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Abstract

Understanding spatio-temporal resource preferences is
paramount in the design of policies for sustainable de-
velopment. Unfortunately, resource preferences are of-
ten unknown to policy-makers and have to be inferred
from data. In this paper we consider the problem of
inferring agents’ preferences from observed movement
trajectories, and formulate it as an Inverse Reinforce-
ment Learning (IRL) problem . With the goal of inform-
ing policy-making, we take a probabilistic approach
and consider generative models that can be used to
simulate behavior under new circumstances such as
changes in resource availability, access policies, or cli-
mate. We study the Dynamic Discrete Choice (DDC)
models from econometrics and prove that they general-
ize the Max-Entropy IRL model, a widely used prob-
abilistic approach from the machine learning literature.
Furthermore, we develop SPL-GD, a new learning algo-
rithm for DDC models that is considerably faster than
the state of the art and scales to very large datasets.
We consider an application in the context of pastoral-
ism in the arid and semi-arid regions of Africa, where
migratory pastoralists face regular risks due to resource
availability, droughts, and resource degradation from
climate change and development. We show how our ap-
proach based on satellite and survey data can accurately
model migratory pastoralism in East Africa and that it
considerably outperforms other approaches on a large-
scale real-world dataset of pastoralists’ movements in
Ethiopia collected over 3 years.

Introduction
A useful and important tool in developing sensible policies
for productive land use and environmental conservation is a
set of micro-behavioral models that accurately capture the
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choice process of agents in the system. This is particularly
true when we wish to analyze behavioral responses under
as-yet unobserved states of the world, such as under alterna-
tive policy regimes or climate change. However specifying
and fitting suitable models in settings with complex spatio-
temporal aspects raises important research challenges, in-
cluding the “curse of dimensionality” associated with han-
dling large state spaces, and capturing the agents’ prefer-
ences.

We tackle these issues specifically in the context of mi-
gratory pastoralism in the Borena plateau, Ethiopia, which
is an exemplar of both the technical aspects of the problem
we have in mind, and a setting with crucial policy relevance.
Migratory pastoralists manage and herd livestock as their
primary occupation. They face uncertainty over shocks to
resource availability from drought and climate change, con-
flict, and disease. During semi-annual dry seasons they must
migrate from their home villages to remote pastures and wa-
terpoints, which can be modeled as selection amongst a dis-
crete set of camp sites.

In this movement choice problem the pastoralists face a
key tradeoff: they want to locate at the most abundant re-
source points (measured by observable water and forage),
but movement (measured by distance) carries energy costs.
Scouting out resource abundance on an ongoing basis also
carries effort costs. How they balance these factors affects
their response to changes that affect resource abundance
(climate change, resource degradation and renewal, water-
point maintenance), and distance (creation of new water-
points, land use restrictions). A suitably fitted model of indi-
vidual preferences over movements yields a number of op-
portunities for policy-relevant simulation analyses. Policy-
makers regularly face decisions over land use controls (e.g.,
zoning for housing, farmland, parkland), waterpoint mainte-
nance (many of the waterpoints in the system are man-made
and require ongoing investment) and herd re-stocking after
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droughts, among others. With the parameters governing pas-
toralists’ individual decisions over movement in hand, we
will be able to modify exogenous characteristics of the sys-
tem such as land access, waterpoint presence, or herd sizes,
and simulate predictions about behavioral responses.

Our goal is to develop a model to capture the planning de-
cisions made by the herders. The model must be structural,
meaning that its parameters provide intuitive insights into
the decision-making process, as well as generative, mean-
ing that it can potentially be used to simulate behavior under
new circumstances such as changes in resource availability,
access policies, or climate. This raises key challenges due to
the relatively large choice set and complex state space.

