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Introduction
Markov logic networks (Domingos and Lowd 2009)
(MLNs) combine the power of first-order logic and proba-
bilistic graphical models and as a result are ideally suited
for solving large, complex problems in application domains
(e.g., NLP, computer vision, the Web, etc.) that have both
rich relational structure and large amount of uncertainty.
However, inference in these rich, relational representations
is quite challenging. Specifically, MLNs are defined as a set
of weighted first-order logic formulas and given a set of con-
stants that represent objects in the domain of interest, they
represent a large Markov network which have a potential for
each grounding of each first-order formula. For example, the
simple formula ∀x, y, z Friends(x, y) ∧ LivesIn(y, z) ⇒
Safe(x, z) which says that if you have several friends in a
neighborhood z, you feel safe in the neighborhood z, yields
ten million formulas assuming that there are 1000 people
in the domain and 10 neighborhoods. Although inference
techniques for Markov networks (graphical models) have
come a long way and are able to tackle much larger prob-
lems than ever before, several inference tasks for complex
real-world MLNs are currently out of reach of even the
most advanced techniques. The aim of this thesis is to ad-
vance the state-of-the-art in MLN inference (Kok et al. 2006;
Niu et al. 2011), enabling it to solve much harder and more
complex tasks than is possible today. To this end, I will de-
velop techniques that exploit logical structures and symme-
tries that are either explicitly or implicitly encoded in the
MLN representation and demonstrate their usefulness by us-
ing them to solve hard real-world problems in the field of
natural language understanding.

Progress to Date
Effective Sampling in Relational Models
MLNs typically contain large number of logical dependen-
cies. In the presence of such dependencies, popular sampling
algorithms such as Gibbs sampling and importance sam-
pling do not converge (or converge very slowly). We pro-
posed two approaches to address this problem.

Our first approach called GiSS (Venugopal and Gogate
2013b) combines Gibbs sampling with an advanced im-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

portance sampling approach called SampleSearch (Gogate
and Dechter 2011), to jump across regions/clusters in
the sampling-space that are fractured due to determinis-
tic dependencies. Specifically, SampleSearch leverages SAT
solvers to sample the clusters while Gibbs sampling samples
within the clusters.

Our second approach, which is presented in (Venugopal
and Gogate 2013a), combines blocking and collapsing, two
widely used methods to improve the convergence of Gibbs
sampling, especially when the variables in the target dis-
tribution have logical dependencies and/or correlations. It
turns out that combining blocking and collapsing optimally
and tractably is a hard problem due to the complex interplay
between them. We formulated this as an optimization prob-
lem and showed that a solution to the optimization problem
yields an adaptive sampler that is superior in terms of accu-
racy and convergence to existing approaches.

Lifted Inference
Propositional inference algorithms treat MLNs as a regular
graphical model, i.e., they work on the completely ground
MLN, forgetting that it has relational structure. In contrast,
lifted inference algorithms (Poole 2003; de Salvo Braz 2007;
Gogate and Domingos 2011) exploit symmetries in the re-
lational representation and are far more scalable. In our
prior work, we lifted two widely used sampling algorithms,
Blocked Gibbs sampling (Jensen, Kjaerulff, and Kong 1995)
and importance sampling to the first-order level.

Lifted Blocked Gibbs (LBG) (Venugopal and Gogate
2012) blocks first-order atoms such that exact lifted infer-
ence within each block is tractable given all other blocks.
In contrast to blocking over propositional variables, it turns
out that increasing the block size over first-order atoms in
some cases allows us to exploit more symmetries, reducing
the complexity of Gibbs sampling. LBG works on a first-
order Gibbs cluster graph where each cluster/block passes a
lifted message (sufficient statistics) to its neighbors. Lifted
samples are generated by performing exact inference within
a cluster incorporating the messages from its neighbors. Our
evaluation demonstrated that LBG is far superior to propo-
sitional approaches in terms of scalability and convergence.

In lifted importance sampling (Gogate, Jha, and Venu-
gopal 2012), we draw lifted samples from a proposal dis-
tribution instead of sampling individual groundings. We
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showed that sampling from such a lifted space reduces the
variance of estimates derived from the samples and devel-
oped a scalable method for constructing the proposal that
applies several lifted inference rules approximately.

Improving Scalability through Approximate
Symmetries
A key problem with lifted inference methods is that they
tend to work well only when the MLN has specific symmet-
ric structure, which is often not the case in real-world appli-
cations. Moreover, evidence breaks symmetries, further di-
minishing their performance. As a result, in practice, for ar-
bitrary MLN/evidence structures, lifted inference is as scal-
able as propositional inference.

In our recent ECML paper (Venugopal and Gogate
2014b), we proposed a general, practical approach to scale-
up inference in MLNs without any restrictions on its struc-
ture or evidence. We utilized standard unsupervised machine
learning approaches such as KMeans to cluster objects based
on approximate symmetries and generated a “compressed”
MLN in which the objects are replaced by their cluster-
centers. To learn these approximate symmetries, we devel-
oped a distance measure between two distinct objects in a
domain based on the evidence presented to the MLNs.

In a related paper (Venugopal and Gogate 2014a), we
showed how to scale-up importance sampling for arbitrary
MLN/evidence structures and at the same time provided sev-
eral approximation guarantees. Specifically, we used lifted
Gibbs sampling to tractably sample from an informed pro-
posal that we constructed using the “compressed” MLN.
Further, we approximated the importance weight of each
sample tractably such that we obtain asymptotically unbi-
ased estimates.

Application: Event Extraction
An effective approach to event extraction in NLP is joint
inference, namely, methods that reason about relational de-
pendencies between events. In our recent paper (Venugopal
et al. 2014), we developed a joint inference based event ex-
traction system using MLNs. However, it turns out that the
key linguistic features that are useful in event extraction are
extremely high dimensional and therefore learning them ef-
fectively using MLNs requires an infeasible amount of data.
SVMs on the other hand, lack the ability to perform joint in-
ference but are very well-suited to handle high-dimensional
features. To get the best of both worlds, we learned high di-
mensional features using SVMs and encoded them as low-
dimensional soft-evidence in MLNs. Further, by exploit-
ing the MLN’s structural properties, we ensured the com-
putational feasibility of joint inference. On three BioNLP
datasets, our system was better or on par with the best sys-
tems and outperformed all previous MLN-based systems.

Future Work
A counting problem which we call #SATGround (count-
ing the satisfied groundings of a first-order formula given
assignments ground atoms) is arguably the main bottleneck

in several MLN inference and learning algorithms. Specif-
ically, variants of #SATGround manifest themselves in
algorithms such as Gibbs sampling, MaxWalkSAT, voted
perceptron, contrastive divergence and pseudo-likelihood
learning. Existing MLN inference/learning systems (Kok
et al. 2006; Niu et al. 2011) naively solve #SATGround
greatly diminishing their scalability. We want to connect
#SATGround to solution counting in graphical models and
leverage decades of advances in space/time efficient count-
ing strategies to develop a family of scalable MLN infer-
ence/learning algorithms.
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