 1, 3 and 4.

layers i = 1, . . . , n: For all existing nodes Ni−1,m,k, if 0
is in the domain of xi, we add a directed edge to (the po-
tentially new) node Ni,h,k where h = m if m > 0 and
ch ≥ cm, and h = i otherwise. This edge corresponds to
branching on xi = 0. If 1 is in the domain of xi, and if
k + ci ≤ C, we add an edge from Ni,m,k to (the potentially
new) node Ni+1,m,k+ci+1

. This edge corresponds to branch-
ing on xi = 1. Finally, we remove all nodes and adjacent
edges from where we cannot reach any node Nn,m,k with
cm + k > C. As a result, we only retain nodes and edges on
paths from N0,0,0 to some node Nn,m,k with cm + k > C.
These paths directly correspond to feasible solutions to the
ExtremeLinearResource constraint. Following the filtering
based on dynamic programs introduced in (Trick 2001), if
and only if there is no edge that corresponds to branching on
xi = b (with b ∈ {0, 1}) on layer i, then and only then b can
and must be removed from the domain of variable xi.

In summary, we have found that the ExtremeLinear-
Resource constraint is NP-hard to filter exactly, but it is hard
in the nicest possible way, allowing us to filter the constraint
in pseudo-polynomial time.

In practice, we may wish to limit the size of the dynamic
program a bit further. To eliminate a factor n in the complex-
ity, we can keep a record on an upper bound on the smallest
cost skipped on any path to a node and a lower bound on the
slack left in the budget on any path to the leaf-level. Then,
whenever we are guaranteed that the smallest item skipped
has cost lower or equal the remaining slack in the budget we
can remove a node and analogously also edges in the dy-
namic program. Filtering variable domains then works ex-
actly as before (see Figure 1).

To achieve this, at each node we record two values, SKIP
and SLACK. At level i ∈ {0, . . . , n − 1} and budget
k ∈ {0, . . . , C} the following recursion equations govern:
SKIP0,k =∞, SLACKn,k = C − k,

SKIPi+1,k = max{SKIPi,k−ci ,min{SKIPi,k, ci}}, and

SLACKi,k = min{SLACKi+1,k+ci ,SLACKi+1,k}},
whereby we discard values from consideration which do not
belong to feasible nodes and edges in the dynamic program.

Instance Solution Value ELR LR
B1-Low {10,17,21,22,23,25} 83.0801 0.03 0.14
B2-Low {4,10,12,17,20,21,22,25} 66.1877 0.05 2.22
B3-Low {3,4,10,16,17,19–22,25} 57.6802 0.11 16.51
B1-High {10,17,21,22,23,25} 212.413 0.03 0.11
B2-High {4,10,12,17,20,21,22,25} 120.083 0.08 2.18
B3-High {3,4,10,16,17,19–22,25} 78.4017 0.11 17.1

Table 1: Istanbul Benchmark Results

This heuristic filtering algorithm comes with no theoret-
ical guarantees, but it runs in O(nC) and it may only miss
very few filtering opportunities in practice, thus making it
a favorable choice within a practical solution approach. We
will use this algorithm in the following experiments.

Experimental Results
Using the ExtremeLinearResource constraint, we conduct a
plain branch-and-bound to find the optimal investment for
our pre-disaster planning problem: At each search node, we
first perform constraint filtering. Then, we compute a dual
(since we are minimizing: lower) bound on the objective
simply by assuming that we could invest in all links unde-
cided so far. As branching heuristic, we branch on highest
cost investments first.

Istanbul Earthquake Preparation
We test this algorithm on the Istanbul benchmark introduced
in (Peeta et al. 2010): We are expected to move casualties
after an earthquake from highly affected areas, as deter-
mined in the Japan International Cooperation Agency Re-
port (2002), to areas with large medical support capacities.
The task is to minimize the sum of the expected shortest-path
distances for five OD-pairs. In the first set of three instances
B1-Low, B2-Low, and B3-Low, the penalty for experienc-
ing a disconnect for an OD-pair is 31, 31, 28, 19, and 35,
respectively. This is to model the costs of airlifting injured
people to regions with properly equipped medical facilities.

