
Automatic Generation of Alternative Starting Positions for
Simple Traditional Board Games

Umair Z. Ahmed
IIT Kanpur

umair@iitk.ac.in

Krishnendu Chatterjee
IST Austria

krishnendu.chatterjee@ist.ac.at

Sumit Gulwani
Microsoft Research, Redmond

sumitg@microsoft.com

Abstract

Simple board games, like Tic-Tac-Toe and CONNECT-4,
play an important role not only in the development of mathe-
matical and logical skills, but also in the emotional and social
development. In this paper, we address the problem of gen-
erating targeted starting positions for such games. This can
facilitate new approaches for bringing novice players to mas-
tery, and also leads to discovery of interesting game variants.
We present an approach that generates starting states of vary-
ing hardness levels for player 1 in a two-player board game,
given rules of the board game, the desired number of steps re-
quired for player 1 to win, and the expertise levels of the two
players. Our approach leverages symbolic methods and itera-
tive simulation to efficiently search the extremely large state
space. We present experimental results that include discovery
of states of varying hardness levels for several simple grid-
based board games. The presence of such states for standard
game variants like 4 × 4 Tic-Tac-Toe opens up new games
to be played that have never been played as the default start
state is heavily biased.

1 Introduction
Board games involve placing pieces on a pre-marked surface
or board according to a set of rules by taking turns. Some
of these grid-based two-player games like Tic-Tac-Toe and
CONNECT-4 have a relatively simple set of rules, yet, they
are decently challenging for certain age groups. Such games
have been immensely popular across centuries.

Studies show that board games can significantly improve
a child’s mathematical ability (Ramani and Siegler 2008).
Such early differences in mathematical ability persist into
secondary education (Duncan et al. 2007). Board games also
assist with emotional and social development of a child.
They instill a competitive desire to master new skills in or-
der to win. Winning gives a boost to their self confidence.
Playing a game within a set of rules helps them to adhere
to discipline in life. They learn social etiquette; taking turns,
and being patient. Strategy is another huge component of
board games. Children learn cause and effect by observing
that decisions they make in the beginning of the game have
consequences later on.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Board games help elderly people stay mentally sharp
and less likely to develop Alzheimer (Gottlieb 2003). They
also hold a great importance in today’s digital society by
strengthening family ties. They bridge the gap between
young and old. They bolster the self-esteem of children who
take great pride and pleasure when an elder spends playing
time with them.

Significance of Generating Fresh Starting States
Board games are typically played with a default start state
(e.g., empty board in case of Tic-Tac-Toe and CONNECT-
4). However, there are following drawbacks in starting from
the default starting state, which we use to motivate our goals.
Customizing hardness level of a start state. The default
starting state for a certain game, while being unbiased, might
not be conducive for a novice player to enjoy and master the
game. Traditional board games in particular are easy to learn
but difficult to master because these games have intertwined
mechanics and force the player to consider far too many pos-
sibilities from the standard starting configurations. Players
can achieve mastery most effectively if complex mechanics
can be simplified and learned in isolation. Csikszentmiha-
lyi’s theory of flow (Csikszentmihalyi 1991) suggests that
we can keep the learner in a state of maximal engagement
by continually increasing difficulty to match the learner’s in-
creasing skill. Hence, we need an approach that allows gen-
erating start states of a specified hardness level. This capa-
bility can be used to generate a progression of starting states
of increasing hardness. This is similar to how students are
taught educational concepts like addition through a progres-
sion of increasingly hard problems (Andersen, Gulwani, and
Popovic 2013).
Leveling the playing field. The starting state for commonly
played games is mostly unbiased, and hence does not offer a
fair experience for players of different skills. The flexibility
to start from other starting states that is more biased towards
the weaker player can allow for leveling the playing field and
hence a more enjoyable game. Hence, we need an approach
that takes as input the expertise levels of players and uses
that information to associate a hardness level with a state.
Generating multiple fresh start states. A fixed start-
ing state might have a well-known conclusion. For exam-
ple, both players can enforce a draw in Tic-Tac-Toe while

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

745

the first player can enforce a win in CONNECT-4 (Allis
1988), starting from the default empty starting state. Play-
ers can memorize certain moves from a fixed starting state
and gain undue advantage. Hence, we need an approach
that generates multiple start states (of a specified hard-
ness level). This observation has also inspired the design
of Chess960 (Wikipedia 2014) (or Fischer Random Chess),
which is a variant of chess that employs the same board and
pieces as standard chess; however, the starting position of
the pieces on the players’ home ranks is randomized. The
random setup renders the prospect of obtaining an advan-
tage through memorization of opening lines impracticable,
compelling players to rely on their talent and creativity.
Customizing length of play. People sometimes might be
disinterested in playing a game if it takes too much time to
finish. However, selecting non-default starting positions al-
low the potential of a shorter game play. Certain interest-
ing situations might manifest only in states that are typically
not easily reachable from the start state, or require too many
steps. The flexibility to start from such states might lead to
more opportunities for practice of specific targeted strate-
gies. Thus, we need an approach that can take as input a
parameter for the number of steps that can lead to a win for
a given player.
Experimenting with game variants. While people might
be hesitant to learn a game with completely different new
rules, it is quite convenient to change the rules slightly. For
example, instead of allowing for straight-line matches in
each of row, column, or diagonal (RCD) in Tic-Tac-Toe or
CONNECT-4, one may restrict the matches to say only row
or diagonal (RD). However, the default starting state of a
new game may be heavily biased towards a player; as a
result that specific game might not have been popular. For
example, consider the game of Tic-Tac-Toe (3,4,4), where
the goal is to make a straight line of 3 pieces, but on a
4× 4 board. In this game, the person who plays first invari-
ably almost always wins even with a naive strategy. Hence,
such a game has never been popular. However, there can
be non-default unbiased states for such games and starting
from those states can make playing such games interesting.
Hence, we need an approach that is parameterized by the
rules of a game. This also has the advantage of experiment-
ing with new games or variants of existing games.

