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Abstract

Electric vehicles will play a crucial role in balancing
the future electrical grid, which is complicated by many
intermittent renewable energy. We developed an algo-
rithm that determines for a fleet of electric vehicles,
which EV at what price and location to commit to the
operating reserve market to either absorb excess capac-
ity or provide electricity during shortages (vehicle-2-
grid). The algorithm takes the value of immobility into
account by using carsharing fees as a reference point. A
virtual power plant autonomously replaces cars that are
committed to the operating reserves and are then rented
out, with other idle cars to pool the risks of uncertainty.
We validate our model with data from a free float car-
sharing fleet of 500 electric vehicles. An analysis of ex-
pected future developments (2015, 2018, and 2022) in
operating reserve demand and battery costs yields that
the gross profits for a carsharing operator increase be-
tween 7-12% with a negligible decrease in car availabil-
ity (<0.01%).

Introduction
In its World Energy Investment Outlook 2014, the Interna-
tional Energy Agency estimates that over the next 20 years
a cumulative investment of $53 trillion is required world-
wide to limit the concentration of greenhouse gases in the
atmosphere to 450 parts per million of CO2 (International
Energy Agency 2014). First concrete steps in that direction
require European Union member states to have a 30% re-
newable content by 2030; especially intermittent wind and
solar power is subsidized (The European Parliament and The
Council of the European Union 2009). These large scale
penetrations of volatile renewable energy sources pose a
challenge to the stability of the electrical grid as their pro-
duction is inflexible to changing demand and difficult to
forecast (Kassakian and Schmalensee 2011). This compli-
cates balancing the grid and providing sufficient energy to
consumers at all times, thereby increasing the chance of
blackouts.

Smart grids offer an information based solution that uti-
lizes the transition from data poverty to data richness in the
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electricity sector. According to Malhotra, Melville, and Wat-
son this also paves the way for real-time control of energy
use for many devices. Important in that regard are elec-
tric vehicles (EV) which have storage capacities that can
contribute to solving the imbalance problem. The EVs are
charged when wind and solar sources produce energy, and
they make energy available to the grid when those energy
sources are unavailable, called vehicle-to-grid (V2G). To-
gether they constitute a virtual power plant (VPP), which
are distributed power sources that are centrally coordinated
to support flexible energy supply. Specifically we look at
very short term (seconds to minutes) integration of demand
and supply on the operating reserve market. We combine
real-time information from electric cars about their location,
usage, and battery storage, with information from reserve
markets in an algorithm to optimally allocate EV capacity.
This algorithm, which we call FleetPower, makes an explicit
trade-off between benefits from offering cars for rental and
using them for balancing the grid in real-time which was
not considered in previous research (Vytelingum et al. 2011;
Voice et al. 2011). To the best of our knowledge this is the
first study that uses real driving, charging, and locational
data of 500 EV in 54 urban districts. The data for this study
was provided by the Daimler AG.

Background and Literature
This section describes and explains relevant research and the
general setting of balancing renewable energy sources. First
the embedment in the trading agent literature in a sustain-
ability context will be given. Consequently, we will describe
the operating reserve market in more detail from where the
VPP sources its revenues. Finally, we will position our re-
search within the literature on EVs and the carsharing con-
text.

Agent-based Sustainable Society
Previous research employed intelligent trading agents to act
on behalf of consumers in decentralized electricity mar-
kets. A prominent example is the Power Trading Agent
Competition (Power TAC) where brokers compete to at-
tract customers and purchase electricity on their behalf (Ket-
ter, Collins, and Reddy 2013). The realism of the platform
was demonstrated by Ketter, Peters, and Collins. Similarly
to other brokers such as defined by Urieli and Stone and
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Reddy and Veloso we outline a broker that acts on behalf
of carsharing fleets only and focuses on the operating re-
serve market. We take advantage of particulary high elec-
tricity prices on the operating reserve market that stem from
real-time changes in electricity demand and production. In a
similar vein to Ketter et al. who make real-time pricing de-
cisions based on economic regimes, we make real-time de-
cisions for renting out a specific EV or turning it into a VPP.
Another example of the benefits of agents in decentralized
electricity markets is illustrated by Ramchurn et al..