While methods for structural estimation of behavioral
models have been known in economics since at least the
1980s (Rust 1987), methods for estimation in complex
spatio-temporal settings are still in their infancy. In parallel,
there is a growing literature in computer science under the
name of inverse reinforcement learning (IRL), see e.g. (Ng
and Russell 2000; Kolter and Ng 2009; Taylor and Stone
2009). While often motivated by a different set of model-
ing problems, IRL shares the objective of fitting the agent’s
choice function. In this paper, we study the Dynamic Dis-
crete Choice models from Econometrics, which are widely
used in economics (Aguirregabiria and Mira 2010) and en-
gineering (Ben-Akiva and Lerman 1985) but have received
little attention so far in the computer science literature. In
fact, we show an interesting connection: under some condi-
tions, Dynamic Discrete Choice models generalize the Max-
Entropy IRL Model (Ziebart et al. 2008), a widely used ap-
proach from the Machine Learning literature. Despite the
numerous applications in the economics literature there has
been little effort on developing scalable algorithms for learn-
ing DDC models on very large datasets. In this paper we
fill this gap by developing SPL-GD, a new learning algo-
rithm for Dynamic Discrete Choice models that is consid-
erably faster than the state of the art and scales to very
large datasets. Our technique combines dynamic program-
ming with stochastic gradient descent, which is often used to
scale machine learning techniques to massive datasets (Bot-
tou and Bousquet 2008).

Our method allows us to infer micro-behavioral models in
complex spatio-temporal settings. We apply it in the context
of migratory pastoralism in the Borena plateau, Ethiopia.
The available data includes surveys from 500 households;
static geospatial map layers including village and road loca-
tions, ecosystem types, elevation and other terrain features; a
dynamic greenness index (NDVI) from satellite sensing; lo-
cations of wells, ponds, and other water points identified by
interview, field exploration, and satellite imagery; and GPS
collar traces of 60 cattle from 20 households in 5 villages,
at 5-minute intervals collected over 3 years. The GPS traces
are our primary source of information regarding behavior
and resource use. We show that using our approach with
this data we can accurately model pastoralist movements,
and considerably outperform other approaches, including a
Markov model and the Maximum Entropy IRL model.

Problem Definition
We consider planning problems represented as finite Markov
Decision Processes (MDP). Formally, an MDP is a tuple
(S,A, P, r, η) where S is a finite set of states, A is a finite
set of actions, P is a finite set of transition probabilities and
r : S 7→ R is an (immediate) reward function (the more
general case r : S × A 7→ R can also be handled), and
η ∈ [0, 1] is a discount factor. If an agent executes an ac-
tion a ∈ A while in a state s ∈ S, it receives an immediate
reward r(s) and it transitions to a new state s′ ∈ S with
probability P (s′|s, a).
Planning. Let the planning horizon T be the (finite) number
of time steps that the agent plans for. A plan is represented
by a policy, where a policy is a sequence of decision rules,
one for each time step in the planning horizon. A policy π
is called Markovian if, for each time step t in the planning
horizon, the decision rule πt : S → A depends only on the
current state st. If the MDP is deterministic, i.e. P (s′|s, a) ∈
{0, 1}, a policy is equivalent to a sequence of T actions (or
alternatively states) for each possible initial state. We define
the value of a policy π from an initial state s ∈ S as vπ(s) =
Es,π

[∑T−1
t=0 ηtr(st)

]
, which is the expected value of the

discounted total reward when the initial state is s0 = s and
the action taken at time t is chosen according to π.

The goal in a probabilistic planning problem (also known
as optimal control or reinforcement learning) is to compute a
policy π that maximizes the value function vπ(s) for a given
MDP, a problem that is widely studied in the literature (Put-
erman 2009; Bertsekas 1995; Powell 2007).

Inverse Planning Problem
In an inverse planning problem, also known as inverse re-
inforcement learning (Ng and Russell 2000) or structural
estimation of an MDP (Rust 1987), the goal is to identify
an MDP that is consistent with observed planning choices
made by a rational agent. Specifically, we assume that we
are given a state space S, an action set A, transition prob-
abilities P and we want to find a reward function r (intu-
itively, capturing preferences of the agent over states), which
rationalizes the observed behavior of an agent. For finite
state spaces, the reward function can be represented as vec-
tor of real numbers r ∈ R|S|, where each component gives
the reward for one state. For large state spaces, it is com-
mon (Ng and Russell 2000; Ziebart et al. 2008; Powell 2007;
Kolter and Ng 2009) to assume linear function approxima-
tion of the reward function r, relying on state-based features:

r(s) = θ · fs,
where fs is a given feature vector of size m for each state
s ∈ S and θ ∈ Rm is an unknown parameter vector to be
estimated.