Problem Definition and Search Strategy
We address the problem of automatically generating inter-
esting starting states (i.e., states of desired hardness levels)
for a given two-player board game. Our approach takes as
input the rules of a board game (for game variants) and the
desired number of steps required for player 1 to win (for
controlling the length of play). It then generates multiple
starting states of varying hardness levels (in particular, easy,
medium, or hard) for player 1 for various expertise level
combinations of the two players. We formalize the explo-
ration of a game as a strategy tree and the expertise level of
a player as depth of the strategy tree. The hardness of a state
is defined w.r.t. the fraction of times player 1 will win, while
playing a strategy of depth k1 against an opponent who plays

a strategy of depth k2.
Our solution employs a novel combination of symbolic

methods and iterative simulation to efficiently search for
desired states. Symbolic methods are used to compute the
winning set for player 1. These methods work particularly
well for navigating a state space where the transition rela-
tion forms a sparse directed acyclic graph (DAG). Such is the
case for those board games in which a piece once placed on
the board doesn’t move, as in Tic-Tac-Toe and CONNECT-
4. Minimax simulation is used to identify the hardness of a
given winning state. Instead of randomly sampling the win-
ning set to identify a state of a certain hardness level, we
identify states of varying hardness levels in order of increas-
ing values of k1 and k2. The key observation is that hard
states are much fewer than easy states, and for a given k2,
interesting states for higher values of k1 are a subset of hard
states for smaller values of k1.

Contributions
• We introduce and study a novel aspect of graph games,

namely generation of starting states. In particular, we ad-
dress the problem of generating starting states of varying
hardness levels parameterized by look-ahead depth of the
strategies of the two players, the graph game description,
and the number of steps required for winning (§2).

• We present a novel search methodology for generating
desired initial states. It involves combination of symbolic
methods and iterative simulation to efficiently search a
huge state space (§3).

• We present experimental results that illustrate the effec-
tiveness of our search methodology (§5). We produce a
collection of initial states of varying hardness levels for
standard games as well as their variants (thereby discov-
ering some interesting variants of the standard games in
the first place).
While our search methodology applies to any graph game;

in our experiments we focus on generating starting states in
simple board games and their variants as opposed to games
with complicated rules.

Variants of traditional simple games are easier to adopt
compared to games with complicated rules, which are hard
to learn in the first place. The problem of automated gen-
eration of starting states should also be experimented for
complex games as future work; however, our experimental
results, which are focused on simple games, make a useful
contribution since they make a valuable novel discovery for
simple games which has not been studied in the past.

2 Problem Definition
2.1 Background on Graph Games
Graph games. An alternating graph game (for short, graph
game) G = ((V,E), (V1, V2)) consists of a finite graph G
with vertex set V , a partition of the vertex set into player-
1 vertices V1 and player-2 vertices V2, and edge set E ⊆
((V1×V2)∪(V2×V1)). The game is alternating in the sense
that the edges of player-1 vertices go to player-2 vertices and
vice-versa. The game is played as follows: the game starts at
a starting vertex v0; if the current vertex is a player-1 vertex,

746

then player 1 chooses an outgoing edge to move to a new
vertex; if the current vertex is a player-2 vertex, then player 2
does likewise. The winning condition is given by a target set
T1 ⊆ V for player 1; and similarly a target set T2 ⊆ V for
player 2. If the target set T1 is reached, then player 1 wins;
if T2 is reached, then player 2 wins; else we have a draw.
Examples. The class of graph games provides the mathe-
matical framework to study many board games like Chess
or Tic-Tac-Toe. For example, in Tic-Tac-Toe the vertices of
the graph represent the board configurations and whether it
is player 1 (×) or player 2 (◦) to play next. The set T1 (resp.
T2) is the set of board configurations with three consecutive
× (resp. ◦) in a row, column, or diagonal.
Classical game theory result. A classic result in the theory
of graph games (Gale and Stewart 1953) shows that for ev-
ery graph game with respective target sets for both players,
from every starting vertex one of the following three con-
ditions hold: (1) player 1 can enforce a win no matter how
player 2 plays (i.e., there is a strategy for player 1 to play
to ensure winning against all possible strategies of the oppo-
nent); (2) player 2 can enforce a win no matter how player 1
plays; or (3) both players can enforce a draw (player 1 can
enforce a draw no matter how player 2 plays, and player 2
can enforce a draw no matter how player 1 plays). The clas-
sic result (aka determinacy) rules out the following pos-
sibility: against every player-1 strategy, player 2 can win;
and against every player-2 strategy, player 1 can win. In the
mathematical study of game theory, the theoretical question
(which ignores the notion of hardness) is as follows: given
a designated starting vertex v0 determine whether case (1),
case (2), or case (3) holds. In other words, the mathematical
game theoretic question concerns the best possible way for a
player to play to ensure the best possible result. The set Wj

is defined as the set of vertices such that player 1 can ensure
to win within j-moves; and the winning set W 1 of vertices
of player 1 is the set

⋃
j≥0Wj where player 1 can win in

any number of moves. Analogously, we define W 2; and the
classical game theory question is stated as follows: given a
designated starting vertex v0 decide whether v0 belongs to
W 1 (player-1 winning set) or to W 2 (player-2 winning set)
or to V \ (W 1 ∪W 2) (both players draw ensuring set).

