Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

Risk-Aware Scheduling throughout Planning and Execution

Andrew J. Wang
Computer Science and Atrtificial Intelligence Laboratory
Massachusetts Institute of Technology
wangaj @mit.edu

Motivation

Scheduling is integral to many real-world logistics prob-
lems. It can be as simple as catching the bus in the morn-
ing, or as complex as assembling a commercial airliner.
While simple applications render scheduling tools trivial,
these tools have not been widely adopted for complex sce-
narios either. The larger the scenario, the greater the tempo-
ral uncertainty throughout the system, and many schedulers
do not consider the probabilistic uncertainty in actions’ du-
rations. This makes them brittle to temporal disturbances or
poor modeling, which incurs high replanning costs and un-
acceptable risks for the mission-critical nature of large ap-
plications.

Mitigating such risk is challenging because temporal rea-
soning is present at every level of planning and execution.
Figure 1 diagrams the layers of reasoning for a planning ex-
ecutive to map logistical goals into real-world actions. First,
the planner generates an grounded plan. The the scheduler
produces a scheduling policy, which the dispatcher then fol-
lows to execute the plan’s actions at appropriate times.

Although the scheduler is responsible for creating the
scheduling policy, the planner and dispatcher still have to be
aware of time: The dispatcher is responsible for keeping the
plan on schedule. Hence, it needs to monitor actions’ dura-
tions to make sure they match what the policy predicts. Like-
wise, the planner needs to know when the scheduler cannot
produce a valid policy for a given plan, and use that infor-
mation to avoid unschedulable plans.

When temporal uncertainty is factored into the scheduling
algorithm, the planner and dispatcher must adapt to reason
about the consequences of uncertainty as well. Thus, quan-
tifying and managing scheduling risk requires one to apply
probabilistic temporal reasoning across the entire planning
and execution architecture. If this could be done efficiently,
it would remove a significant obstacle to deploying large-
scale logistics scenarios with confidence.

Problem statement

The goal of this thesis is to provide probabilistic guaran-
tees on a plan’s scheduling requirements. The approach is

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

4261

1 goals

| Planner ‘

1 plan
| Scheduler |

l policy
| Dispatcher |

1 actions

Figure 1: The role of scheduling in a plannning and execu-
tion architecture.

to augment an existing non-probabilistic planning and ex-
ecution architecture to reason about risk-aware scheduling.
In this architecture, the planner and scheduler first generate
a plan and scheduling policy offline, which the dispatcher
then executes online. However, if real-world disturbances
break the policy, then the scheduler and planner may be in-
voked online incrementally to repair the remaining plan and
schedule.

At its core, this work addresses the problem of chance-
constrained scheduling, where the generated policy is guar-
anteed to satisfy a set of constraints that bound the risk
of violating certain temporal requirements. A chance-
constrained formulation was chosen over risk minimization
for two reasons: First, risk minimization is an infinite goal
that leads to overly conservative solutions, whereas a chance
constraint specifies a clear bound to aim for. Second, mul-
tiple chance constraints may be specified over different sub-
plans, which together indicate the user’s risk priorities.

Given this problem framing, the proposed modifications
to the architecture are as follows: The planner accepts a
set of chance constraints accompanying the planning goals.
When it generates a candidate plan, it also identifies what
portions of the chance constraints would be affected by
scheduling decisions, and sends those down to the sched-
uler. Now the scheduler does not just verify that the plan
is temporally consistent, but that a scheduling policy exists
which succeeds with sufficient likelihood in the context of
each chance constraint. If such a policy cannot be found,
then the planner tries again until the scheduler is successful.

When the dispatcher receives the chance-constrained
scheduling policy, it must continuously monitor the risk to

100000

¥ [+ with conflicts
= without conflicts

Runtime (s)

min risk

350
Number of uncontrollable durations

Figure 2: Conflict-directed risk allocation speeds up chance-
constrained scheduling by an order of magnitude.

the temporal requirements during execution. If the risk ex-
ceeds what the chance constraints allow, then the sched-
uler is invoked to incrementally repair the scheduling policy.
Similarly, if that cannot be done, then the condition is kicked
up another level to the planner for incremental plan repair.
This architecture leverages an existing planner (Wang and
Williams 2015b), scheduler (Shu, Effinger, and Williams
2005), and dispatcher (Levine and Williams 2014), which
have been developed by former and current labmates. The
purpose of this work is to augment each module’s algorithm
and interfaces to support chance-constrained scheduling.