In many practical settings, we do not know the agent’s
policy π, but can observe the agent’s trajectories, i.e. se-
quences of states from S that are visited, from which
we can try to infer the agent’s rewards and policy
(also known as imitation learning). Specifically, we ob-
serve K finite sequences S = {τ1, · · · , τK} of state-
action pairs made by the agent. For simplicity of expo-
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sition, we assume all sequences have length T , τk =
(s0, a0)

k, (s1, a1)
k, . . . , (sT−1, aT−1)

k, where st ∈ S and
at ∈ A.

If we assume that the trajectories are obtained by fol-
lowing a policy π∗, i.e. for each trajectory k and for each
time step t, (st, at)k is such that at = π∗(st), then a fur-
ther natural modeling assumption that captures the rational-
ity of the agents is that the policy π∗ is an optimal policy
with respect to the (unknown) reward function r (existence
of an optimal policy is guaranteed, see (Puterman 2009;
Bertsekas 1995)). Formally, this means that the expected
policy value is such that vπ

∗
(s) ≥ vπ(s), ∀s ∈ S, ∀π.

Unfortunately, this formulation is known to be ill-posed be-
cause it is clearly under-determined. For example, if the re-
ward function r(·) ≡ 0, the optimality equation is satis-
fied by any policy π∗. Additional modeling assumptions are
needed to resolve this ambiguity. One option is to introduce
a margin (Ng and Russell 2000; Ratliff, Bagnell, and Zinke-
vich 2006), maximizing the difference between the reward
from the optimal policy and its alternatives (Ng and Russell
2000).

Since our final goal is that of informing policy-making,
we take a probabilistic approach and focus on generative
models that can be used to simulate behavior under new
circumstances such as changes in resource availability and
policies. In the probabilistic approach, we assume the data
(i.e., the observed trajectories S) are samples from a fam-
ily of probability distributions, which depend on the un-
known reward function, allowing for suboptimal behavior.
Estimating the reward function becomes a statistical infer-
ence problem. Notable approaches include Maximum en-
tropy IRL (Ziebart et al. 2008) from the AI literature and Dy-
namic Discrete Choice models (Rust 1987) from the econo-
metrics literature. We start by reviewing Maximum Entropy
IRL (MaxEnt-IRL), which is the most closely related to our
approach, and then review logit Dynamic Discrete Choice
models (logit DDC), which will be the foundation for the
work developed in this paper.

Maximum Entropy Inverse Reinforcement Learning
Instead of assuming that the given trajectories fol-
low an optimal policy, Ziebart et al. (Ziebart et al.
2008) assume that each observed trajectory τk =
(s0, a0)

k, (s1, a1)
k, . . . , (sT−1, aT−1)

k is an i.i.d. sample
from a probability distribution 1:

PME
θ (τk) =

exp(Uθ(s
k
0 , · · · , skT−1))∑

s′ exp(Uθ(s
′))

(1)

where Uθ(s0, · · · , sT−1) =
∑
t r(st) =

∑
t θ · fst and the

sum is over are all possible trajectories of length T start-
ing from state s0. In this way, trajectories with higher to-
tal reward U are more likely to be sampled, but it is pos-
sible to observe sub-optimal behavior, specifically trajecto-
ries that do not provide the highest possible total reward.
We can then recover the reward function by solving θ∗ME =

1For simplicity, we report the above equation for a deterministic
MDP and refer the reader to (Ziebart et al. 2008) for the general
stochastic MDP case.

argmaxθ
∏K
k=1 P

ME
θ (τk) to find the maximum likelihood

estimate of the model parameters. The optimization prob-
lem is convex for deterministic MDPs, but not in general for
stochastic MDPs (Ziebart et al. 2008).

Dynamic Discrete Choice Modeling We will again as-
sume that the decision makers do not always take optimal
actions. This can be motivated by thinking about additional
features (beyond the vector fs we consider) that are taken
into account by the agent but are not included in our model,
hence giving rise to a behavior that is apparently not ratio-
nal based on the data. When this effect is modeled as ran-
dom noise affecting the decision process with an extreme
value distribution, it gives rise to another stochastic model
for the observed trajectories called logit Dynamic Discrete
Choice (Rust 1987).

