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Abstract

This paper overviews our application of state-of-the-art auto-
mated planning algorithms to real mobile robots performing
an autonomous construction task, a domain in which robots
are prone to faults. We describe how embracing these faults
leads to better representations and smarter planning, allow-
ing robots with limited precision to avoid catastrophic failures
and succeed in intricate constructions.

Introduction
Along with recent algorithmic advances in planning comes
the expectation that bigger and more realistic problems can
and will be solved by autonomous agents. However, when
those agents take the form of robots interacting with the
physical world, results tend to fall short of expectations.
Faults inevitably enter into the robots’ behavior. For mo-
bile robots that are autonomously constructing a wall, build-
ing blocks are sometimes incorrectly grasped or imprecisely
placed (Wismer et al. 2012). And one may be tempted to
blame the faults on the robot’s hardware or its low-level con-
trollers, or to dismiss them as rare implications of imperfect
environmental conditions.

Here, we advocate a different perspective. Why not ac-
cept the robots as imperfect agents? Why not acknowledge
that, no matter the investment in expensive high-precision
sensors, regardless of the meticulous efforts spent in design-
ing robust controllers, when we put them into complex real-
world environments, robots can and will make mistakes. In
adopting this somewhat unconventional view of robots, it
becomes necessary to explore alternative approaches to the
classical application of automated planning.

Autonomous Wall Construction
Displayed in Figure 1 is the the marXbot (Bonani et al.
2010), a small mobile robot with a modular, reconfigurable
design, allowing it be optionally equipped with a variety
of different modules supporting various sensory and actu-
ational capabilities, some of which are highlighted. These
modules are seamlessly integrated by a CAN bus connected
to an ARMv6 board running Linux. The magnetic gripper
module is particularly useful for autonomous construction;
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Figure 1: A marXbot equipped for autonomous construction.

it is designed with three degrees of freedom (lift, rotation
around the robot, and tilt of the end-effector), and it has a
switchable magnetic device that allows the robot to grasp
and release building blocks to which we have affixed thin
metallic strips. In addition, it has two linear arrays of short-
range IR sensors mounted on the front and the bottom of the
end-effector, providing primitive vision of the object being
manipulated. By rotating the gripper to its side and mov-
ing forward with its treels, the marXbot can perform lateral
scans and align with whatever it is constructing.

Here, the task is to autonomously construct a wall (Fig-
ure 2) from a blueprint using small (6cm) cubes, This task is
made challenging by the fact that, in contrast to related work
(Wismer et al. 2012; Petersen, Nagpal, and Werfel 2011),
the construction blocks are not self aligning. Moreover, the
marXbot’s primary mode of viewing the wall is highly sen-
sitive to lighting conditions, is imprecise outside of a very
limited range, and is prone to error due to infrared disper-
sion. In light of these quirks, and despite our best efforts in
designing robust controllers, faults tend to arise during the
construction process. For instance, the robot fails to align
with the wall because one block is crooked, holes appear in
the wall due to an accumulation of misalignments, or a block
is placed in a way that disturbs other blocks on the wall. Our
objective is for robots to use planning to anticipate and cor-
rect such faults, thereby preventing catastrophic failures.
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Figure 2: A wall of height 3 cubes and length 3 cubes.

Hierarchical Representation for Robot Control
In support of a variety of different planning frameworks,
we have developed a hierarchical feature representation for
the autonomous construction problem, partially illustrated
in Figure 3. At the lowest levels are the raw sensor readings.
These serve as inputs to sensory processing routines running
on the microcontrollers, in turn forming feature abstractions
that feed into a hierarchy of subtasks. Moving up this hier-
archy, subtasks compose into sophisticated activities such as
picking up a block or building a wall. Subtasks may con-
tain their own (internal) features; external features encode
subtask dependencies and conditions over which the robot’s
objectives may be defined.
Flexible Models of Robot State. The advantage of such
a comprehensive representation is that it accommodates all
conceivable features that a robot might use to make its deci-
sions. State can be defined to include some or all of the fea-
tures from the hierarchy. And, although computation argu-
ments might favor traditional state encodings that only em-
ploy the highest-level features, there can be benefit to reach-
ing deeper into the hierarchy when reasoning about faults.
Modeling Faulty Actions. The rectangles in Fig. 3 serve
as actions. Motor control actions reside at the lower lev-
els, called by more abstract actions such as moving for-
ward (mf). Above, task-level actions comprise controllers
designed specifically to produce effects such as aligning
with a cube. Intended effects are not always produced, how-
ever. We find that, in order to move beyond such faults, it is
crucial for the robot to be able to infer that a fault has oc-
curred (e.g.. that the robot has not successfully aligned with
a cube) and what type of fault occurred (e.g., the robot over-
rotated such that it no longer sees the cube). We therefore
include such features. We also add task-level actions that the
robot can take to correct for faults (such as find-cube).

Planning to Build a Wall
Towards a robust wall-building controller, we have adopted
a planning methodology that overcomes faults by exploiting
our representation. We now highlight the key aspects:
• Given a high frequency of failures experienced with

classical planning (Wismer et al. 2012), our problem is
more aptly framed as one of FOND conditional planning
(Muise, Belle, and McIlraith 2014), wherein we associate
possible fault effects with each task-level action. Through
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Figure 3: A hierarchical representation for control.

experimentation on the real robot, we have incrementally
built up a library of faults, adding a new entry whenever
the robot’s plan encounters an unmodeled action effect.

• We additionally record how often faults occur, maintain-
ing probability distributions that can serve as a basis for
selecting among plan alternatives. To leverage these, the
robot solves a factored MDP (Hoey et al. 1999) derived
directly from the FOND planning model and fault library.
We mitigate the higher cost of MDP planning by decom-
posing the overall wall construction into a repeated exe-
cution of subplans for fetch-cube and add-cube-to-wall.

• Repeated subplan executions present the opportunity for
intermittent re-planning, as probabilities are updated and
as the fault model is successively improved. In effect, over
the course of a single scenario, the robot can learn to build
more efficiently by embracing the experience of its faults.

• Ongoing work strives to further improve planning models
by mining lower-level features that aid in fault prediction.
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