Operating Reserves: Balancing the Electrical Grid
If at any point in time there is a difference in the quantity
of electricity produced and consumed, the electricity mar-
ket has to be regulated in real-time to maintain stability.
This is coordinated by electronic auctions, specifically first-
price sealed-bid auctions, in which participants make offers
to generate electricity, called positive operating reserves, or
bids to absorb and consume electricity, called negative op-
erating reserves. The balancing responsible party accesses
these offers and bids as needed in the merit order (cheapest
resources are used first) to keep the market in an equilib-
rium. This mechanism gains importance with increasing lev-
els of intermittent renewable energy, as production depends
on exogenous factors such as the weather. Especially battery
storage is valuable in this regard because it has no ramp-up
costs and time. Ramp-up costs and time to start-up gener-
ators are significant for base load power plants. EVs pos-
sess large electrical batteries that are almost instantly scal-
able. Previous research proposed to use this capacity to of-
fer balancing services to the grid (Vytelingum et al. 2011;
Peterson, Whitacre, and Apt 2010; Schill 2011).

Electric Vehicles and Carsharing
Carsharing and especially the free float carsharing model,
where the car can be picked up and dropped off anywhere,
contribute to more sustainable ways of transport in terms of
construction, operation, and decomposition of mobility sys-
tems. Firnkorn and Müller find that even under a pessimistic
scenario, free float carsharing has a significantly positive ef-
fect on carbon emissions.

Charging many EVs in the same neighborhood at the
same time will overload transformers and substations
quickly (Kim et al. 2012; Sioshansi 2012). Previous research
has addressed this issue by proposing smart charging. Smart
charging means to charge EVs at times when the grid is
less congested to complement peaks in electricity consump-
tion. Drivers are incentivized to shift their charging, yield-
ing significant peak reductions (Valogianni et al. 2014). An
extension of smart charging is the V2G concept which was
mentioned in the introduction. Regarding the technical fea-
sibility it should be noted the standard of the International
Electronical Commission ICE 62196 supports V2G. A study
by Vytelingum et al. looked at the savings a household can
make with a battery exposed to variable pricing at the en-
ergy wholesale market and found that efficient use of the bat-
tery would save 14% in utility costs and 7% in carbon emis-
sions. Other studies find yearly benefits per EV of $ 10-120
(Peterson, Whitacre, and Apt 2010) and $ 176-203 (Schill

2011). Within this research stream there are two conflict-
ing opinions regarding the economic feasibility of the V2G
concept. Peterson, Whitacre, and Apt contend that relatively
low yearly benefits per EV would not justify a widespread
roll out. Kahlen, Ketter, and van Dalen, however, argued that
V2G would enable volatile renewable energy sources to be
suitable for mainstream usage. Tomic and Kempton show
that the profitability depends on the target market; the larger
the variations in the electricity price the higher the profitabil-
ity.

Previous research greatly contributed to this topic, how-
ever under the unrealistic assumption that driving pat-
terns are known in advance. So they consider a static sys-
tem, whereas in reality it is a complex sociotechnical sys-
tem (Geels 2004). Users have valuations for being mo-
bile that differ over time and conflict with market interests
(Vytelingum et al. 2011; Tomic and Kempton 2007). We ap-
proach this problem from a sociotechnical perspective by ap-
propriating valuations for mobility from price and demand
for the EVs in a carsharing context. Besides, in contrast
to our work, previous studies have used either very small
fleets or data from combustion engine vehicles which have a
longer range and are not subject to range anxiety, the fear of
stranding with an empty battery.

Model Description
At the core of this research is the development of an algo-
rithm that decides how to deploy EVs, and its evaluation in a
simulation environment. A simulation approach is most suit-
able for this purpose as we are dealing with a complex sys-
tem that would be prohibitively expensive to build. It would
be difficult to manipulate a variety of parameters to find the
optimal market equilibrium. A simulation approach helps to
refine the algorithm, which is driven by business needs from
its environment that was discussed in the introduction, and
applying knowledge from existing agent-based approaches.