Specifically, in the dynamic discrete choice model it is as-
sumed that at each step, the decision maker will not take the
action with the largest future discounted utility, but instead
will sample an action based on the following recursion:

Vθ(s, a, T − 1) = θ · fs, ∀s ∈ S, ∀a ∈ A (2)
Vθ(s, a, t) = θ · fs+ (3)

η
∑
s′∈S

P (s′|s, a) · log

(∑
a′∈A

exp(Vθ(s
′, a′, t+ 1))

)
The probability of choosing action a in state s at time t is

defined as

pDCθ (s, a, t) =
exp (Vθ(s, a, t))∑
a′ exp (Vθ(s, a

′, t))
(4)

PDCθ (τk) =
T−1∏
t=0

pDCθ (skt , a
k
t , t)

The model is then fitted to the data S by setting θ as to
maximize the likelihood of the observed transitions:

θ∗DC = argmax
θ

K∏
k=1

T−1∏
t=0

pDCθ (skt , a
k
t , t)

= argmax
θ

log

(
K∏
k=1

T−1∏
t=0

pDCθ (skt , a
k
t , t)

)
(5)

We will use the following notation for the log-likelihood
function: LDCθ = log

(∏K
k=1

∏T−1
t=0 pDCθ (skt , a

k
t , t)

)
=∑K

k=1

∑T−1
t=0 log pDCθ (skt , a

k
t , t) and LDCθ (s, a, t) =

log pDCθ (s, a, t).
The objective function is optimized using gradient de-

scent (Rust method, (Rust 1987)). The exact gradient can
be computed by differentiating the likelihood expression
(5) with respect to θ. The objective is generally not con-
vex/concave (Rust 1987).

An Equivalence Relationship
Although on the surface the Maximum Entropy IRL model
(1) and the Dynamic Discrete Choice model (4) appear to
be very different, we prove the models are equivalent under
some conditions:
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Theorem 1. For finite horizon deterministic MDPs, under
the MaxEnt-IRL and logit DDC with η = 1, for any trajec-
tory τ = (s0, a0), (s1, a1), . . . , (sT−1, aT−1) we have:

PME
θ (τ) = PDCθ (τ).

Proof. See (Ermon et al. 2014).

Since the log likelihood (1) for the Maximum Entropy
IRL model is concave, we also have the following Corol-
lary:

Corollary 1. For deterministic MDPs and η = 1, the log
likelihood (5) for logit DDC is concave.

If we allow the discount factor η to be a free parameter,
the class of DDC models are therefore strictly more general
than MaxEnt-IRL models for deterministic MDPs. Note that
using a discounted total reward (with η < 1) to score paths
in the MaxEnt-IRL model (1) is not very meaningful, be-
cause the effect is that of putting more “weight” on the tran-
sitions occurring at the beginning of the trajectories. In the
extreme case η = 0, only the first action taken matters with
respect to scoring paths. On the other hand, DDC models are
meaningful even for η = 0, and they simply become “static”
discrete choice models where at each step in the trajectory
agents are only considering the reward collected at the next
time step.

Learning Discrete Choice Models at Scale
The standard method for learning Discrete Choice Models
(solving the optimization problem (5)), is to use gradient de-
scent as in (Rust 1987). This approach starts with a random
initial θ, and iteratively updates θ following the gradient di-
rection, until convergence. Intuitively, one has to iteratively
solve a planning problem with the current estimate of the
reward function (current θ), compare the results with the
data (actual trajectories S), and update the parameters as to
make the predictions match the empirical observations. Con-
vergence can be improved using (truncated) quasi-Newton
techniques such as the BFGS algorithm (Liu and Nocedal
1989), which is considered one of the best algorithms for un-
constrained optimization. However, since the objective (5) is
generally not convex, the method might get trapped in local
optima.

Unfortunately, this technique is also not very scalable. In
fact, evaluating the likelihood LDCθ of the data (and com-
puting its gradient with respect to θ), is required in every
iteration of the procedure, and this requires the computa-
tion of Vθ(s, a, t) for every ∀t ∈ {0, . . . , T − 1}, ∀s ∈ S
and ∀a ∈ A. Following a Dynamic Programming approach,
computing Vθ(s, a, t) from the end of the horizon towards
the beginning, results in complexity O(T (|A| + |S|2|A|2))
per iteration. This approach can be very expensive as a sub-
routine even for moderately sized MDPs.