In the corresponding instances with the suffix -High, the
penalty for a disconnect is 120, for all five OD-pairs. It is im-
portant to note that neither (Peeta et al. 2010) nor (Prestwich,
Laumanns, and Kawas 2013) consider paths that exceed the
low penalties, even when the penalty of a disconnect is high.
The total number of paths considered is, in both papers, 24.
In B1 the total budget is 10% of the budget needed to in-
vest in all links in the network, in B2 it is 20%, and in B3 it
is 30%. The exact survival probabilities before and after in-
vestment are given in (Peeta et al. 2010). These values were
determined by structural engineers using domain-specific in-
formation, as summarized in the 2003 Master Earthquake
Plan of the Istanbul Municipality. The independent failure
probabilities on the network links as well as the fact that
investment decisions affect probabilities itself render this
problem a very hard stochastic optimization problem.

In Table 1 we show the results. We give the optimal
solutions and corresponding objectives for all six bench-
mark instances, as well as the run-times in seconds based
on non-linear integer programs, once using the ExtremeLin-
earResource constraint (ELR), and once using a standard
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LinearResource constraint (LR) which limits the budget but
does not enforce that we exhaust it to a point where we could
not afford any other investment. In both cases we use the
same dual bound and the same branching strategy.

The new extreme constraint results in speed-ups of up to
two orders of magnitude. Moreover, overall our approach
massively outperforms the previously published approaches.
Both algorithms in (Peeta et al. 2010) and (Prestwich, Lau-
manns, and Kawas 2013) run for ca. 5 minutes on each
instance, whereby the first gives approximate results only.
The AI-based non-linear optimization approach, on the other
hand, finds six solutions and proves their respective optimal-
ity in less than half a second for all six instances together.
Note that this time includes everything, the computation of
the shortest paths up to the penalty values, the coverings
and set-up times of the non-linear integer programs, as well
as their solution based on the ExtremeLinearResource con-
straint. The new approach thus runs three orders of magni-
tude faster than the previous state-of-the-art.

Comparing with the solutions given in (Prestwich, Lau-
manns, and Kawas 2013), we find that our solution to B2-
High has a slightly higher expected path length than the one
given in that paper. The reason for this is that the solution
given there actually violates the 20% budget constraint. In-
deed, our solutions show that the optimal investment deci-
sions for the low and high penalties are exactly the same.
The objective value differs, of course, but the links in which
to invest are identical.

To challenge the new method, we considered three other
problem variants. In the first all paths up to the penalty
of 120 may serve as shortest paths. Doing so results
in tripling the number of paths considered, which jumps
from 24 to 72, roughly 15 different evacuation routes for
each OD-pair. The number of scenarios that our approach
considers also jumps, from 156 to 8,491. For B1 the new ap-
proach now requires 8 seconds, for B2 22 seconds, and for
B3 26 seconds. Considering more paths obviously increases
the complexity of the problem, as the scenarios which result
in the same shortest routes become harder and harder to rep-
resent compactly. This confirms the same finding in (Prest-
wich, Laumanns, and Kawas 2013). Curiously, looking at
the solutions, we find that the optimal investment decisions
are again the very same as the ones given in Table 1. In prac-
tice this justifies simplifying problem instances by consid-
ering paths up to a relatively low threshold only as budget
constrained investment decisions are hardly affected by con-
sidering large numbers of sub-optimal paths.

In the second and third variants of the benchmark we con-
sider different objectives: First, instead of considering the
sum of all expected shortest-path lengths we minimize the
maximum path length. Since some OD-pairs are much closer
together than others, we normalize the penalty for each OD-
pair by dividing by the length of the shortest path for this
pair. Therefore, we minimize the maximum expected per-
cent increase relative to the shortest path for each OD-pair.
The final variant minimizes the sum of squares of these ex-
pected ratios rather than their maximum.

Run-times in seconds and optimal solutions are given in
Table 2. We observe that these objectives do not make the

Instance Solution Value ELR LR
B1-max {19–22,28} 1.99401 0.01 0.11
B2-max {9,16,20,21,22,25} 1.57278 0.01 3.4
B3-max {4,7,10,12,16,17,19–22,25} 1.30401 0.03 20.9
B1-squ {10,17,21,22,23,25} 15.0528 0.03 0.14
B2-squ {4,10,12,17,20,21,22,25} 9.29439 0.06 2.33
B3-squ {3,4,10,16,17,19–22,25} 6.67251 0.08 18.3

Table 2: Istanbul Benchmark Variants

overall problem harder for the AI-based approach. This is
interesting since the sum of squares would be much harder
to model as a traditional two-stage stochastic program. On
the larger instances, the use of the extreme version of the lin-
ear resource constraint leads to over 500-fold speed-ups over
the traditional constraint. Overall, the new approach does
not only work significantly faster than existing approaches,
it also offers much greater flexibility regarding the exact
choice of objective function.

