
Incentivizing Users for Balancing Bike Sharing Systems

Adish Singla
ETH Zurich

adish.singla@inf.ethz.ch

Marco Santoni
ElectricFeel Mobility Systems

marco@electricfeel.com
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Abstract

Bike sharing systems have been recently adopted by a
growing number of cities as a new means of transporta-
tion offering citizens a flexible, fast and green alternative
for mobility. Users can pick up or drop off the bicycles at
a station of their choice without prior notice or time plan-
ning. This increased flexibility comes with the challenge
of unpredictable and fluctuating demand as well as irreg-
ular flow patterns of the bikes. As a result, these systems
can incur imbalance problems such as the unavailability
of bikes or parking docks at stations. In this light, op-
erators deploy fleets of vehicles which re-distribute the
bikes in order to guarantee a desirable service level. Can
we engage the users themselves to solve the imbalance
problem in bike sharing systems?
In this paper, we address this question and present a
crowdsourcing mechanism that incentivizes the users in
the bike repositioning process by providing them with
alternate choices to pick or return bikes in exchange for
monetary incentives. We design the complete architec-
ture of the incentives system which employs optimal
pricing policies using the approach of regret minimiza-
tion in online learning. We investigate the incentive com-
patibility of our mechanism and extensively evaluate it
through simulations based on data collected via a survey
study. Finally, we deployed the proposed system through
a smartphone app among users of a large scale bike shar-
ing system operated by a public transport company, and
we provide results from this experimental deployment.
To our knowledge, this is the first dynamic incentives
system for bikes re-distribution ever deployed in a real-
world bike sharing system.

Introduction

A Bike Sharing System (henceforth BSS) is a new concept
of public transportation offering citizens a flexible and green
alternative as well as complementing the slow and crowded
transportation in urban areas. This mobility trend had an expo-
nential growth over the last years, and, as of June 2014, over
700 cities actively operate automated bike sharing systems
deploying an estimate of 800,000 bikes worldwide (Meddin
and DeMaio 2014). BSSs increase the user’s commuting flex-
ibility by allowing her to pick up or drop off a bike at any
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station and let her decide the duration of the trip without any
prior planning or reservation. Indeed, this flexibility is the
key factor for the success of BSSs.

Balancing problem. This flexibility also poses a number
of new challenges for the BSS operators. The demand is of-
ten unpredictable, asymmetric and fluctuating throughout the
day. Other factors such as altitude differences, weather condi-
tions or events in the city can cause irregular or asymmetric
rental demands and flow of bikes. As the number of available
bikes and parking spots at any bike station in the system is
limited, satisfying the forthcoming demand with such limited
resources is a major challenge and recurrent problem for BSS
operators. A BSS user would experience an unsatisfactory
quality of service when attempting to rent or drop off a bike at
an empty or full station respectively. Meeting the demand for
bikes and free docks requires an extensive logistic work and
poses major operational costs to the operators. Thus, fleets of
vehicles (or trucks) are deployed to re-distribute bikes among
stations to balance the system out (Büttner, Mlasowsky, and
Birkholz 2011).

Incentivizing users. Apart from the large operational
costs, deploying trucks for the re-distribution goes against the
green concept of BSS. Can we engage the users of such sys-
tems and provide them incentives to contribute re-balancing
the system? Termed as crowdphysics by Sadilek, Krumm, and
Horvitz (2013), this class of crowdsourcing systems requires
users to sequence or synchronize physical actions in time and
space, and can lead to building self-sustainable systems. The
goal of building such a system presents several challenges
including: i) the system’s large scale in terms of user base as
well as number of stations, ii) the fluctuating demand over
time that needs to be taken into account while determining
problematic stations, iii) the unknown personal costs of the
users and their strategic behavior potentially aiming at maxi-
mizing their profit, iv) the budget constraints of how much
can be spent on incentives and v) a user-friendly interface to
make such a system appealing (e.g., through a smartphone
app). Building such a self-sustainable and crowd-powered
bike sharing system is the key idea we explore in this paper.
While we focus on BSSs, similar problems arise in other
domains (e.g., car sharing or rerouting users on over-booked
flights) and our methodology is applicable to these systems
as well.
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- User Interface
- Displays offers, receives response

C1 Rental Stations

- Distribution of costs, walking distance
- Types of trips and response to incentives