Current work

The offline scheduling component has been developed and
published recently (Wang and Williams 2015a). This con-
stitutes the core algorithm, because the form in which it ex-
presses the scheduling policy determines how the planner
and dispatcher will interface to it. The algorithm is based
on the concept of risk allocation, which has been applied
in the contexts of path planning (Ono and Williams 2008)
and scheduling (Fang, Yu, and Williams 2014). In risk al-
location, a chance constraint’s risk bound gets allocated to
relevant portions of the plan, allowing one to bound the risk
locally and independently.

The novel contribution in this work is to make risk allo-
cation iterative, by discovering temporal conflicts that can
help improve the risk allocation. This makes the solution
process efficient because the problem size starts small and
grows gradually through subsequent iterations. In contrast,
prior art casts the problem as a single large optimization.
The runtime performance of our conflict-directed approach
is shown in Figure 2 to rival prior art by about an order of
magnitude.

In our approach, a master problem generates candidate
risk allocations, while a subproblem checks them for tem-
poral feasibility. The risk allocations map the original prob-
abilistic plan into a deterministic form called the simple tem-
poral network with uncertainty (STNU). Therefore, the sub-
problem may leverage efficient STNU controllability algo-
rithms (Vidal and Fargier 1999) to compute scheduling poli-
cies that are chance-constrained by the master’s risk alloca-
tion. These algorithms can discover temporal conflicts, too,
which are sent to the master for further consideration.

4262

Future timeline

The goal is to integrate the core scheduling algorithm into
a comprehensive planning and execution architecture over
the next three years. The first year will focus on interfacing
above with the generative planner. When a plan is passed to
the scheduler, the scheduler needs to know, for each chance
constraint, the relevant actions in the plan, in order to allo-
cate that chance constraint’s risk bound. This step requires a
semantic distinction between temporal requirements and ac-
tions’ durations, which the scheduler ignores, so the planner
must reason about it. When the scheduler deems a plan tem-
porally infeasible with respect to the chance constraints, it
must also inform the planner why, so such scenarios may be
avoided in further candidate plans. The reason is precisely
that the set of temporal conflicts learned by the subproblem
are incompatible with the provided chance constraints.

The second and third years will then address incremental
rescheduling with respect to the dispatcher and the planner.
When the original plan is modified—either through chance
constraints, temporal requirements, or action durations—
these incremental changes may be captured so that the
scheduler can make corresponding updates to the policy,
rather than compute it from scratch. When the dispatcher
observes actions’ durations that have exceeded their risk al-
location bounds, the scheduler should update its model of
past durations and propagate them within the prevailing pol-
icy. If the policy cannot be successfully updated, then the
scheduler invokes the planner’s incremental replanning in-
terface, which could modify the chance constraints or the
temporal requirements. These requirement changes would
need to be propagated through the scheduling policy too.

References

Fang, C.; Yu, P.; and Williams, B. C. 2014. Chance-
constrained probabilistic simple temporal problems. In
Twenty-Eighth AAAI Conference on Artificial Intelligence.

Levine, S. J., and Williams, B. C. 2014. Concurrent
plan recognition and execution for human-robot teams.
In Twenty-Fourth International Conference on Automated
Planning and Scheduling.

Ono, M., and Williams, B. C. 2008. Iterative risk allocation:
A new approach to robust model predictive control with a
joint chance constraint. In Decision and Control, 2008. CDC
2008. 47th IEEE Conference on, 3427-3432. 1EEE.

Shu, L.-h.; Effinger, R. T.; and Williams, B. C. 2005. En-
abling fast flexible planning through incremental temporal
reasoning with conflict extraction. In ICAPS, 252-261.

Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. Journal of Experimental & Theoretical Artificial
Intelligence 11(1):23-45.

Wang, A.J., and Williams, B. C. 2015a. Chance-constrained
scheduling via conflict-directed risk allocation. In Twenty-
Ninth AAAI Conference on Artificial Intelligence.

Wang, D., and Williams, B. C. 2015b. tburton: A divide
and conquer temporal planner. In Twenty-Ninth AAAI Con-
ference on Artificial Intelligence.