Bay Area Earthquake Preparation
With the introduction of the ExtremeLinearResource con-
straint, the Istanbul benchmark instances, which were im-
possible to solve to optimality 18 months ago, no longer
pose much of a problem. We therefore introduce a new,
even more challenging benchmark set. Based on the High-
way Evacuation Plan of the Federal Highway Administra-
tion (FHWA) we consider the emergency mass transporta-
tion highway evacuation network for the California bay
area (Vásconez and Kehrli 2010)).

The scenario again considers the possibility of an earth-
quake, whereby in this case we assume that most urban in-
frastructure, housing as well as utilities (water, gas, and elec-
tricity), would be destroyed, thus requiring large numbers of
citizens to leave the bay and flee to lesser populated areas
to the North and East (see Figure 2). The challenge is to
mass evacuate people from San Francisco (node 2), Berke-
ley/Oakland (node 7), Palo Alto/Mountain View (node 16)
and Santa Clara/San Jose (node 18), each to any one of five
possible evacuation points: Petaluma (node 0), Vallejo (node
19), Benicia (node 20), Antioch (node 6), or Tracy (node
15). Failure probability and cost models follow a similar
logic as in the Istanbul benchmark, with highest costs and
highest failure probabilities for bridges, whereby we assume
that some positive failure probability persists even after in-

Figure 2: Bay Area Highway Mass Evacuation Network
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vesting in a link. Budgets are again limited to 10%, 20%,
and 30% of the cost of investing in all links in the network,
denoted by subfixes, E1, E2, and E3.

Note that budgets that would allow investment in 30% of
all possible investments are improbable, we consider them
here to test the limits of the approaches developed. In prac-
tice, less than 10% are much more realistic. Moreover, while
the size of the networks considered in these and the Istanbul
instances may appear small at first, it is important to stress
that real-world evacuation networks are fortunately small:
Roads with intersections and one lane roads are not suitable
for mass evacuations. Cars break down, accidents happen,
and even via a multi-lane freeway we can maximally evacu-
ate 2,000 cars per lane and hour. Consequently, in areas with
millions of people investment decisions focus on designated
mass evacuation routes only. Nevertheless, computationally
these problems are still extremely hard, because the search
space grows exponentially in the number of network links,
and the objective function is highly non-linear which mas-
sively increases the complexity even for evaluating a given
investment plan.

For each of the four areas to be evacuated we now face
roughly 20 possible evacuation routes. The model consid-
ers 81 paths and 16,196 covers total. That is over 100 times
the number of scenarios than we needed to consider for the
Istanbul benchmark. In Table 3 we minimize again three dif-
ferent objectives as before: sum of all expected shortest path
lengths (-sum), maximum percent increase (-max), and sum
of squared percent increases in expected shortest path length
(-squ). We observe similar trends as before, minimizing the
maximum percent increase in expected shortest path length
is easiest, the other two objectives are roughly equally hard,
whereby the Bay Area instances are clearly harder than the
Istanbul instances. Overall, even when having to consider
two orders of magnitude more scenarios, we can still solve
each instance in a few seconds.

We wanted to see how far we could push this approach
and considered a -High variant for this benchmark as well.
In these instances, we consider 351 evacuation routes, on
average more than 85 per evacuation area. This leads to
over 3 million scenarios that need to be considered, roughly
20,000 times (!) the number of scenarios considered for the
Istanbul benchmark. Just computing the non-linear objec-
tive function for this problem takes over 80 seconds. For the
10% budget limit we can solve this problem to optimality in
2 minutes, for 20% in 4 minutes, and for 30% in 6 minutes.

Since improved upper bounds on the objective result in
better pruning, we used the ExtremeLinearResource con-

Instance Solution Value ELR
E1-sum {3,6,8} 58.0981 1.85
E2-sum {3,6,8,9} 55.9286 3.5
E3-sum {3,6,7–10,12,27,28} 54.7743 4.5
E1-max {3,6,8} 1.94013 1.21
E2-max {3,6,8,9} 1.67574 1.35
E3-max {1,3,6,8,9} 1.59876 1.55
E1-squ {3,6,8} 8.4507 1.72
E2-squ {3,6,8,9} 7.51121 3.4
E3-squ {0,3,5,6,7–10,12,27} 7.1024 4.4