- Capacity and current status
- Events of user picking or dropping a bike

C5 Smartphone App Deployed

C3 User Model

C4 Incentives Deployment Schema
- Choosing target stations to be offered
- Learning user behavior and dynamic
  pricing mechanism
- APIs to communicate with App and BSS

C2 BSS Infrastructure
- Tracking status of rental stations
- User accounts and payments
- Traffic forecaster
- Notifications about user picking or
  dropping a bike

Figure 1: Overview of the system, our contributions are shown in the dotted box Figure 2: Spatial dist. of accepted offers

Overview of our system

In this paper, we design the complete architecture of an op-
erating incentives system for engaging users in the bike-
repositioning effort (see Figure 1). In collaboration with a
company operating large scale bike sharing systems, we de-
ployed our system on a real-world BSS in a city of Europe1.
In Figure 1, the components C1 Rental Stations and C2 BSS
Infrastructure correspond to the rental stations, the hardware
and software infrastructure of the public bike sharing system.
These components involve tracking all the user activities such
as picking or dropping the bikes, managing user accounts
and the payment system.

The main components that we designed and built include
C3 User Model, C4 Incentives Deployment Schema (IDS)
and C5 Smartphone App. The IDS is the central component
in the overall design that handles the user’s requests through
C5 Smartphone App. The request includes input such as the
user’s target station and type (i.e., bike pick up or drop off).
The IDS communicates with the BSS Infrastructure to evalu-
ate the current and predicted status of the stations, and then
decides whether to offer incentives to the user by requesting
a change in her pickup or drop-off location. In order to maxi-
mize the efficiency under given budget constraints, we design
dynamic pricing mechanisms using the approach of regret
minimization in online learning that can learn over time about
the optimal pricing policies. We consider the users as strate-
gic agents who may untruthfully report information about
their personal cost and location to maximize their profit. We
model the full rental process of the user and her reaction to
incentives in the component C3 User Model. In summary,
our main contributions are as follows:
• We design the complete architecture of an incentive sys-

tem with the goal of enabling self-sustainable, crowd-
powered and greener bike sharing systems.

• We build an incentive deployment schema that interacts
with the users and BSS infrastructure, decides about offer-
ing incentives, and learns from past interactions.

• We validate our assumptions by surveying BSS users,
and demonstrate the effectiveness of our approach via
a detailed BSS simulator. We report on our experience
deploying our system via a smartphone app integrated
with a real-world BSS.

Related Work

Truck-based repositioning in BSS. The problem of asym-

1Bike sharing operator MVGmeinRad in Mainz, Germany.

metric flow, imbalance and repositing of the vehicles has
been studied in generic vehicle sharing systerms that could
involve cars or bikes (Cepolina and Farina 2012; Kek et al.
2009; Clemente et al. 2013; Nair and Miller-Hooks 2011;
Correia and Antunes 2012). Regarding BSS’s balancing prob-
lem, a substantial literature (Rainer-Harbach et al. 2013;
Pfrommer et al. 2014; Raviv and Kolka 2013; Chemla, Meu-
nier, and Wolfler Calvo 2013; Schuijbroek, Hampshire, and
van Hoeve 2013; George and Xia 2011) introduced bike repo-
sitioning policies based on trucks. The user dissatisfaction
function introduced by Raviv and Kolka (2013) measures the
performance of a BSS station and provides the quality of a
repositioning. Nair et al. (2013) provides a detailed quanti-
tative analysis of the repositioning strategies for Vélib’, the
BSS in Paris.

Crowd-based repositioning in BSS. Recent literature has
investigated crowd-based BSS balancing policies (Fricker
and Gast 2012; Waserhole, Jost, and Brauner 2013; Pfrom-
mer et al. 2014; Chemla, Meunier, and Pradeau 2013;
GoDCgo 2011) to study the potential of influencing BSS
users by offering incentives that could improve balancing of
the system. In Paris, Vélib’ runs a static incentive schema
that offers users 15 extra free minutes each time they return a
bike to an elevated station (Vélib’ 2014). However, in con-
trast, our proposed mechanism is dynamic and can efficiently
take into account the current state of the system to decide
where and what incentives to offer. Pfrommer et al. (2014)
also introduced a dynamic pricing mechanism using model-
based predictive control principles. Our pricing mechanism,
in contrast, is based on an efficient and provably near-optimal
online learning framework. Furthermore, we build an operat-
ing end-to-end system integrated with a real-world BSS for
deployment, and we investigate the incentive compatibility
of our approach.