Virtual Power Plant Decision Support: FleetPower
The algorithm, which we call FleetPower, decides which
EVs should be deployed as part of a VPP, which EVs should
be charged, and which EVs should be made available for
rental for one time interval ahead in real-time. This applies
only to EVs that are parked at a charging spot for the time
under consideration.

Individual Car Performance Indicators. FleetPower
calculates the expected profit performance indicator (PPI)
for a specific EV i over time interval t (see Equation 1).
Therefore it maximizes expected profits over renting (rental
benefit RB), charging (negative regulation benefit NRB),
and turning the car into a VPP (positive regulation benefit
PRB).

PPIt,i,l = max(RBt,i,l, NRBt,i,l, PRBt,i,l) (1)

For a table of notation including measurement units see Ta-
ble 1. The expected profits for renting (RB) car i during
interval t parked at location l is estimated with a multiple
linear regression model (see Equation 2). The regression is
based on the probability with which a car gets rented out (a)
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and the storage capacity available (q). The probability to be
rented out at a given location varies over every quarter of an
hour and differs for each day of the week. As rental bene-
fits are generally much higher than benefits from PRB and
NRB a car that was predicted not to be rented out when it
actually was rented out will be much costlier than the other
way around. To account for these asymmetric misclassifica-
tion costs, we use the upper confidence interval as predictor
for RB. The level of confidence depends on the magnitude
of the asymmetric misclassification costs. During rentals the
battery is used and depreciation costs (D) as well as elec-
tricity costs for charging (C) for the expected difference in
the battery state before and after driving (∆Q) are taken into
account.

RBt,i,l = β1 + β2at,l + β3qt,i −
[
D +

(
C

ε

)]
∆Qt,i (2)

where:
∆Qt,i = β4 + β5at,l + β6qt,i (3)

If an EV is parked at a charging station FleetPower has the
option to charge the car. In this respect the negative regula-
tion benefit (NRB) is defined as the quantity with which the
battery of car i at interval t can still be charged with (Ψ) and
the bid price for negative operating reserves (Pneg), which
differs per EV i and time interval t (see Equation 4). More
specifically the quantity that the battery can still be charged
with (Ψneg) in time interval t takes into account the amount
of electricity stored in the battery Q and the charging speed
γ, which is defined by Ψneg

t,i = min((Ωi − Qt,i), γ∆t). As
this option would replace the costs for charging, we add the
opportunity benefit of not having to pay for charging fees
(C). In other words the NRB is the difference between what
one would pay with a common electricity tariff and the neg-
ative operating reserve market price.

NRBt,i = Ψneg
t,i (Pnegt,i − C) (4)

The bidding price is determined by the cost that would be
incurred to charge the EV with the regular electricity tariffC
and charging inefficiency ε, the expected rental profits RB,
and profit margin µneg which maximizes overall profits for
the time intervals t in the test data set (see Equation 5). Note
that if Pneg is too high, the market will instead choose a
cheaper bid and consequently there is no NRB for that time
period.

Pnegt,i = −C
ε

+RBt,i,l + µnegt (5)

In a similar vein an EV could also contribute to a VPP.
The electricity stored (Ψpos) in EV i that can be accessed
within time interval t and the offered selling price for pos-
itive operating reserves (P pos) specify the positive regu-
lation benefit (PRB). The electricity available for a VPP
(Ψpos) at time interval t based on the amount of stored
electricity Q and the discharging speed δ is expressed by
Ψpos
t,i = min(Qt,i, δ∆t). Besides also the cost for battery

wear out is depreciated (D) over its effective use and the
costs for charging C, including inefficiency ε, are taken into
account. Moreover the opportunity costs of not being able to
rent out the EV (RB) due to its commitment to a VPP in the

current interval t and recharging it thereafter are considered
(see Equation 6). Opportunity costs for recharging apply
only if the next lessee cannot complete his expected trip with
the reduced capacity from the VPP ((Qt−Ψpos

t,i ) < ∆Qt+j).
The discharging inefficiency (η) also plays an indirect role
as the amount of electricity consumed from the battery Ψpos

is larger than the amount sold by Ψpos

η .