2.2 Formalization of Problem Definition
Notion of hardness. The game theoretic question ignores
two aspects. (1) The notion of hardness: It is concerned with
optimal strategies irrespective of hardness; and (2) the prob-
lem of generating different starting vertices. We are inter-
ested in generating starting vertices of different hardness.
The hardness notion we consider is the depth of the tree a
player explores, which is standard in artificial intelligence.
Tree exploration in graph games. Consider a player-1 ver-
tex u0. The search tree of depth 1 is as follows: we consider
a tree rooted at u0 such that children of u0 are the vertices
u1 of player 2 such that (u0, u1) ∈ E (there is an edge from
u0 to u1); and for every vertex u1 (that is a children of u0)
the children of u1 are the vertices u2 such that (u1, u2) ∈ E,
and they are the leaves of the tree. This gives us the search
tree of depth 1, which intuitively corresponds to exploring

one round of the play. The search tree of depth k + 1 is de-
fined inductively from the search tree of depth k, where we
first consider the search tree of depth 1 and replace every
leaf by a search tree of depth k. The depth of the search tree
denotes the depth of reasoning (analysis depth) of a player.
The search tree for player 2 is defined analogously.

Strategy from tree exploration. A depth-k strategy of a
player that does a tree exploration of depth k is obtained by
the classical min-max reasoning (or backward induction) on
the search tree. First, for every vertex v of the game we asso-
ciate a number (or reward) r(v) that denotes how favorable
is the vertex for a player to win. Given the current vertex
u, a depth-k strategy is defined as follows: first construct
the search tree of depth k and evaluate the tree bottom-up
with min-max reasoning. In other words, a leaf vertex v is
assigned reward r(v), where the reward function r is game
specific, and intuitively, r(v) denotes how “close” the ver-
tex v is to a winning vertex (see the following paragraph
for an example). For a vertex in the tree if it is a player-1
(resp. player-2) vertex we consider its reward as the maxi-
mum (resp. minimum) of its children, and finally, for vertex
u (the root) the strategy chooses uniformly at random among
its children with the highest reward. Note that the rewards
are assigned to vertices only based on the vertex itself with-
out any look-ahead, and the exploration is captured by the
classical min-max tree exploration.

Example description of tree exploration. Consider the ex-
ample of the Tic-Tac-Toe game. We first describe how to
assign reward r to board positions. Recall that in the game
of Tic-Tac-Toe the goal is to form a line of three consecu-
tive positions in a row, column, or diagonal. Given a board
position, (i) if it is winning for player 1, then it is assigned
reward +∞; (ii) else if it is winning for player 2, then it is as-
signed reward−∞; (iii) otherwise it is assigned the score as
follows: let n1 (resp. n2) be the number of two consecutive
positions of marks for player 1 (resp. player 2) that can be
extended to satisfy the winning condition. Then the reward
is the difference n1 − n2. Intuitively, the number n1 rep-
resents the number of possibilities for player 1 to win, and
n2 represents the number of possibilities for player 2, and
their difference represents how favorable the board position
is for player 1. If we consider the depth-1 strategy, then the
strategy chooses all board positions uniformly at random; a
depth-2 strategy chooses the center and considers all other
positions to be equal; a depth-3 strategy chooses the center
and also recognizes that the next best choice is one of the
four corners. This example is illustrated in the appendix of
full version available at (Ahmed, Chatterjee, and Gulwani
2015). As the depth increases, the strategies become more
intelligent for the game.

Outcomes and probabilities given strategies. Given a
starting vertex v, a depth-k1 strategy σ1 for player 1, and
depth-k2 strategy σ2 for player 2, let O be the set of possi-
ble outcomes, i.e., the set of possible plays given σ1 and σ2
from v, where a play is a sequence of vertices. The strategies
and the starting vertex define a probability distribution over
the set of outcomes which we denote as Prσ1,σ2

v , i.e., for a
play ρ in the set of outcomes O we have Prσ1,σ2

v (ρ) is the

747

probability of ρ given the strategies. Note that strategies are
randomized (because strategies choose distributions over the
children in the search tree exploration), and hence define a
probability distribution over the set of outcomes. This prob-
ability distribution is used to formally define the notion of
hardness we consider.
Problem definition. We consider several board games (such
as Tic-Tac-Toe, CONNECT-4, and variants), and our goal
is to obtain starting positions that are of different hardness
levels, where our hardness is characterized by strategies of
different depths. Precisely, consider a depth-k1 strategy for
player 1, and depth-k2 strategy for player 2, and a starting
vertex v ∈ Wj that is winning for player 1 within j-moves
and a winning move (i.e., j + 1 moves for player 1 and j
moves of player 2). We classify the starting vertex as fol-
lows: if player 1 wins (i) at least 2

3 times, then we call it easy
(E); (ii) at most 1

3 times, then we call it hard (H); (iii) other-
wise medium (M).

Definition 1 ((j, k1, k2)-Hardness). Consider a vertex v ∈
Wj that is winning for player 1 within j-moves. Let σ1 and
σ2 be a depth-k1 strategy for player 1 and depth-k2 strategy
for player 2, respectively. LetO1 ⊆ O be the set of plays that
belong to the set of outcomes and is winning for player 1.
Let Prσ1,σ2

v (O1) =
∑
ρ∈O1

Prσ1,σ2
v (ρ) be the probability of

the winning plays. The (k1, k2)-classification of v is: (i) if
Prσ1,σ2

v (O1) ≥ 2
3 , then v is easy (E); (ii) if Prσ1,σ2

v (O1) ≤
1
3 , then v is hard (H); (iii) otherwise it is medium (M).

Remark 1. In the definition above we chose the probabilities
1
3 and 2

3 , however, the probabilities in the definition could
be easily changed and experimented. We chose 1

3 and 2
3 to

divide the interval [0, 1] symmetrically in regions of E, M,
and H. Here we present results based on the above definition.