The Model

We now formalize the problem addressed in this paper.
BSS. There are m stations in a city denoted by the set

S = {s1, s2, . . . , sm}. We denote the number of bikes avail-
able at time t at station s as v(s, t). Along the lines of Pfrom-
mer et al. (2014), we split every day into 12 slices h ∈ H
of two hours each, where a time of the day t is mapped
to the corresponding time-slice using h(t). The demand of
rentals from station si to station sj within time-slice h is
modeled as a discrete random variable z which represents a
count of the number of trips with probability density func-
tion τ(z|si, sj , h). We denote ẑ(h) to represent the estimate
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of the total number of trips within time-slice h. The BSS
infrastructure has a proprietary demand forecaster that can
predict the future demand of incoming and outgoing traffic
at the stations and is made available to us through their APIs.
See (Côme and Oukhellou 2012; Kaltenbrunner et al. 2010;
Borgnat et al. 2011; Froehlich, Neumann, and Oliver 2009;
Han, Côme, and Oukhellou 2014) for possible approaches.

Quality of service. The goal of a bike repositioning pol-
icy is to prevent customers’ dissatisfaction about not finding
an available bike or a parking slot. Waserhole, Jost, and
Brauner; Chemla, Meunier, and Pradeau; Fricker and Gast
(2013; 2013; 2012) have proposed metrics aiming at max-
imizing the number of trips or minimizing the number of
problematic stations. However, these metrics fail to capture
the dissatisfaction experienced by BSS users. We adopt the
measure of service level proposed in Pfrommer et al. (2014):

Service level =
Potential customers − No-service events

Potential customers

where the number of no-service events corresponds to the
customers who could not rent a bike at an empty station or
failed to return their bike at a full station.

Truck-based re-positioning policies. The BSS operator
allocates a fixed daily budget B that can be used by the truck-
based policy. The BSS company where we deployed our
incentives system uses its proprietary re-positioning policy.
See (Chemla, Meunier, and Pradeau 2013; Raviv and Kolka
2013) for possible approaches.

User model. Consider a user (or customer) u at location
lux interested in an action x ∈ {pick, return}, i.e., pick up
or drop off a bike. We assume that, by default, the user would
consider the nearest station to her location to perform the ac-
tion, given by sux ← argmins∈S d(lux , s), where d measures
the distance between two locations. The incentives system
encourages users to shift their pickup or drop-off stations to
contribute balancing the BSS. For simplicity, we assume that
the user u is willing to walk to another station up to a max-
imum distance γu, and, within this radius, her cost for the
additional effort is constant given by cu. She is not willing to
walk for distance more than γu despite of any offer by our
incentive system. We validate these assumptions through a
survey study with real BSS customers. In our model, the costs
of the users are i.i.d. sampled from an underlying unknown
distribution f . We let F : [cmin, cmax] → [0, 1] denote
the cumulative distribution function (CDF) of costs or “cost
curve”, unknown to the system.

Suppose a user u at location lux , going to station sux, is
offered an alternate station s∗x for a payment of p∗. We model
her reaction to this incentive as an indicator function:

u
accept(l

u
x , s

∗
x, p

∗) =
{
0 if γu < d(lux , s

∗
x) or p∗ < cu

1 otherwise
which takes value 0 or 1 when the user rejects or accepts the
offer, respectively. We remark that the information about user
cost cu and her true location lux is private to the user and may
vary among users. We consider the users as strategic agents
who may untruthfully report their private information about
the location lux or private cost cu to maximize their profit. For
simplicity of the mechanism design, we use γ̂ to represent the
maximum distance for the whole population, and we obtain
its estimate through a user survey.

