
Explaining Answer Set Programming in Argumentative Terms

Claudia Schulz
claudia.schulz@imperial.ac.uk

Department of Computing
Imperial College London
London SW7 2AZ, UK

Introduction
Argumentation Theory and Answer Set Programming (ASP)
are two prominent theories in the field of knowledge rep-
resentation and non-monotonic reasoning, where Argumen-
tation Theory stands for a variety of approaches following
similar ideas. The main difference between Argumentation
Theory and ASP is that the former focusses on representing
knowledge and reasoning about it in a way that resembles
human reasoning, neglecting the efficiency of the reasoning
procedure, whereas the latter is concerned with the efficient
computation of solutions to a reasoning problem, resulting
in a less human-understandable process.

In recent years, ASP has been frequently applied for
the computation of reasoning problems represented in
argumentation-theoretical-terms and has been found an ef-
ficient method for determining solutions to problems in
Argumentation Theory (Egly, Gaggl, and Woltran 2010;
Wakaki and Nitta 2008). My research is concerned with the
opposite direction, i.e. with applying Argumentation Theory
to ASP in order to explain the solutions to an ASP reason-
ing problem in a more human-understandable way. Develop-
ing such an explanation method also involves to investigate
both the exact relationship between different approaches in
Argumentation Theory in order to find the most suitable one
for explanations and their connection with ASP, in particular
with respect to their semantics.

Background
In Answer Set Programming (ASP) (Gelfond and Lifschitz
1991) knowledge is represented as a logic program, that
is in terms of rules containing defeasible elements called
negation-as-failure (NAF) literals, which are assumed to be
true as long as the contrary cannot be proven. The seman-
tics of ASP are defined declaratively as a fixpoint, yielding
sets of accepted literals called answer sets, intuitively a set
of all non-contradictory conclusions drawn from the logic
program. Such an answer set does not provide any further
information as to why a literal is or is not part of it. This
can be a shortcoming, especially when using ASP in appli-
cations such as decision support systems or agent planning,

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where it is important to understand why a decision was made
or why a potential decision was not reached.

In Argumentation Theory two types of approaches can
be distinguished: Abstract approaches such as Abstract Ar-
gumentation (AA) (Dung 1995) represent knowledge in
terms of arguments along with a conflict relation between
them. Different semantics exist, which are all determined
based on the conflicts between arguments, yielding sets of
accepted arguments called extensions. On the other hand,
structured approaches such as Assumption-Based Argumen-
tation (ABA) (Bondarenko et al. 1997; Toni 2014) or AS-
PIC+ (Prakken 2010) represent knowledge in the form of
rules along with contrary relations between elements of the
rules. Especially the representation of knowledge in ABA,
where rules contain defeasible elements called assumptions,
is very close to the ASP representation as a logic program.
In structured approaches arguments can be constructed from
the rules and conflict relations between the arguments can be
inferred from the contrary relations. The semantics can then
be expressed in terms of extensions as in the case of abstract
approaches. Thus, an extension of a structured approach pro-
vides further information as to why an argument is part of it,
namely in terms of the conflict relation with other arguments
and the internal structure of the argument.

Past Work - ABA-Based Answer Set
Justification

Since reasoning problems in structured approaches of Argu-
mentation Theory are represented in a very similar way to
ASP problems, I investigated the relationship between the
solutions of a problem computed by ASP and the solutions
of the same problem determined using Argumentation The-
ory. It turned out that consistent answer sets in ASP cor-
respond to the stable extensions of both ASPIC+ (Schulz,
Sergot, and Toni 2013) and ABA (Schulz and Toni 2014),
in particular for every literal l in an answer set there exists
a (corresponding) argument with conclusion l in the corre-
sponding stable extension and vice versa. Based on this cor-
respondence, I developed a method called Argumentation-
Based Answer Set Justification (Schulz, Sergot, and Toni
2013) for explaining why a literal is or is not part of an an-
swer set in terms of the structure and relation information
of the corresponding argument in ASPIC+. This explana-

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

4253



tion approach was improved by using ABA instead of AS-
PIC+, yielding ABA-Based Answer Set Justification (Schulz
and Toni 2013; 2014).

In order to explain why a literal l is in an answer set using
ABA-Based Answer Set Justification, a corresponding argu-
ment A of l has to be found, i.e. an argument with conclusion
l in the corresponding stable extension. For this argument A
an Attack Tree is constructed that expresses which arguments
attack A, how these attacking arguments are further attacked
and so on. An Attack Tree provides a first explanation as to
why l is part of the answer set. However, the explanation
is in terms of arguments rather than literals, and experts in
ASP might prefer an explanation in terms of literals. Thus,
ABA-Based Answer Set Justification provides a second kind
of explanation, called LABAS Justification, in terms of sup-
port and conflict relations between literals, extracted from
the Attack Tree. The support relation between literals is ex-
tracted from the internal structure of arguments in the tree, in
particular the sets of assumptions and facts used to construct
an argument, whereas the conflict relation between literals is
derived from the attacks between arguments in the tree. Both
Attack Trees and LABAS Justifications can be displayed as
graphs and can also be used to explain why a literal is not
part of an answer set. The only existing approach for justify-
ing literals with respect to an answer set are off-line justifica-
tions (Pontelli, Son, and Elkhatib 2009), which are concep-
tually different from LABAS Justifications and which use
the well-founded model semantics for the construction.