PRBt,i = Ψpos
t,i

[
P post,i −

(
D +

C

ε

)]

−

Ψ
pos
t,i
δt∑
j=1

(RB(t+j),i,l | (Qt −Ψpos
t,i ) < ∆Qt+j)

(6)

The offered selling price (P pos) is composed of the depre-
ciation cost (D), charging costs (C) including inefficiencies
(ε), opportunity costs for rental and recharging time (RB) if
the battery has insufficient capacity ((Qt−Ψpos

t,i ) < ∆Qt+j)
for the lessee’s purposes, and margin µpos which maximizes
overall profits for the time intervals t in the test data set (see
Equation 7).

P post,i = D +
C

ε

+

Ψ
pos
t,i
δt∑
j=1

(RB(t+j),i,l | (Qt −Ψpos
t,i ) < ∆Qt+j) + µpost

(7)

FleetPower Decision Making at the Fleet Level. While
it is important for lessees to rent a car at a specific loca-
tion, the location within a city is less relevant for operat-
ing reserves. Rather than deciding for each EV individually
where it should be deployed, we estimate an overall quantity
for negative and positive operating reserves. This quantity
comes from different EVs across the city and could switch
within a time interval (t) from one EV to another if it is
rented out.

Therefore we do not simply sum up the storage of each
individual EV (Ψ) that could be committed to a VPP, but we
correct this amount for the risk pooling effect (RPE). The
risk pooling effect refers to better forecasts on the fleet level
than at the individual car level. That means we predict how
much overall storage should be used for positive and neg-
ative operating reserves. Then these amounts are allocated
back to the individual EVs. This is why a VPP outperforms
several EVs in isolation. The estimation for each operating
reserve at the fleet level is based on a linear regression model
with two independent variables. The first independent vari-
able is the quantity of electricity available after the previous
interval in the EVs (Ψneg/Ψpos) where the performance in-
dicator suggested to charge (Equation 8) or turn the EV into
a VPP (Equation 9). The second independent variable con-
sists of the amount of electricity available in EVs where the
performance indicator suggested negative or positive regu-
lation in the last time interval, but where it would have been
more profitable to rent out the EV. The term s refers to safety
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Table 1: Table of Notation.
Variable Description Unit

a Rental probability %
100

D Battery depreciation cost $/kWh
d Distance EVi to closest EV km
C Electricity price (industry av-

erage)
$/kWh

i Specific EV tag
I Total number of EVs (

∑
i)

l Location ZIP code
P Bid/offer price to buy or sell

electricity from reserve mar-
ket

$/kWh

Q Amount of electricity stored
in an EV

kWh

q Battery state of charge (Q/Ω) %
100

s Safety stock kWh
t Time interval index

∆t Duration of a time interval 15 minutes
β Regression parameter
γ Charging speed kW
δ Discharging speed kW
ε Charging inefficiency %

100

η Discharging inefficiency %
100

µ Margin on the bid/offer price $
Ψ Electricity accessible within

time interval
kWh

Ω Maximum battery capacity kWh

stocks that determine the trade-off between the risk of not
renting out a car and missing out on potential profits on
the reserve markets. The safety stocks (in combination with
Equation 8 and 9) determine how many cars should not be
committed as reserves. The optimization of the safety stock
was done over the 7 week training period with the objec-
tive to maximize the overall profit. The safety stock grows
with the asymmetric misclassification costs discussed in the
previous section.