Procedure 1: Incentives Deployment Schema (IDS)
1 Input: user u; location lux ; x ∈ {pick, return};
2 Output: Offer: station s∗x; price p∗;
3 Parameters: radius γ̂;

begin
4 if HASINCENTIVESPENDING(u) then
5 return null;
6 candidate stations C ← S;
7 default target sux ← argmins∈S d(lux , s);
8 foreach s ∈ C do
9 s.status ← PROBLEMATIC(s);

10 if d(lux , s) > γ̂ then
11 C = C \ {s};
12 if x = return & s.status �= EMPTY then
13 C = C \ {s};
14 if x = pick & s.status �= FULL then
15 C = C \ {s};
16 if sux ∈ C OR C = ∅ then
17 return null;
18 s∗x ← argmins∈C d(lux , s);
19 p∗ ← PRICINGMECHANISM();
20 Output: s∗x, p

∗;

Incentivizing users for repositioning. We study an incen-
tive system as an alternative to truck-based re-distribution in
BSSs. We propose a dynamic incentives schema that com-
putes incentives each time a user makes a new request. The
BSS operator regularly allocates a budget B(h) for time
batch h, and the goal of the incentives schema is to exploit
the budget efficiently. Therefore, if a user u makes a request
at time t for action type x, a dynamic algorithm is responsible
to select the alternate station s∗x and compute the value of the
incentive p∗ based on the following inputs: i) reported loca-
tion of user lux , ii) current status of the system: v(s, t)∀s ∈ S ,
iii) near-future demand τ(z|si, sj , h) ∀si, sj ∈ S , iv) budget
available, and v) information about historical interactions
with users.

Our goal is to design a system that is i) budget-feasible,
i.e., operates under strict budget constraints, ii) efficient in
terms of improvement in quality of service for a given budget,
iii) incentive-compatible (truthful), i.e., it is in best interest
of users to reveal true information, and iv) can deal with
unknown user costs and learn pricing policies over time.

The Incentives System

We now present the various components of our incentives
system and discuss its properties.

Incentives Deployment Schema

Procedure 1 illustrates the Incentives Deployment Schema
(IDS) that handles the users’ requests forwarded by the de-
ployed smartphone app. For each request, the IDS gets as in-
put the user identifier u, the action type x ∈ {pick, return}
and the user’s reported location lux . Based on the user input
and the current status of the system, IDS computes the of-
fer that consists of the alternative target station s∗x and the
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offered price p∗. Initially, the IDS ensures that the user does
not have any pending incentive, i.e., an incentive offer that
she recently accepted but did not accomplish yet. Then it cre-
ates a set of candidate stations that are within the maximum
walking distance γ̂ from lux and are “problematic”, i.e. full
or empty. The problematic status of the stations is based on
input from the APIs of the BSS infrastructure that provides
the current status v(s, t) as well as the forecast of future traf-
fic. The IDS also takes into account the pending incentives
associated with each station while updating the status that
additionally accounts for future traffic.

Once the IDS has filtered the candidate stations, it selects
as target station s∗x the one closest to reported location lux .
Then, it sends a request to the pricing mechanism to obtain
the price p∗ to be offered. This offer is displayed to the user
on the smartphone app. If the user accepts, the IDS registers
this incentive offer as pending until she accomplishes the
assigned task or it expires after a prefixed amount of time.

Pricing Mechanism DBP-UCB

The main challenges in designing an optimal pricing mecha-
nism are due to the limited and dynamically changing budget
(B) as well as pool size of users to make offers to (N ) and
the unknown “cost curve” F . Additionally, the mechanism
has to compute the offers in an online setting with only lim-
ited interaction with the users in terms of the information
that can be received from them for learning. First, let us con-
sider an offline setting where the cost curve F is known and
{p0(= cmin), . . . , pi, . . . , pK(= cmax)} be the set of avail-
able prices that the mechanism can offer. In this case, the
optimal truthful mechanism denoted by OPT-FIX, is to offer
a fixed price pOPT (Singer 2010) given by:

pOPT = argmax
p

min

{
F (p),

B

N · p
}

s.t. p ∈ {p0, . . . , pK}
(1)

Now, in case of unknown F , we can cast the problem as
that of online learning of the optimal price. Note that, F (p)
simply denotes the probability of getting an acceptance from
the user when offered price p. In particular, we are interested
in designing mechanisms based on the posted-price model
where the mechanism makes a price offer p and the user
simply says “yes” or “no” to the offer, instead of soliciting
the user’s bid. In a learning framework, the mechanism can
make different price offers over time to different users, and
use the binary feedback of acceptance to learn an estimate
of F (p). There is an inherent explore-exploit trade off here
of exploring (or learning) about different, potentially subop-
timal, prices and exploiting the estimates of F (p) to offer
the price that appears best. Multi-armed bandits (MAB) (Lai
and Robbins 1985) provide a natural formalism for tackling
this problem, considering the prices as actions (or arms) with
unknown stochastic reward given by the function F (p). In
the MAB framework, the performance of a mechanism is
measured in terms of its “regret” Rn, i.e., the cumulative loss
of the mechanism w.r.t. the optimal fixed price pOPT after n
iterations. The goal is to design a “no-regret” mechanism
that learns to perform competitively, i.e., the average regret
w.r.t. n goes to zero limn→∞ Rn/n = 0. However, note that in
contrast to standard MAB settings, here actions have different