Simultaneous Planning and Learning
Fitting the model using the gradient is expensive for large
datasets and complex MDPs because at every iteration we

have to: 1) go through the entire dataset, and 2) fill a Dy-
namic Programming (DP) table containing the Vθ(s, a, t)
values. The first problem is ubiquitous in large scale ma-
chine learning, and a very popular and successful solution
is to use stochastic gradient methods (Bottou and Bousquet
2008; Duchi, Hazan, and Singer 2011; Roux, Schmidt, and
Bach 2012). The key idea is to trade off computational cost
and accuracy in the computation of the gradient, which is
approximated looking only at a (randomly chosen) subset
of the training data. Unfortunately, in our case we still need
to fill the entire Dynamic Programming table even to com-
pute the gradient for a small subset of the training data. To
overcome both scalability issues at the same time, we in-
troduce a new scalable learning algorithm, called SPL-GD
(Simultaneous Planning And Learning - Gradient Descent).
Our technique uses approximate gradient estimates which
can be efficiently computed exploiting the dynamic struc-
ture of the problem. We report the pseudocode of SPL-GD
as Algorithm 1.

The key observation is that the log-likelihood from
(5) can be decomposed according to time as LDCθ =∑T−1
t=0 LDCθ (t), where LDCθ (t) =

∑K
k=1 L

DC
θ (skt , a

k
t , t)

represents the contribution from all the transitions from time
t. Further notice from (4) and (3) that LDCθ (t0) and its gra-
dient∇LDCθ (t0) depend only on Vθ(s, a, t′) for t′ ≥ t0.

Rather than updating θ using the full gradient ∇LDCθ =∑T−1
t=0 ∇LDCθ (t) (which requires the computation of the en-

tire DP table), in SPL-GD we simultaneously update the
current parameter estimate θ (Learning) while we iterate
over time steps t to fill columns of the DP table (Planning).
Specifically, while we iterate over time steps t from the end
of the time horizon, we use an approximation of ∇LDCθ (t)
to update the current parameter estimate θ. After each up-
date, we continue filling the next column of the DP table
using the new estimate of θ rather than discarding the DP
table and restarting.This introduces error in the estimates of
∇LDCθ (t) because we are slowly annealing θ through the re-
cursive calculation. However, we observe that with a small
learning rate λj , the gradient estimates are sufficiently ac-
curate for convergence. Notice that for η = 0 (if the dis-
count factor is zero, the MDP is static) the bias disappears
and SPL-GD corresponds to fittingK ·T logistic models us-
ing a variant of mini-batch stochastic gradient descent (with
a fixed ordering) where training data is divided into mini
batches according to the time stamps t.

Empirical results In Figure 1 we report a runtime com-
parison between Algorithm 1 and the state-of-the-art batch
BFGS (with analytic gradient, and approximate Hessian).
The comparison is done using a small subset of our Borena
plateau dataset (one month of data, T = 30) and the MDP
model described in detail in the next section. We use a learn-
ing rate schedule λj = 1√

j
. We see that our algorithm is

about 20 times faster than BFGS, even though BFGS is us-
ing approximate second-order information on the objective
function. The advantage is even more significant on datasets
covering longer time periods, where more gradient estimate
updates occur per iteration.
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Algorithm 1 SPL-GD (S = {τ1, · · · , τK}, {λj})
Initialize θ at random
for j = 0, · · · ,M do

for t = T − 1, · · · , 0 do
if t = T-1 then

V (s, a, T − 1) = θ · fs, ∀s ∈ S, ∀a ∈ A
∇V (s, a, T − 1) = fs, ∀s ∈ S, ∀a ∈ A

else
V (s, a, t) = θ · fs + η

∑
s′∈S

(
log
(∑

a′∈A exp(V (s′, a′, t+ 1))
))
P (s′|s, a), ∀s ∈ S, ∀a ∈ A

∇V (s, a, t) = fs + η
∑

s′∈S

(∑
a′∈A exp(V (s′,a′,t+1))∇V (s′,a′,t+1)∑

a′∈A exp(V (s′,a′,t+1))

)
P (s′|s, a), ∀s ∈ S, ∀a ∈ A

end if
for k = 1, · · · ,K do
∇LDC(stk, a

t
k, t) = ∇V (stk, a

t
k, t)−

∑
a′ exp(V (stk,a

′,t))∇V (stk,a
′,t)∑

a′ exp(V (st
k
,a′,t))

θ ← θ + λj∇LDC(stk, a
t
k, t)

end for
end for

end for
return θ

Figure 1: Runtime comparison between SPL-GD and BFGS.
SPL-GD converges much faster than BFGS.