RPEnegt = β + βnneg
I∑
i=1

(h(x) ∗Ψneg
t−1,i)

+ βrneg
I∑
i=1

(j(x) ∗Ψneg
t−1,i)− s

(8)

RPEpost = β + βnpos
I∑
i=1

(k(x) ∗Ψpos
t−1,i)

+ βrpos
I∑
i=1

(m(x) ∗Ψpos
t−1,i)− s

(9)

where:

h(x) =

{
1, if PPIt−1,i = NRBt−1,i

0, otherwise
(10)

Table 2: Descriptive Statistics Car2Go Dataset.
Description Value
EV type Smart Fortwo Electric
Max. battery capacity (Ω) 16.5 kWh
Electricity costs (C) 0.1155$ (Band IC)
Battery depreciation 0.13 $/kWh (2015)
cost (D) 0.067 $/kWh (2018)

0.034 $/kWh (2022)
Charging speed (γ) 3.6 kW (linear)
Discharging speed (δ) 13.2 kW (linear)
Charging inefficiency (ε) 96% (Reichert 2010)
Discharging inefficiency
(η)

97.4%

Min. / Avg. / Max.
EVs available (a) 13% / 85% / 97%
Rental revenues 4.89 $ / 20.04 $ / 322.34 $

j(x) =

{
1, if PPIt−1,i = NRBt−1,i

and RBt−1,i > NRBt−1,i

0, otherwise
(11)

k(x) =

{
1, if PPIt−1,i = PRBt−1,i

0, otherwise
(12)

m(x) =

{
1, if PPIt−1,i = PRBt−1,i

and RBt−1,i > PRBt−1,i

0, otherwise
(13)

The actual allocation of individual cars is done in the order
of profitability according to PPI , until the respective over-

all quantities
I∑
i=1

Ψneg −RPEneg and
I∑
i=1

Ψpos −RPEpos

are reached. Each quantity is submitted to the operating re-
serve market at the average price from Equations 5 and 7
weighted by the quantities for the individual prices respec-
tively.

Design Evaluation: Evidence from a Real
World Setting

In order to assess the economic viability of the above de-
scribed algorithm in practice, we apply it to the carsharing
service Car2Go of the Daimler AG. We use a seven week
time period from 08.11.2013 till 27.12.2013 as a training
data set (bootstrap period). From this training set the ex-
pected values for the average driven kilometers, rental time,
rental profit, and rental probabilities at each time are used
to train the model. The last four weeks from 28.12.2013 to
24.01.2014 are used to evaluate the model.

Carsharing Operator: Car2Go
The free floating fleet of Car2Go in Stuttgart, Germany con-
sists of 500 EVs. These EVs are distributed over 54 zip
codes of Stuttgart and its surrounding area. Members pay for
this service on a use basis only (per minute and km above a
threshold of 50 km) and are incentivized to return EVs to
a charging station when the battery status is below 30% by
rewarding them with 20 free driving minutes.
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Figure 1: Daily Operating Reserve Prices from 08.11.2013
to 24.01.2014.

The carsharing operator shared data with us for the avail-
ability of EVs with a granularity of 15 minutes. This data
contains the unique car name, the geo coordinates where the
car is parked, the street name and zip code of that location
(l), the state of charge of the battery (Q), and whether the EV
is currently charging. Based on this information we can in-
fer how long the EV was rented, how many kilometers were
driven, and how much revenues were earned as rental benefit
(RB). For an overview of the dataset see Table 2.

Secondary Operating Reserves: Transnet BW
As illustrated in the section Operating Reserves EV storage
is particularly suited for the secondary operating reserve,
due to its fast response requirement. Therefore we use auc-
tion data on secondary operating reserves to determine the
prices for balancing at each point in time. We use the data
from regelleistung.net, the German operating reserve opera-
tor for the region of Transnet BW (see Figure 1). Note that
even though the profits from renting out EVs are higher on
average, the commitments on the operating reserve markets
take precedence over renting because a severe penalty is im-
posed for not living up to commitments. As a consequence
rental profits that occurred in the dataset, while the algorithm
committed these EVs to the VPP, are opportunity cost. Only
if another, available EV was in the immediate vicinity this
car was assumed to be taken instead. Immediate vicinity is
interpreted as if customers were willing to walk to another
car if it is less than normally distributed with a mean of 250
meters and a standard deviation of 100 meters away (d) as
calculated with the haversine formula (Robusto 1957).