Our goal is to consider various games and identify vertices
of different categories (hard for depth-k1 vs. depth-k2, but
easy for depth-(k1+1) vs. depth-k2, for small k1 and k2).
Remark 2. In this work we consider classical min-max rea-
soning for tree exploration. A related notion is Monte Carlo
Tree Search (MCTS) which in general converges to min-
max exploration, but can take a long time. However, this
convergence is much faster in our setting, since we consider
simple games that have great symmetry, and explore only
small-depth strategies.

3 Search Strategy
3.1 Overall methodology
Generation of j-steps win set. Given a game graph G =
((V,E), (V1, V2)) along with target sets T1 and T2 for
player 1 and player 2, respectively, our first goal is to com-
pute the set of vertices Wj such that player 1 can win within
j-moves. For this we define two kinds of predecessor opera-
tors: one predecessor operator for player 1, which uses exis-
tential quantification over successors, and one for player 2,
which uses universal quantification over successors. Given
a set of vertices X , let EPre(X) (called existential pre-
decessor) denote the set of player-1 vertices that has an
edge to X; i.e., EPre(X) = {u ∈ V1 | there exists v ∈

X such that (u, v) ∈ E} (i.e., player 1 can ensure to reach
X from EPre(X) in one step); and APre(X) (called univer-
sal predecessor) denote the set of player-2 vertices that has
all its outgoing edges to X; i.e., APre(X) = {u ∈ V2 |
for all (u, v) ∈ E we have v ∈ X} (i.e., irrespective of the

choice of player 2 the set X is reached from APre(X) in
one step). The computation of the set Wj is defined induc-
tively: W0 = EPre(T1) (i.e., player 1 wins with the next
move to reach T1); and Wi+1 = EPre(APre(Wi)). In other
words, from Wi player 1 can win within i-moves, and from
APre(Wi) irrespective of the choice of player 2 the next ver-
tex is in Wi; and hence EPre(APre(Wi)) is the set of ver-
tices such that player 1 can win within (i+ 1)-moves.
Exploring vertices from Wj . The second step is to explore
vertices from Wj , for increasing values of j starting with
small values of j. Formally, we consider a vertex v from
Wj , consider a depth-k1 strategy for player 1 and a depth-k2
strategy for player 2, and play the game multiple times with
starting vertex v to find out the hardness level with respect to
(k1, k2)-strategies, i.e., the (k1, k2)-classification of v. Note
that from Wj player 1 can win within j-moves. Thus the
approach has the benefit that player 1 has a winning strategy
with a small number of moves and the game need not be
played for long.
Two key issues. There are two main computational issues
associated with the above approach in practice. The first is-
sue is related to the size of the state space (number of ver-
tices) of the game which makes enumerative approach to
analyze the game graph explicitly computationally infeasi-
ble. For example, the size of the state space of Tic-Tac-
Toe 4 × 4 game is 6,036,001; and a CONNECT-4 5 × 5
game is 69,763,700 (above 69 million). Thus any enumera-
tive method would not work for such large game graphs. The
second issue is related to exploring the vertices from Wj .
If Wj has a lot of witness vertices, then playing the game
multiple times from all of them will be computationally ex-
pensive. So we need an initial metric to guide the search of
vertices from Wj such that the metric computation is inex-
pensive. We solve the first issue with symbolic methods, and
the second one by iterative simulation.

3.2 Symbolic methods
We discuss the symbolic methods to analyze games with
large state spaces. The key idea is to represent the games
symbolically (not with explicit state space) using variables,
and operate on the symbolic representation. The key object
used in symbolic representation are called BDDs (boolean
decision diagrams) (Bryant 1986) that can efficiently rep-
resent a set of vertices using a DAG representation of
a boolean formula representing the set of vertices. The
tool CUDD supports many symbolic representation of state
space using BDDs and supports many operations on sym-
bolic representation on graphs using BDDs (Somenzi 1998).
Symbolic representation of vertices. In symbolic meth-
ods, a game graph is represented by a set of variables
x1, x2, . . . , xn such that each of them takes values from a
finite set (e.g., ×, ◦, and blank symbol); and each vertex of
the game represents a valuation assigned to the variables.

748

For example, the symbolic representation of the game of
Tic-Tac-Toe of board size 3 × 3 consists of ten variables
x1,1, x1,2, x1,3, x2,1 . . . , x3,3, x10, where the first nine vari-
ables xi,` denote the symbols in the board position (i, `) and
the symbol is either ×, ◦, or blank; and the last variable x10
denotes whether it is player 1 or player 2’s turn to play. Note
that the vertices of the game graph not only contains the in-
formation about the board configuration, but also additional
information such as the turn of the players. To illustrate how
a symbolic representation is efficient, consider the set of
all valuations to boolean variables y1, y2, . . . , yn where the
first variable is true, and the second variable is false: an ex-
plicit enumeration requires to list 2n−2 valuations, where as
a boolean formula representation is very succinct. Symbolic
representation with BDDs exploit such succinct representa-
tion for sets of vertices, and are used in many applications,
e.g. hardware verification (Bryant 1986).
Symbolic encoding of transition function. The transition
function (or the edges) are also encoded in a symbolic fash-
ion: instead of specifying every edge, the symbolic encoding
allows to write a program over the variables to specify the
transitions. The tool CUDD takes such a symbolic descrip-
tion written as a program over the variables and constructs a
BDD representation of the transition function. For example,
for Tic-Tac-Toe, a program to describe the symbolic tran-
sition is: the program maintains a set U of positions of the
board that are already marked; and at every point receives
an input (i, `) from the set {(a, b) | 1 ≤ a, b ≤ 3} \ U
of remaining board positions from the player of the current
turn; then adds (i, `) to the set U and sets the variable xi,` as
× or ◦ (depending on whether it was player 1 or player 2’s
turn). This gives the symbolic description of the transition
function.
Symbolic encoding of target vertices. The set of target ver-
tices is encoded as a boolean formula that represents a set of
vertices. For example, in Tic-Tac-Toe the set of target ver-
tices for player 1 is given by the following boolean formula:

∃i, `. 1 ≤ i, ` ≤ 3. (xi,` = × ∧ xi+1,` = × ∧ xi+2,` = ×)
∨(xi,` = × ∧ xi,`+1 = × ∧ xi,`+2 = ×)
∨(x2,2 = ×∧
((x1,1 = × ∧ x3,3 = ×) ∨(x3,1 = × ∧ x1,3 = ×)))
∧ Negation of above with ◦ to specify player 2 not winning

The above formula states that either there is some column
(xi,`, xi+1,` and xi+2,`) that is winning for player 1; or a row
(xi,`, xi,`+1 and xi,`+2) that is winning for player 1; or there
is a diagonal (x1,1, x2,2 and x3,3; or x3,1, x2,2 and x1,3) that
is winning for player 1; and player 2 has not won already. To
be precise, we also need to consider the BDD that represents
all valid board configurations (reachable vertices from the
empty board) and intersect the BDD of the above formula
with valid board configurations to obtain the target set T1.
Symbolic computation of Wj . The symbolic computation
of Wj is as follows: given the boolean formula for the tar-
get set T1 we obtain the BDD for T1; and the CUDD tool
supports both EPre and APre as basic operations using sym-
bolic functions; i.e., the tool takes as input a BDD represent-
ing a set X and supports the operation to return the BDD

for EPre(X) and APre(X). Thus we obtain the symbolic
computation of Wj .

3.3 Iterative simulation
We now describe a computationally inexpensive way to aid
sampling of vertices as candidates for starting positions of
a given hardness level. Given a starting vertex v, a depth-k1
strategy for player 1, and a depth-k2 strategy for player 2, we
need to consider the tree exploration of depth max{k1, k2}
to obtain the hardness of v. Hence if either of the strategy is
of high depth, then it is computationally expensive. Thus we
need a preliminary metric that can be computed relatively
easily for small values of k1 and k2 as a guide for vertices
to be explored in depth. We use a very simple metric for this
purpose. The hard vertices are rarer than the easy vertices,
and thus we rule out easy ones quickly using the following
approach:
If k1 is large: Given a strategy of depth k2, the set of hard
vertices for higher values of k1 are a subset of the hard ver-
tices for smaller values of k1. Thus we iteratively start with
smaller values and proceed to higher values of k1 only for
vertices that are already hard for smaller values of k1.
If k2 is large: Here we exploit the following intuition. Given
a strategy of depth k1, a vertex which is hard for high value
of k2 is likely to show indication of hardness already in small
values of k2. Hence we consider the following approach. For
the vertices inWj , we fix a depth-k1 strategy, and fix a small
depth strategy for the opponent and assign the vertex a num-
ber (called score) based on the performance of the depth-k1
strategy and the small depth strategy of the opponent. The
score indicates the fraction of games won by the depth-k1
strategy against the opponent strategy of small depth. The
vertices that have low score are then iteratively simulated
against depth-k2 strategies of the opponent to obtain vertices
of different hardness level. This heuristic serves as a simple
metric to explore vertices for large value of k2 starting with
small values of k2.

4 Framework for Board Games
We now consider the specific problem of board games.
We describe a framework to specify several variants of
two-player grid-based board games such as Tic-Tac-Toe,
CONNECT-4.
Different parameters. Our framework allows three differ-
ent parameters to generate variants of board games. (1) The
first parameter is the board size; e.g., the board size could be
3×3; or 4×4; or 4×5 and so on. (2) The second parameter
is the way to specify the winning condition, where a player
wins if a sequence of the player’s moves are in a line, which
could be along a row (R), a column (C), or the diagonal (D).
The user can specify any combination: (i) RCD (denoting
the player wins if the moves are in a line along a row, col-
umn or diagonal); (ii) RC (line must be along a row or col-
umn, but diagonal lines are not winning); (iii) RD (row or
diagonal, not column); or (iv) CD (column or diagonal, not
row). (3) The third parameter is related to the allowed moves
of the player. At any point the players can choose any avail-
able column (i.e., column with at least one empty position)

749

Table 1: CONNECT-3 & -4 against depth-3 strategy of oppo-
nent; (C-3 (resp. C-4) stands for CONNECT-3 (resp. CONNECT-
4)). The third column (j) denotes whether we explore from W2

or W3. The sixth column denotes sampling to select starting ver-
tices if |Wj | is large: “All” denotes that we explore all vertices in
Wj , and Rand denotes first sampling 5000 vertices randomly from
Wj and exploring them. The E, M, and H columns give the num-
ber of easy, medium, or hard vertices among the sampled vertices.
For each k1 = 1, 2, and 3 the sum of E, M, and H columns is
equal to the number of sampled vertices, and * denotes the number
of remaining vertices. Observe that |Wj | is small fraction of |V |
(this illustrates the significance of our use of symbolic methods as
opposed to the prohibitive explicit enumerative search). Also, ob-
serve that vertices labeled medium and hard are a small fraction of
the sampled vertices (this illustrates the significance of our efficient
iterative sampling strategy).