Future Work - Justifying Inconsistency
ABA-Based Answer Set Justification can only be applied if
the logic program is consistent, i.e. if it has meaningful an-
swer sets. However, when formalising a reasoning problem
using ASP mistakes can easily be made, leading to an incon-
sistent logic program which has no answer sets or whose an-
swer set is not meaningful (i.e. the set of all literals occurring
in the logic program). In this case, there is a necessity to ex-
plain why the logic program is inconsistent. Different debug-
ging approaches for ASP have been developed which iden-
tify different types of inconsistencies (Gebser et al. 2008;
Oetsch, Pührer, and Tompits 2010; 2011). However, all of
them lack the ability to automatically identify the cause of
inconsistency if a logic program has no answer set because
a literal l depends (in an odd-length loop) on the NAF literal
not l. Identifying this as well as other causes of inconsis-
tency and to explain them is part of my ongoing research.

As a first step I am currently trying to identify which types
of mistakes a logic program contains by checking whether or
not it has an answer set and whether or not it has a 3-valued
stable model (Przymusinski 1991). These answer sets and
3-valued stable models can then be used to construct differ-
ent kinds of justifications for the different mistakes by us-
ing ABA. The justifications are based on my result (Schulz
and Toni 2015) that complete extensions in ABA corre-
spond to 3-valued stable models of a logic program and that
semi-stable extensions correspond to L-stable models (Eiter,
Leone, and Sacc 1997). So far, the ideas of how to construct
justifications for the different types of mistakes are prelimi-
nary. By January 2015 I expect to have fully worked out the

details of how to justify certain types of mistakes.
During the remaining time of my PhD, I am planning to

turn from theoretical investigations to more practical work.
On the one hand, I will implement the justification ap-
proaches for consistent and inconsistent logic programs. On
the other hand, I am planning to apply the justification meth-
ods to real data, in particular to medical or legal decision
making problems in order to judge its impact in applications.

References
Bondarenko, A.; Dung, P.; Kowalski, R.; and Toni, F. 1997.
An abstract, argumentation-theoretic approach to default
reasoning. AI 93(1-2):63 – 101.
Dung, P. M. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. AI 77(2):321–357.
Egly, U.; Gaggl, S. A.; and Woltran, S. 2010. Answer-set
programming encodings for argumentation frameworks. Ar-
gument & Computation 1(2):147–177.
Eiter, T.; Leone, N.; and Sacc, D. 1997. On the partial se-
mantics for disjunctive deductive databases. Annals of Math-
ematics and AI 19(1-2):59–96.
Gebser, M.; Pührer, J.; Schaub, T.; and Tompits, H. 2008.
A meta-programming technique for debugging answer-set
programs. In AAA’08I.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9:365–385.
Oetsch, J.; Pührer, J.; and Tompits, H. 2010. Catching the
ouroboros: On debugging non-ground answer-set programs.
TPLP 10(4-6):513–529.
Oetsch, J.; Pührer, J.; and Tompits, H. 2011. Stepping
through an answer-set program. In LPNMR’11.
Pontelli, E.; Son, T. C.; and Elkhatib, O. 2009. Justifica-
tions for logic programs under answer set semantics. TPLP
9(1):1–56.
Prakken, H. 2010. An abstract framework for argumenta-
tion with structured arguments. Argument & Computation
1(2):93–124.
Przymusinski, T. 1991. Stable semantics for disjunctive
programs. New Generation Computing.
Schulz, C., and Toni, F. 2013. Aba-based answer set justifi-
cation. TPLP, On-line Supplement 13(4-5).
Schulz, C., and Toni, F. 2014. Justifying answer sets using
argumentation. TPLP To appear.
Schulz, C., and Toni, F. 2015. Logic programming in
assumption-based argumentation revisited – semantics and
graphical representation. In AAAI’15.
Schulz, C.; Sergot, M.; and Toni, F. 2013. Argumentation-
based answer set justification. In Commonsense’13.
Toni, F. 2014. A tutorial on assumption-based argumenta-
tion. Argument & Computation 5(1):89–117.
Wakaki, T., and Nitta, K. 2008. Computing argumentation
semantics in answer set programming. In New Frontiers in
AI, JSAI’08.

4254