Procedure 2: Pricing Mechanism DBP-UCB
1 Input: start time t0; prices {p0, . . . , pi, . . . , pK};
2 Output: Price pn at iteration n;
3 Initialize:

• n = 0;h0 = h(t0); � First batch
• B = B(hn);Bn = B; N = 2 · ẑ(hn);
• Nn

i = 0;Fn
i = 0; ∀i ∈ [0, . . . ,K] � Value estimates

foreach request by user at time t do
4 if hn �= h(t) then
5 hn = h(t); � New time batch
6 Bn = Bn +B(hn); B = Bn; � More budget
7 N = 2 · ẑ(hn); � Trips estimate from forecaster

8 F̃n
i = Fn

i +
√

2·ln(n)
Nn

i
; � Same as in BP-UCB

9 in = argmaxi min
{
F̃ t
i ,

B
N ·pi

}
s.t. pi ≤ Bn;

10 Output: Offer price pn = pin at iteration n;
11 Feedback: Observe acceptance decision yn;
12 Update Variables:

• Bn+1 = Bn − pn · yn; Fn+1
in = Fn

in +
(yn−Fn

in )

(Nn
in

+1)
;

• Nn+1
in = Nn

in + 1; hn+1 = hn; n = n+ 1;
13 Wait for new user request;

costs and there is a budget constraint.
For static settings where the budget (B) and the number of

users (N ) is known and fixed in advance, Singla and Krause
(2013) designed a no-regret mechanism BP-UCB that is
budget feasible, truthful and has fast convergence rates. This
scenario does not correspond to the incentives system we are
interested in as, in this context, the pricing mechanism has
to operate continuously throughout time, is allocated new
budget in time batches and the number of users coming to the
system is dynamic. In this light, we design our mechanism
DBP-UCB (Dynamic Budgeted Procurement using Upper
Confidence Bounds), illustrated in Procedure 2, as a dynamic
variant of BP-UCB. The key idea we use is that the learning
process of the mechanism can be decoupled from the con-
straints on B and N . While the parameters B and N change
dynamically at the onset of each time batch, it carries over
the estimates of F (p) across batches, ensuring DBP-UCB
maintains the convergence properties of BP-UCB.

At a high level, the mechanism DBP-UCB operates as
follows. At the onset of each new time batch h, the mecha-
nism is provided with an additional budget B(h) by the BSS
operator. Furthermore, the number of participants N for a
batch is approximated by the expected number of trips ẑ(h)
taking place in the corresponding batch h estimated by the
BSS forecaster. In particular, the expected number of rentals
is multiplied by two as the user may interact with the incen-
tives system both to pick and return a bike. The mechanism
sequentially interacts with users in discrete steps denoted by
n. Let Bn be the budget at iteration n, Nn

i be the number of
times pi price has been offered so far, and Fn

i be the current
estimate of the cost curve for prices ∀i ∈ [0, . . .K]. The
mechanism also maintains upper confidence bounds on Fn

i
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What is the maximum additional distance you are willing to walk?

Choose one of the options:

€

More than 2,000 m

1,500 m

1,000 m

2,000 m

750 m

500 m

250 m

Unwilling to walk

(a) Sample survey question
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(b) Dist. of max. walking distance γu
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(c) Dist. of costs cu

Figure 3: Survey study with customers of a real-world BSS1 in a city of Europe where we deployed our incentive system

denoted as F̃n
i , representing the optimistic estimates of F

at iteration n, and used to compute the optimal price pn to
offer. The mechanism receives the binary feedback yn which
is then used to update the estimates for price pn.
Truthfulness of Incentives System

As the system users may act strategically, it is important to
analyze the truthfulness of the IDS to understand the real-
world performance of the proposed system. Each user has
a private cost cu and location lux and we now discuss the
truthfulness of our system w.r.t. these two dimensions of the
users’ private information. The mechanism DBP-UCB is
based on the posted-price model, where it is in the user’s best
interest to truthfully accept the offer whenever the offered
price is higher than the private cost cu. Furthermore, given
the large scale of the system, the interaction with a single
user does not significantly affect the learning behavior of the
mechanism, thus making it behave truthfully in real-world
BSSs.