Game State j Win No. of Sampling k2 = 3

Space Cond States k1 = 1 k1 = 2 k1 = 3
|V | |Wj | E M H E M H E M H

C-3 4.1×104 2 RCD 110 All * 24 5 * 3 0 * 0 0
4x4 6.5×104 RC 200 All * 39 9 * 23 5 * 0 0

7.6×104 RD 418 All * 36 17 * 25 4 * 0 0
6.5×104 CD 277 All * 41 24 * 27 21 * 0 0

C-3 3 RCD, RC, CD 0 -
4x4 RD 18 All * 0 0 * 0 0 * 0 0
C-4 6.9×107 2 RCD 1.2×106 Rand * 184 215 * 141 129 * 0 0
5x5 8.7×107 RC 1.6×106 Rand * 81 239 * 70 186 * 0 0

1.0×108 RD 1.1×106 Rand * 106 285 * 151 82 * 0 0
9.5×107 CD 5.3×105 Rand * 364 173 * 209 96 * 0 0

C-4 3 RCD 2.8×105 Rand * 445 832 * 397 506 * 208 211
5x5 RC 7.7×105 Rand * 328 969 * 340 508 * 111 208

RD 8.0×105 Rand * 398 1206 * 464 538 * 179 111
CD 1.5×105 Rand * 146 73 * 171 110 * 120 72

but can be restricted according to the following parameters:
(i) Full gravity (once a player chooses a column, the move
is fixed to be the lowest available position in that column);
(ii) partial gravity-` (once a player chooses a column, the
move can be one of the bottom-` available positions in the
column); or (iii) no gravity (the player can choose any of the
available positions in the column). Observe that Tic-Tac-Toe
is given as (i) board size 3× 3; (ii) winning condition RCD;
and (iii) no-gravity; whereas in CONNECT-4 the winning
condition is still RCD but moves are with full gravity. But
in our framework there are many new variants of the pre-
vious classical games, e.g., Tic-Tac-Toe in a board of size
4×4 but diagonal lines are not winning (RC); and Bottom-2
(partial gravity-2) which is between Tic-Tac-Toe and CON-
NECT games in terms of moves allowed.

Features of our implementation. We have implemented
our approach and the main features that our implementation
supports are: (1) Generation of starting vertices of different
hardness level if they exist. (2) Playing against opponents
of different levels. We have implemented the depth-k2 strat-
egy of the opponent for k2 = 1, 2 and 3 (typically in all
the above games depth-3 strategies are quite intelligent, and
hence we do not explore larger values of k2). Thus, a learner
(beginner) can consider starting with board positions of var-
ious hardness levels and play with opponents of different
skill level and thus hone her ability to play the game and be
exposed to new combinatorial challenges of the game.

Table 2: Bottom-2 against depth-3 strategy of opponent.

Game State j Win No. of Sampling k2 = 3

Space Cond States k1 = 1 k1 = 2 k1 = 3
|V | |Wj | E M H E M H E M H

3x3 4.1×103 2 RCD 20 All * 5 0 * 1 0 * 0 0
4.3×103 RC 0 -
4.3×103 RD 9 All * 2 1 * 3 0 * 0 0
4.3×103 CD 1 All * 0 0 * 0 0 * 0 0

3x3 3 Any 0 -
4x4 1.8×106 2 RCD 193 All * 12 26 * 0 2 * 0 0

2.4×106 RC 2709 All * 586 297 * 98 249 * 0 0
2.3×106 RD 2132 All * 111 50 * 18 16 * 0 0
2.4×106 CD 1469 All * 123 53 * 25 8 * 0 0

4x4 3 RCD 0 -
RC 90 All * 37 31 * 0 0 * 0 0
RD 24 All * 1 2 * 0 0 * 0 0
CD 16 All * 6 4 * 1 0 * 0 0

5 Experimental Results
Our experiments reveal useful discoveries. The main aim
is to investigate the existence of interesting starting ver-
tices and their abundance in CONNECT, Tic-Tac-Toe, and
Bottom-2 games, for various combinations of expertise lev-
els and winning rules (RCD, RC, RD, and CD), for small
lengths of plays. Moreover, the computation time should be
reasonable.

Description of tables. The caption of Table 1 describes the
column headings used in Tables 1-3, which describe the ex-
perimental results. In our experiments, we explore vertices
fromW2 andW3 only as the setW4 is almost always empty.
The third column j = 2, 3 denotes whether we explore from
W2 or W3. For the classification of a board position, we run
the game between the depth-k1 vs the depth-k2 strategy 30
times. If player 1 wins (i) more than 2

3 times (20 times), then
it is identified as easy (E); (ii) less than 1

3 times (10 times),
then it is identified as hard (H); (iii) else as medium (M).

Experimental results for CONNECT games. Table 1
presents results for CONNECT-3 and CONNECT-4 games,
against depth-3 strategies of the opponent. An interesting
finding is that in CONNECT-4 games with board size 5×5,
for all winning conditions (RCD, RD, CD, RC), there are
easy, medium, and hard vertices, for k1=1,2, and 3, when
j=3. That is, even in much smaller board size (5×5 as com-
pared to the traditional 7×7) we discover interesting starting
positions for CONNECT-4 games and its simple variants.

Experimental results for Bottom-2 games. Table 2 shows
the results for Bottom-2 (partial gravity-2) against depth-3
strategies of the opponent. In contrast to CONNECT games,
medium or hard vertices do not exist for depth-3 strategies.