Table 3: Bay Area Benchmark

Instance Solution Value ELR
E1-low {6,8,12,27} 57.921 3.2
E2-low {3,6,8,9} 55.935 4.45
E3-low {3,6–10,12,27,28} 54.719 6.97
E1-high {6,8,12,27} 61.518 140
E2-high {6,8,9,10,27} 58.614 180
E3-high {3,6–12,27} 57.172 400

Table 4: Bay Area Benchmark with Correlation

straint and the monotonicity of the objective function to de-
rive a primal heuristic for finding good feasible points before
we start the branch and bound procedure. Using this heuris-
tic, solution times for the most difficult Bay Area -High vari-
ants reduce to 2.1, 4.5, and 12.8 seconds, respectively, plus
80 seconds each for constructing the objective function. Af-
ter constructing the objective, roughly equal time is spent
between the primal heuristic and the branch and bound.

PTNP With Failure Correlation
Next, we considered scenarios where link failures are cor-
related. We believe this is a very important aspect in prac-
tice: Bridges of the same construction type may exhibit sim-
ilar resistance depending on the strength and frequency of
shock waves. Links of same orientation may show some cor-
relation, as shock waves hit them equally longitudinally or
crosswise. Low ocean drives may sink under the water level
or could be flooded by Tsunamis which would affect them
equally. All these effects may correlate failure probabilities.

We model correlated link failure distributions by means
of Bayesian networks. The variables modeling the invest-
ment decisions are binary value nodes Xi, i = 1, . . . , k of
the network, as are the nodes Lj , j = 1, . . . , n that describe
the failure probabilities of the links. The Bayesian network
is required to be monotone in the sense that for all variable
vectors X and X with X ≤ X and all pairwise disjoint sub-
sets I , J , K all conditional link failure probabilities satisfy
P(LK |LI , L̂J , X) ≥ P(LK |LI , L̂J , X), i.e., that the prob-
ability for simultaneous failure of the links in K, given that
the links in I fail and those in J survive, reduces if additional
investments are made. This is a generalization of the concept
of monotonicity of Bayesian networks as, e.g., discussed in
(van der Gaag, Bodlaender, and Feelders 2004).

The monotonicity of the Bayesian network implies that
the monotonicity of the objective is retained. This and the
budget constraint are the two primary sources for inference
in our approach. Consequently, the AI-based approach han-
dles these problems as well. Table 4 shows that we can ef-
ficiently handle such correlated distributions as well, both
with low and high cutoff thresholds.

Best-Effort Solutions
To assess how the approach scales with increased network
sizes we took the Istanbul benchmark and successively re-
fined the network by splitting every edge into m sub-edges,
simulating that instead of a single investment decision on ev-
ery edge m investment decisions can be taken independently
of each other. Of course, the investment costs are chosen in
such a way that they add up to the original cost for invest-
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ing into the unsplit link, and the survival probabilities of the
sub-links are ensured to be consistent with the original sur-
vival probabilities for the unsplit link. We expect that so-
lution times show some form of exponential increase with
increasing number of investment decisions to be taken. In
Table 5 in three columns we show the solution times in sec-
onds of the full branch and bound proving global optimality,
the primal heuristic, which usually finds a solution deviating
not more than 5% from the global optimum, and a simpli-
fied primal heuristic, which usually finds a solution within
15% of the global optimum. Due to the stochastic nature of
the PTNP the size of the sample space for computing the
expected values increases exponentially with the number of
links, so in the biggest case just the evaluation of the objec-
tive function at a single point takes more than one second.

We find that the full branch and bound scheme works well
up to about 150 decision variables, the expensive heuristic
up to about 600 decision variables, and the simplified heuris-
tic up to about 900 decision variables. For investment deci-
sion problems like ours runtimes of about 4 hours of com-
putation time are completely acceptable in practice. These
experiments thus show that we can effectively solve real-
size PTNP problems, especially when keeping in mind that
in reality instances hardly reach sizes bigger than the Bay
Area instances.

Conclusion
We developed a novel AI-based solution method for the pre-
disaster network preparation problem. We formulated the
problem as a highly non-linear integer programming prob-
lem and developed a practically efficient propagator for the
extreme linear resource constraint. Based on this approach
we were able to effectively close the Istanbul benchmark,
with run-time improvements over the best existing meth-
ods of three orders of magnitude. We then considered an
even more challenging set of benchmark instances with five-
orders of magnitude more scenarios, larger network sizes,
and with and without link failure correlation. We showed
that the AI approach is flexible and efficient enough to also
solve these instances in affordable time.
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