Fitting the Model to the Case
We train the model for the expected rental benefit (Equation
2) from 7 weeks of Car2Go rental data. It suggests that being
at a place and time where EVs frequently get rented out has
a strong positive impact, and lower battery levels have a neg-
ative impact on rental profits. To account for the asymmet-
ric payoff from rental (average benefit per rental is $ 20.04)
and operating reserves (average benefit is $ 0.40) we use the
upper 99% confidence level to overstate the rental benefit
accordingly.

Figure 2: Virtual Power Plant Output for the 5th of January
2014.

After we have fitted the model for the individual perfor-
mance indicators to the Car2Go case, we can train the fleet
level decision making model with information from the in-
dividual EVs. At popular time intervals, and therefore ad-
jacent intervals, fewer cars (stored electricity) are available
but many will be rented out. In a similar way the stored elec-
tricity is positively related to the number of EVs rented out
in the previous time interval. In this case we use both an up-
per 99% confidence interval and a safety stock s of 56 and
33 kWh respectively for positive and negative operating re-
serves which was optimal during the test period.

Operating Reserve Markets: Design for Flexibility
Current operating reserve markets use dedicated idle capac-
ity as operating reserves which are committed a week in ad-
vance. It is not only inefficient to have that much idle re-
serve, but it is also not fit to balance a market with large ca-
pacities of decentralized energy sources. Therefore we pro-
pose and use an alteration of the market design. In this de-
sign power comes from a critical mass of flexible, absorp-
tive generation and storage capacity, rather than having fixed
commitments one week in advance. This has the advantage
that battery storage can offer additional reserves to the mar-
ket to meet growing demand. Note that this market design
is not risk free. It depends on the availability of sufficient
flexible absorption and generation capacity, like storage in
batteries that is elastic to price changes.

Analysis and Discussion
Over the four week hold out period the algorithm made
154,445 EV management decisions, of which it decided in
75,813 instances to turn an EV into a VPP (49%). Of these
75,813 instances only 89 were for providing positive regula-
tion capacity and 75,724 instances were for providing neg-
ative regulation capacity. In 109 of these instances a lessee
wanted to rent an EV while it was committed as a VPP; in 69
of these instances there was a car in walking distance. That
means that we had to refuse lessees in 40 instances over the
four week time period translating into a gross profits reduc-
tion of 0.125%. At the same time the algorithm traded 61
MWh on the operating reserve market, increasing the gross
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Table 3: Sensitivity Analysis for Different Balancing Needs and Battery Technology Developments.
Balancing Need Today Balancing Need x2 Balancing Need x3

Battery Technology 2015 ↑ 7.18% gross profit ↑ 8.75% gross profit ↑ 11.44% gross profit
Battery Technology 2018 ↑ 7.20% gross profit ↑ 8.90% gross profit ↑ 11.81% gross profit
Battery Technology 2022 ↑ 7.23% gross profit ↑ 9.05% gross profit ↑ 12.11% gross profit

profits of Car2Go by about 7.18% assuming capital costs are
60% of rental revenues (industry average). This increase is
significant at the 0.01 significance level (p-value 0.002). The
negative operating reserves account for virtually all the in-
creased gross profit (99.8%). This can be traced back to the
high battery costs, which are higher than the average posi-
tive operating reserve price. When we compare this to a case
in which Car2Go has perfect information on future usage
of EVs, we see that FleetPower makes almost optimal de-
cisions. With perfect information they would increase gross
profits by about 8%. The relatively high accuracy of Fleet-
Power can mostly be attributed to the risk pooling by sub-
stituting committed EVs for operating reserves with other
available EVs if a lessee wants to rent a specific EV. If we
were to make this decision for each EV individually, we
would increase gross profits by only 0.07%. One can con-
clude that using FleetPower is significantly more profitable
then only renting out EVs and comes close to a scenario
where the fleet owner has perfect information. Figure 2 il-
lustrates at which times of the day FleetPower turns EVs
into a VPP and how much output it produces. Most of the
day the EVs provide negative reserve capacity, but at 16.00
PM the market price is high enough for the VPP to provide
positive reserve capacity.

