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Summary

My dissertation research focuses on the application of hi-
erarchical learning and heuristics based on social signals to
solve challenges inherent to enabling human-robot collabo-
ration. I approach this problem through advancing the state
of the art in building hierarchical task representations, multi-
agent task-level planning, and learning assistive behaviors
from demonstration.

Introduction

The cages and physical barriers that once isolated robots
from contact with humans are being replaced with sensing
technology and algorithms. As such, collaborative robotics
is a fast-growing field of research spanning many impor-
tant real-world robotics and artificial intelligence challenges.
These include learning motor skills from demonstration,
learning hierarchical task models, multi-agent planning un-
der uncertainty, and intention recognition. My dissertation
research focuses on how to develop and apply hierarchi-
cal learning methods that leverage social signals as heuris-
tics to make collaboration between humans and robots safe,
productive, and efficient. In particular, my work focuses on
methods applicable to sequential motor tasks.

Other researchers that work within this domain have fo-
cused on effective multi-robot team planning (Dogar et al.
2014), efficiently solving single-agent sequential motor task
planning problems (Tomas Lozano-Perez 2014), and inves-
tigating theoretical properties of multi-agent problem rep-
resentations (Dibangoye et al. 2014). Prior related work
concentrating on human-robot interactions has focused on
building shared mental models amongst collaborators in
mixed human-robot teams (Nikolaidis and Shah 2013) and
increasing task knowledge from social interactions (Kollar
et al. 2013).

My research can be split into three inter-related com-
ponents: learning task structure, performing socially aware
multi-agent task planning, and learning supportive behaviors
for human-robot collaboration.
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Figure 1: Collaborative execution of a furniture construc-
tion task with a mixed human-robot team. In this situation,
the team is interacting in a “leader-assistant” paradigm, with
the robot performing supportive actions to increase the effi-
ciency of the human worker.

Learning Task Structure
Achieving collaboration between humans and robots is con-
tingent upon providing adequate solutions to many challeng-
ing problems (Hayes and Scassellati 2013), including state
estimation, goal inference, and action planning. Scalable,
efficient tools that offer solutions to many of these prob-
lems are available, but rely on the prior availability of a
rich, hierarchical task model. While some techniques exist
for building these models, they place heavy requirements on
the available information encoded in the task representation.

In many cases, especially those where the predominant
mode of task specification is user demonstration, the extrac-
tion and formalization of this information is exceptionally
difficult and can easily be intractible given the available sen-
sor data. Accordingly, one area of my research concerns de-
veloping robots that engage in active learning, participating
in the learning process by guiding their instructors to provide
more informative examples to extend structural task knowl-
edge (Hayes and Scassellati 2014a).

In work under review, I present an algorithm for con-
structing flexible hierarchical task networks, derived from
sub-goal ordering constraints within task networks (e.g.,
Semi-Markov Decision Processes), that are compatible with
demonstration-based skill acquisition techniques. This com-
patibility emerges from the minimal symbolic requirements
and insights levied upon the chosen goal and/or motor prim-
itive representation. The resulting hierarchical task structure
has many practical applications within human-robot collab-
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oration. In this work, I present a proof-of-concept goal infer-
ence solution, using hierarchical Hidden Markov Models di-
rectly constructed from the generated task hierarchy, achiev-
ing multi-resolution goal inference improving state estima-
tion accuracy while maintaining the computational benefits
expected of hierarchical approaches. This multi-level ab-
straction provides the opportunity for cross-task knowledge
transfer, allowing an agent to reuse higher level policies
from prior experiences in future scenarios.

Performing Collaborative Task-level Planning
Given a hierarchical task model, multi-agent, complex task
planning can be transformed into a problem of role assign-
ment. In work that is in progress, I integrate the interpre-
tation of human social signals into a multi-agent planner.
This is expected to improve the fluency of collaboration, as
people utilize a host of non-verbal social signals to commu-
nicate intent, needs, and preferences during human-human
collaboration that are typically ignored during robot interac-
tions.

Consequently, we take an approach congruous with
(Tomas Lozano-Perez 2014), framing the sequential motor
planning task as a coupled symbolic planning problem and
geometric constraint satisfaction problem. Our work makes
three novel contributions: we generalize this constraint-
based formulation to dynamic environments, incorporate so-
cial signals into the planner to influence goal prioritization
and sub-task assignment, and implement a hierarchical con-
straint approach to improve performance towards achieving
feasibility in live contexts.

Future work that I have planned includes extending the
fidelity and depth of social signal understanding to natu-
ral language processing. By using the autonomously con-
structed hierarchical task model and live execution contexts
as a grounding for language, verbal communication can be
leveraged as a reliable, real-time planning cue.

This work is extremely relevant to the future of collabora-
tive robotics platforms, as taking steps towards solving the
multi-agent planning problem at both the symbolic and ge-
ometric level is paramount for effective human-robot teams
in dynamic environments.

Learning Supportive Behaviors
The final component of my dissertation research involves the
acquisition of supportive motor primitive actions from task-
level planners or collaborator demonstration. Such actions
can be used in an assistive capacity throughout a team inter-
action (Hayes and Scassellati 2014b), following the “leader-
assistant” collaboration paradigm. In particular, this work
seeks to develop algorithms enabling a capable robot as-
sistant to learn and utilize supportive motor primitives in a
live task execution context, reducing the cognitive load or
dexterity requirements of a co-worker’s current task. These
supportive motor primitives can be classified as belonging
to five distinct categories: materials stabilization, materials
retrieval, collaborative object manipulation, awareness im-
provement, and task progression guidance. Each requires a

different basis of approach that can be shaped and special-
ized with instructor-provided demonstrations.

More formally, this research involves policy learning from
demonstration, where the agent is attempting to derive an
execution policy specific to a presented task context (sub-
goal). This can be conceptualized as learning a set of com-
plementary motor primitives that may be associated with ar-
bitrary options from a Semi-Markov Decision Process. In
practice, these motor primitives are encoded in a Partially
Observable Markov Decision Process associated with a state
(representing a task sub-goal) within a Hidden Markov
Model used to track task progress. An example of this (Fig-
ure 1) would be executing an assistive behavior (with mate-
rials stabilization action) that is associated with the “attach
left support” subgoal of a chair construction task.

This has immediate applicability to an array of task do-
mains, particularly those where a robot is incapable by itself
or where it would be unsafe or inefficient for a lone human.
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