Modeling Pastoral Movements in Ethiopia
Our work is motivated by the study of spatio-temporal re-
source preferences of pastoralists and their cattle herds in
the arid and semi-arid regions of Africa. Our overall goal is
to develop a model for the planning decisions made by the
herders, which is the focus of this paper, as well as the in-
dividual movements and consumption patterns of the cattle.
This model must be structural, meaning that its parameters
provide intuitive insight into the decision-making process, as
well as generative, meaning that it can potentially be used to
simulate behavior under new circumstances such as changes
in resource availability, access policies, or climate.
Available Data: The available data includes survey data
from individual households in the Borena plateau, Ethiopia;
static geospatial map layers including village and road loca-
tions, ecosystem types, elevation and other terrain features; a
dynamic greenness index (NDVI) at 250m × 250m (NASA
LP DAAC 2014); locations of wells, ponds, and other water
points identified by interview, field exploration, and satellite
imagery; and GPS collar traces of 60 cattle from 20 house-
holds in 5 villages, at 5-minute intervals over sub-periods
spread over 3 years. The GPS traces are our primary source

of information regarding behavior and resource use.
State Space: The first modeling choice is the time scale of
interest. Behaviorally, cattle could change movement pat-
terns over minutes, while herding plans are likely to be made
on a daily basis, though these might require multiple seg-
ments due to travel, sleep, etc. At the top level, the pastoral-
ists migrate to remote camps as required to maintain access
to nearby resources, as conditions change seasonally. While
the end goal is a coupled model that incorporates these three
scales (minutes, days, seasons), we have begun by focusing
primarily on the migration decisions, which we represent as
a decision whether to move to an alternate camp location
each day. We extracted a list of observed camp locations by
clustering the average GPS locations of the herds during the
nighttime hours, across the entire time horizon for which we
have collected data. There were nearly 200 camps that ex-
hibited migration. We denote C = {c1, c2, . . . , cm} the set
of identified camping sites.
Features: We model the suitability of each campsite ci ∈ C
as a function of a number of time-dependent features, which
are generally selected data items listed above in their raw
form and meaningful functions of those data. The features
we considered are: distance from home village (a closer
campsite might be more desirable than one far away), dis-
tance from major road, 8 variants of distance from clos-
est water-point (based on different estimates of the seasonal
availability of different classes of water points), and 2 repre-
sentations of the greenness/vegetation index each intended
to capture different spatio-temporal characteristics (normal-
ized spatially over the Borena plateau region and temporally
over 13 years of data).
MDP Modeling: We model each household as a self-
interested agent who is rationally taking decisions as to op-
timize an (unknown) utility function over time. Intuitively,
this utility function represents the net income from the
economic activity undertaken, including intangibles. In our
model, each household is assumed to plan on a daily ba-
sis the next campsite to use, so as to optimize their utility
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Fold 1 Fold 2 Fold 3 Fold 4
Method LogLik. Moves (191) LogLik. Moves (85) LogLik. Moves (78) LogLik. Moves (116)

Markov -8864.5 2209.8 -1807.8 372.2 -7265.7 1756.0 -4570.2 1214.1
MaxEnt IRL -1524.4 424.6 -787.7 293.8 -796.7 339.7 -1004.2 299.4
Discrete Choice -1422.1 102.5 -657.8 104.9 -643.4 115.9 -911.3 94.9

Table 1: Data log-likelihood and predicted total number of movements along all trajectories, evaluated in cross-validation on
the held-out data, for each model. The actual number of camp movements is given in parentheses.