Experimental results for Tic-Tac-Toe games. The results
for Tic-Tac-Toe games are shown in Table 3. For Tic-Tac-
Toe games the strategy exploration is expensive (a tree of
depth-3 for 4× 4 requires exploration of 106 nodes). Hence
using the iterative simulation techniques we first assign a
score to all vertices and use exploration for bottom hundred
vertices (B100), i.e., hundred vertices with the least score
according to our iterative simulation metric. In contrast to

750

O X

X O X

X O

O X O

(a) Tic-Tac-Toe
RC, for k1 = 1

X

X

O

O X O

(b) Tic-Tac-Toe
CD, for k1 = 1

X

O X

O

(c) Bottom-2
RCD, for k1 = 2

X

X O

O O X

(d) Bottom-2
RC, for k1 = 2

O O

X X X

X O X

X X O X O

O O O X O

(e) CONNECT-4
RCD, for k1 = 2

O O

X X X

O O X

O O X

O X O X X

(f) CONNECT-4 RD,
for k1 = 3

Figure 1: Some “Hard” starting board positions generated by our tool for variety of games and different expertise level k1 of
player 1. The opponent expertise level k2 is 3. Player 1 (X) can win in 2 steps for games (a)-(e) and in 3 steps for game (f).

Table 3: Tic-Tac-Toe against depth-3 strategy of opponent. The
sampling B100 denotes exploring vertices with the least scored
hundred vertices according to iterative simulation score.

Game State j Win No. of Sampling k2 = 3

Space Cond States k1 = 1 k1 = 2 k1 = 3
|V | |Wj | E M H E M H E M H

3x3 5.4×103 2 RCD 36 All * 14 2 * 0 0 * 0 0
5.6×103 RC 0 -
5.6×103 RD,CD 1 All * 0 0 * 0 0 * 0 0

3x3 3 Any 0 -
4x4 6.0×106 2 RCD 128 All * 6 2 * 0 0 * 0 0

7.2×106 RC 3272 B100 * 47 22 * 0 0 * 0 0
7.2×106 RD,CD 4627 B100 * 3 2 * 0 0 * 0 0

4x4 3 RCD, RC 0 -
RD,CD 4 All * 0 0 * 0 0 * 0 0

CONNECT games, interesting vertices exist only for depth-
1 strategies.
Running times. The generation of Wj for j=2,3 took be-
tween 2-4 hours per game (this is a one-time computation
for each game). The time to classify a vertex as E, M, or
H for depth-3 strategies of both players, playing 30 times
from a board position on average varies between 12 sec. (for
CONNECT-4 games) to 25 min. for Tic-Tac-Toe games. De-
tails for depth-2 strategy of the opponent are given in the
appendix of (Ahmed, Chatterjee, and Gulwani 2015).
Important findings. Our first key finding is the existence
of vertices of different hardness levels in various games. We
observe that in Tic-Tac-Toe games only board positions that
are hard for k1 = 1 exist; in particular, and very interest-
ingly, they also exist in board of size 4×4. Since the default
start (the blank) vertex in 4× 4 Tic-Tac-Toe games is heav-
ily biased towards the player who starts first, they have been
believed to be uninteresting for ages, whereas our experi-
ments discover interesting starting vertices for them. With
the slight variation of allowable moves (Bottom-2), we ob-
tain board positions that are hard for k1 = 2. In Connect-4
we obtain vertices that are hard for k1 = 3 even with small
board size of 5× 5. For example, the default starting vertex
in Tic-Tac-Toe 3 × 3 and Connect-4 5 × 5 does not belong
to the winning set Wj ; in Tic-Tac-Toe 4×4 it belongs to the
winning set Wj and is Easy for all depth strategies.

The second key finding of our results is that the number of
interesting vertices is a negligible fraction of the huge state
space. For example, in Bottom-2 RCD games with board
size 4 × 4 the size of the state space is over 1.8 million,

but has only two positions that are hard for k1 = 2; and in
CONNECT-4 RCD games with board size 5 × 5 the state
space size is around sixty nine million, but has around two
hundred hard vertices for k1 = 3 and k2 = 3, when j = 3,
among the five thousand vertices sampled from Wj . Since
the size of Wj in this case is around 2.8 × 105, the total
number of hard vertices is around twelve thousand (among
sixty nine million state space size). Since the interesting po-
sitions are quite rare, a naive approach of randomly gener-
ating positions and measuring its hardness will be searching
for a needle in a haystack and be ineffective to generate in-
teresting positions. Thus there is need for a non-trivial search
strategy (§3), which our tool implements.

Example board positions. In Figure 1(a)-Figure 1(f) we
present examples of several board positions that are of dif-
ferent hardness level for strategies of certain depth. Also see
appendix of (Ahmed, Chatterjee, and Gulwani 2015) for an
illustration. In all the figures, player-X is the current player
against opponent of depth-3 strategy. All these board posi-
tions were discovered through our experiments.

6 Related Work
Tic-Tac-Toe and Connect-4. Tic-Tac-Toe has been gener-
alized to different board sizes, match length (Ma 2014), and
even polyomino matches (Harary 1977) to find variants that
are interesting from the default start state. Existing research
has focussed on establishing which of these games have a
winning strategy (Gardner 1979; 1983; Weisstein 2014). In
contrast, we show that even simpler variants can be inter-
esting if we start from certain specific states. Connect-4 re-
search has also focussed on establishing a winning strategy
from the default starting state (Allis 1988). In contrast, we
study how easy or difficult is to win from winning states
given expertise levels.

BDDs have been used to represent board games (Kiss-
mann and Edelkamp 2011) to perform MCTS run with Up-
per Confidence Bounds applied to Trees (UCT). In such a
usage, BDDs are instantiated to find the number of states
explored by a single agent. In our setting we have two play-
ers, and use BDDs to compute the winning set.

Level generation. Goldspinner (Williams-King et al. 2012)
is a level generation system for KGoldrunner, a puzzle game
with dynamic elements. It uses a genetic algorithm to gener-
ate candidate levels and simulation to evaluate dynamic as-
pects of the game. We also use simulation to evaluate the dy-

751

namic aspect, but use symbolic methods to generate candi-
date states; also, our system is parameterized by game rules.