Let us now analyze the truthfulness of IDS w.r.t the lo-
cation information. One crucial aspect here is that no in-
centives are offered when the user’s default station sux is
already among the candidate stations. This notably improves
the efficiency (by over 50% in our simulations) of the IDS
by avoiding to pay out incentives for stations that the user
would have taken anyways. We discuss the implications of
this on the truthfulness of IDS below. If the system has no
way to infer sux, the user may indeed act strategically by mis-
reporting to obtain an incentive that would have not been
offered otherwise. In the real deployment of our system, in-
stead of allowing the user to declare her current location (lux),
it is directly retrieved from the deployed mobile-app which
provides localization features. Based on this location informa-
tion, the user’s default pickup station can directly be inferred.
This technical solution does not directly apply to the bike
drop-off scenario where users explicitly declare their target
location. However the drop-off location could potentially be
inferred based on user’s historical trips, making the system
incentive-compatible in real-world deployments.

Experimental Evaluation

In this section, we carry out extensive experiments to under-
stand the practical performance of our system.

Datasets and Experimental Setup

First, we describe our datasets and the BSS simulator.
Historical BSS dataset. For our simulations, we used a

historical dataset from Boston’s Hubway, made publicly avail-

able by the Boston Metropolitan Area Planning Council2. The
Hubway dataset contains data collected between 28th July,
2011 and 1st October, 2012 with rich information about 95
stations, 694 bicycles, 552, 030 rentals, and snapshots of the
status of the BSS at regular intervals.

Survey study. We did a survey study among the customers
of a real-world BSS1 in a city of Europe where we also de-
ployed our system. Our goal is to validate the realism of our
model, as well as to obtain realistic statistics about the dis-
tribution of users’ personal costs cu and of their maximum
walking range γu. The participants were asked generic ques-
tions about their rental behaviors (e.g., purpose and duration
of the trips) and then we introduced them to the proposed
incentives system asking various questions to elicit their pref-
erences about private cost and walking distance. Figure 3(a)
illustrates a survey question, and the distributions obtained
from the survey for γu and cu are shown in Figures 3(b)
and 3(c) respectively. Note that the survey also contained
an additional choice of “unwilling to walk” or “unwilling to
participate at any cost” that accounted for roughly 20% of
the response for both questions.

Simulator. We built a complete simulator of a real BSS
based on Hubway’s historical data as well as the survey data
from customers. Each simulation starts by taking a snapshot
of the status of the BSS, i.e., the number of bikes at each
station retrieved from the historical dataset and runs the sim-
ulation for a total of 30 days. The BSS simulator generates
users’ trip events by sampling from the distribution learnt
from the historical data. Lastly, the simulator associates each
rental to a user with cost cu and γu sampled from the dis-
tributions obtained from the survey. For the TRUCKS, we
used the myopic greedy policy as defined by Chemla, Meu-
nier, and Pradeau (2013). Using the idea of dynamic (during
rush hours) and static (during off hours) repositioning from
Raviv and Kolka (2013), our policies operate in time from
12:00 p.m. and 3:00 p.m, and then from mid-night to morning.
We assume that the trucks entail a fixed cost of 50 e per
hour to the system and the policy allocates the number of
hours based on the total budget.

Results

We now discuss the findings from our experiments.
Varying budget. We compare the performance of different

policies by varying the allocated budget. We envision that the
operators would deploy the incentives system in parallel to

2http://hubwaydatachallenge.org/.
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(a) Varying budget
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(b) Budget tradeoff
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(c) Varying participation

Figure 4: Simulation results based on historical data of Hubway BSS2 and survey data from customers of real-world BSS1
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(a) Dist. of accepted offers per user
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(b) Prob. of acceptance w.r.t walking
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(c) Dist. of accepted offers over day