Figure 2: Trajectories (color denotes household), camps (cir-
cles), and waterpoints (triangles) for one village. Heavier
trajectory lines illustrate movements in a one-month period
during the wet season; faded lines denote movements during
other times. Labels and other details omitted for privacy.

function looking ahead over the entire time horizon T . For-
mally, we model the problem as a Markov Decision Pro-
cess as follows. Let D = {0, · · · , T − 1}. The action set is
A = C, where each action corresponds to the next campsite
to visit. We use an augmented state space S = C × C ×D,
where visiting a state s = (c, c′, t) means moving from
camp c to c′ at time t. This allows us to model the vari-
ability of the features over time and to incorporate informa-
tion such as the distance between two campsites as state-
based features. The MDP is deterministic, with transition
probabilities P ((c′1, c

′
2, t)|(c1, c2, k), a) = 1 iff t = k + 1,

c′1 = c2, c′2 = a, and 0 otherwise. This means that if the
agent transitioned from c1 to c2 at time k, and then takes
action a = c ∈ C, it will transition from c2 to c at time
step k + 1. We furthermore assume a utility function that is
linearly dependent through θ in the features available to our
model, and possibly additional information not available to
the model. At present, we do not model competition or in-
teractions between different households.

We then extract sequences of camping locations from the
GPS collar data. These can be interpreted as K finite se-
quences of state-action pairs S = {τ1, · · · , τK} in our MDP
model. A static illustration of the movements, camps and
water points is shown in Figure 2. Our goal is to infer θ, i.e.
to understand which factors drive the decision-making and
what are the spatio-temporal preferences of the herders.

Results
We consider the dynamic discrete choice model, the maxi-
mum entropy IRL model and, as a baseline, a simple Marko-
vian model that ignores the geo-spatial nature of the prob-
lem. For the Markov model, the assumption is that pastoral-
ists at camp ci will transition to camp cj with probability
pij . Equivalently, trajectories S are samples from a Markov
Chain over C with transition probabilities pij , where the
maximum likelihood estimate of the transition probabilities
p̂ij is given by the empirical transition frequencies in the
data, with Laplace smoothing for unobserved transitions.

We fit and evaluate the models in 4-fold cross-validation,
in order to keep data from each household together, and
stratify the folds by village. Training using SPL-GD on the
entire 3-year dataset takes about 5 hours (depending on the
initial condition and value of η), as opposed to several days
using BFGS. We choose η in cross-validation with a grid
search, selecting the value with the best likelihood on the
training set.

We report results in Table 1. In addition to evaluating
the likelihood of the trained model on the held-out test set,
we also report the predicted number of transitions; although
none of the models are explicitly trying to fit for this, it gives
a sense of the accuracy and was used for example in (Ken-
nan and Walker 2011).

The simple Markov model dramatically overfits, failing to
generalize to unobserved camp transitions, and performs ex-
tremely poorly on the test set. The other models based on an
underlying MDP formulation perform much better. We see
that Dynamic Discrete Choice outperforms MaxEnt IRL: al-
lowing the extra flexibility of choosing the discount factor
does not lead to overfitting, and leads to improvements on
all the folds. These results suggest that the features we con-
sider are informative, and that considering discount factors
other than η = 1 (as in the MaxEnt IRL model) is important
to capture temporal discounting in the herders’ decisions.
The trained model recovers facts that are consistent with our
intuition, e.g. herders prefer short travel distances, and al-
lows us to quantitatively estimate these (relative) resource
preferences. This provides exciting opportunities for simu-
lation analysis by varying the exogenous characteristics of
the system.

Conclusions
Motivated by the study of migratory pastoralism in the
Borena plateau (Ethiopia) we study the general problem
of inferring spatio-temporal resource preferences of agents
from data. This is a very important problem in computa-
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tional sustainability, as micro-behavioral models that cap-
ture the choice process of the agents in the system are crucial
for policy-making concerning sustainable development.

We presented the Dynamic Discrete Choice model and
showed a connection with Maximum Entropy IRL, a well
known model from the machine learning community. To
overcome some of the limitations of existing techniques to
learn Discrete Choice models, we introduced SPL-GD, a
novel learning algorithm that combines dynamic program-
ming with stochastic gradient descent. Thanks to the im-
proved scalability, we were able to train a model on a large
dataset of GPS traces, surveys, and satellite information and
other geospatial data for the Borena plateau area. The model
obtained is generative and predictive, and outperforms com-
peting approaches. As a next step, we plan to start using the
model for for policy-relevant simulation analyses, as well as
to couple it with optimization frameworks to allocate limited
resources under budgetary constraints.
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