Planning for Change: A Sensitivity Analysis
In order to assess how rapid developments in the energy
sector will influence the decisions and their profitability in
the future, we consider three scenarios for future balancing
needs. In the first scenario we consider the current market
need for balancing, in the second scenario we consider mar-
ket prices when the balancing need goes up twofold, and
in the third scenario we consider market prices when the
balancing need goes up threefold. The scenarios are derived
by multiplying the balancing demand per time interval by 2
and 3 respectively, which increases volatility proportionately
along the merit order. Besides the balancing requirements,
also a change in the costs of battery technology is expected.
This is due to a large investment in battery technology not
only for EV but also laptops, mobile phones, and other ap-
plications. We consider three scenarios for the battery de-
preciation costs. The first scenario of 0.13$/kWh is likely to
be achieved by 2015, the second scenario of 0.067$/kWh is
likely by 2018, and the 3rd scenario of 0.034$/kWh is likely
by 2022 (US Department of Energy 2013).

As expected we see a steady increase in profits for fleet
owners with increasing balancing needs and decreasing bat-
tery costs from initially a 7.18% gross profit increase to
12.11% under the 2022 scenario. At first glance it might
seem as if the increase in the balancing need is more de-
cisive than the battery technology. However, battery costs

only have an influence on positive operating reserves, which
account for about 0.2% today and 14% under the 2022 sce-
nario. Therefore the impact appears relatively minor, but it
increases as the positive operating reserves play a bigger
role. For an overview of the gross profit increases for the
individual scenarios see Table 3. While under current condi-
tions it would hardly be economical to base positive operat-
ing reserves on EV storage only, it does make sense in the
2022 scenario. In that case about every 20th person would
need to have an EV that participates, but is not dedicated to
the operating reserves. Under these circumstances one could
retire all peaking power plants in the secondary operating
reserve market, reducing the peak to average ratio by 4.5%.
The peak to average ratio is the bottleneck in the electrical
grid and determines its efficiency. When we relate this to
increasing energy efficiency, we find that despite efficiency
losses when charging and discharging EVs, the overall ef-
ficiency achieved by retiring peaking power plants offsets
these losses and increases overall system efficiency.

Conclusion and Future Work
In this study we have proposed and evaluated the agent-
based algorithm FleetPower which enables companies with
EV fleets to participate in the operating reserve market next
to renting out electric vehicles (EV). It continuously makes
the decision whether a specific EV at a specific location
should be available for rent, or to sell part of its energy
storage as negative or positive operating reserve. The algo-
rithm makes this decision based on forecasts for revenues
from rental, positive, and negative operating reserves and
aggregate EV availability in VPPs with an accuracy above
99%. We show that using EV for operating reserves en-
hances gross profits of the EV fleet owner by 7.18%, but that
the market design of the operating reserves needs to change
for more flexibility to tap into the potential of large scale
storage of EVs. V2G currently accounts for only a marginal
proportion of these additional profits, while 99.8% are due
to negative operating reserves. With a rising need for bal-
ancing capacity and decreasing battery costs, also V2G will
account for a higher share (14%) of the increase in gross
profits by 2022. In total the gross profits for EV fleet own-
ers could go up by as much as 12.11% by 2022. With this
algorithm it is possible to replace carbon intensive genera-
tion capacity with clean energy storage in the future, which
increases system efficiency (peak to average ratio) by 4.5%.

In future research we will analyze the influence of season-
ality on the ability of EVs to replace peaking power plants.
In addition we expand the analysis with tow cities in the US
and NL to account for different levels of renewable energy
sources. Finally we plan to implement the broker in Power
TAC to compete with and benchmark against other brokers.
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