Figure 5: Results from deployment of our system through smartphone app on a real-world BSS1 in beta-test phase for 30 days

existing TRUCKS repositioning rather than as standalone pol-
icy. To take this into consideration, we compare the policies
when deployed in addition to an already running TRUCKS
policy allocated with 150 e, (i.e., equivalent of 3 hours of
trucks that would run between 12:00 p.m. and 3:00 p.m).
Apart from comparing to TRUCKS, we also compare our pro-
posed system with IDS running different baseline pricing
mechanisms instead of DBP-UCB: i) MINIMUM mechanism
selects the minimum price available cmin; ii) MEAN mech-
anism offers the mean price obtained from the user’s cost
distribution. Our results in Figure 4(a) indicate that the pro-
posed IDS with DBP-UCB pricing mechanism compares
favorably w.r.t. TRUCKS, as well as other baseline pricing
mechanisms. The performance of DBP-UCB almost matches
OPT-FIX, as it converges very fast to the optimal price in
less than a day of simulation time. Note that allocating more
budget B to TRUCKS is simply equivalent to running policy
with total of B + 150 e budget.

Budget tradeoff between IDS and TRUCKS. This exper-
iment aims to understand how to trade off budget investment
between TRUCKS and the incentives system. Figure 4(b) il-
lustrates that the best service levels are achieved when the
two repositioning services are run in complement to each
other, and shows the high potential of adding our incentives
system to the existing BSS infrastructure. In fact, these two
policies have complementary effects. While the trucks tackle
the imbalances at a macro level by moving the bicycles from
a part of the city to the other, the effect of the incentives
system is rather dynamic and at a micro level, incorporating
the traffic flow and fluctuating demands.

Varying user participation. The previous experiments as-
sume that all the BSS customers participate in the incentives
system. However, this assumption may not hold in reality,
especially in the testing phase of the system. With the same
setup as used in Figure 4(a), we vary the participation rate
of users between 0% and 100%, with budget fixed at 300 e.
Figure 4(c) illustrates that the proposed system can surpass

standalone TRUCKS policy with 20% participation.

Deployment

We deployed our incentives system on a real-world BSS in
a beta-test phase for a period of 30 days in a city of Europe,
in collaboration with a large scale bike sharing company1.
We designed a smartphone app as an interface between the
users and the incentives system. The system itself was inte-
grated with the BSS infrastructure through their APIs. The
participants were offered monetary incentives for the bike
pickup scenario, with payments directly transferred to the
customer accounts. Given the small pool of participants in
the testing phase limiting the process of learning, we adopted
a simple pricing mechanism based on OPT-FIX. Using the
approximate users’ cost distribution, denoted as F̃ , obtained
through the survey study, we computed the approximation of
the optimal price p̃OPT using Equation 1 by replacing F with
F̃ . We now present the findings from this deployment.

Participation. Figure 5(a) represents the histogram of the
number of incentives obtained by each participant. The result
shows that most participants collected five or less incentives
each while few particularly active users collected more than
50 incentives each.

Reaction to incentives. In total, the acceptance rate of the
incentive offers over all participants was about 60%. Here,
the rejection of an offer corresponds to the case of a user
rejecting an incentive to pick up a bike at an offered target
station and starting a rental somewhere else. Furthermore, as
we recorded the information about the user’s location when
an offer is made, we can compute the distance that the users
were required to walk for a given offer. Figure 5(b) shows
the probability of an offer being accepted as decreasing with
respect to the distance to be walked and matches closely with
the survey data in Figure 3(b).

Time and space distribution. Figure 5(c) shows that in-
centives were not collected equally throughout the day, but
most incentives were collected during the afternoon and at
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late morning. In Figure 2, the diameter of each station is
proportional to the number of incentives collected by users
at that station. The map shows that the majority of incentives
were paid out at stations in the city center.

Conclusions

There is much potential in intelligent and self-sustainable
systems that incentivize and empower their users to actively
engage in the system processes. In this paper, we presented
the architecture of an incentives system to engage BSS users
in the bike repositioning process. We worked in collaboration
with a bike sharing company, designed and built a working
system integrated with the BSS infrastructure. We investi-
gated the incentive compatibility of our system, and also
designed a dynamic pricing mechanism DBP-UCB to opti-
mize the efficiency of the incentives system. We evaluated
the proposed system through extensive simulations using
historical and user survey data, and deployed it through a
smartphone app for a period of 30 days.
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