Most other work has been restricted to games without op-
ponent and dynamic content such as Sudoku (Hunt, Pong,
and Tucker 2007; XUE et al. 2009). Smith et al. used
answer-set programming to generate levels for Refraction
that adhered to pre-specified constraints written in first-order
logic (Smith et al. 2012). Similar approaches have also been
used to generate levels for platform games (Smith et al.
2009). In these approaches, designers must explicitly spec-
ify constraints on the generated content, e.g., the tree needs
to be near the rock and the river needs to be near the tree.
In contrast, our system takes as input rules of the game and
does not require any further help from the designer. (Ander-
sen, Gulwani, and Popovic 2013) also uses a similar model
and applies symbolic methods (namely, test input generation
techniques) to generate various levels for DragonBox, which
became the most purchased game in Norway on the Apple
App Store (Liu 2012). In contrast, we use symbolic methods
for generating start states, and use simulation for estimating
their hardness level.

Problem generation. Automatic generation of fresh prob-
lems can be a key capability in intelligent tutoring sys-
tems (Gulwani 2014). The technique for generation of alge-
braic proof problems (Singh, Gulwani, and Rajamani 2012)
uses probabilistic testing to guarantee the validity of a gen-
erated problem candidate (from abstraction of the original
problem) on random inputs, but there is no guarantee of the
hardness level. Our simulation can be linked to this prob-
abilistic testing approach, but it is used to guarantee hard-
ness level; whereas validity is guaranteed by symbolic meth-
ods. The technique for generation of natural deduction prob-
lems (Ahmed, Gulwani, and Karkare 2013) and (Alvin et
al. 2014) involves a backward existential search over the
state space of all possible proofs for all possible facts to
dish out problems with a specific hardness level. In con-
trast, we employ a two-phased strategy of backward and for-
ward search; backward search is necessary to identify win-
ning states, while forward search ensures hardness levels.
Furthermore, our state transitions alternate between differ-
ent players, thereby necessitating alternate universal vs. ex-
istential search over transitions.

Interesting starting states that require few steps to play
and win are often published in newspapers for sophisticated
games like Chess and Bridge. These are usually obtained
from database of past games. In contrast, we show how to
automatically generate such states, albeit for simpler games.
Acknowledgments. The research was partly supported by Austrian
Science Fund (FWF) Grant No P23499- N23, FWF NFN Grant No
S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and
Microsoft faculty fellows award.

References
Ahmed, U. Z.; Chatterjee, K.; and Gulwani, S. 2015. Automatic
Generation of Alternative Starting Positions for Simple Traditional
Board Games. CoRR abs/1411.4023.
Ahmed, U. Z.; Gulwani, S.; and Karkare, A. 2013. Automati-
cally generating problems and solutions for natural deduction. In

Proceedings of the Twenty-Third international joint conference on
Artificial Intelligence, 1968–1975. AAAI Press.
Allis, V. 1988. A knowledge-based approach of connect-four. Vrije
Universiteit, Subfaculteit Wiskunde en Informatica.
Alvin, C.; Gulwani, S.; Majumdar, R.; and Mukhopadhyay, S.
2014. Synthesis of geometry proof problems. In AAAI.
Andersen, E.; Gulwani, S.; and Popovic, Z. 2013. A trace-based
framework for analyzing and synthesizing educational progres-
sions. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, 773–782. ACM.
Bryant, R. 1986. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers C-35(8):677–691.
Csikszentmihalyi, M. 1991. Flow: The Psychology of Optimal
Experience, volume 41. New York, USA: Harper & Row Pub. Inc.
Duncan, G.; Dowsett, C.; Claessens, A.; Magnuson, K.; Huston,
A.; Klebanov, P.; Pagani, L.; Feinstein, L.; Engel, M.; Brooks-
Gunn, J.; et al. 2007. School readiness and later achievement.
Developmental psychology 43(6):1428.
Gale, D., and Stewart, F. M. 1953. Infinite games with perfect
information. Annals of Math. Studies No. 28:245–266.
Gardner, M. 1979. Mathematical games in which players of tick-
tacktoe are taught to hunt bigger game. Scientific American 18–26.
Gardner, M. 1983. Tic-tac-toe games. In Wheels, life, and other
mathematical amusements, volume 86. WH Freeman. chapter 9.
Gottlieb, S. 2003. Mental activity may help prevent dementia. BMJ
326(7404):1418.
Gulwani, S. 2014. Example-based learning in computer-aided stem
education. Commun. ACM.
Harary, F. 1977. Generalized tic-tac-toe.
Hunt, M.; Pong, C.; and Tucker, G. 2007. Difficulty-driven sudoku
puzzle generation. UMAPJournal 343.
Kissmann, P., and Edelkamp, S. 2011. Gamer, a general game
playing agent. KI-Künstliche Intelligenz 25(1):49–52.
Liu, J. 2012. Dragonbox: Algebra beats angry birds. Wired.
Ma, W. J. 2014. Generalized tic-tac-toe. [Online; accessed 9-
September-2014].
Ramani, G., and Siegler, R. 2008. Promoting broad and sta-
ble improvements in low-income children’s numerical knowl-
edge through playing number board games. Child development
79(2):375–394.
Singh, R.; Gulwani, S.; and Rajamani, S. 2012. Automatically
generating algebra problems. In AAAI.
Smith, G.; Treanor, M.; Whitehead, J.; and Mateas, M. 2009.
Rhythm-based level generation for 2D platformers. In FDG.
Smith, A. M.; Andersen, E.; Mateas, M.; and Popović, Z. 2012.
A case study of expressively constrainable level design automation
tools for a puzzle game. In FDG.
Somenzi, F. 1998. Cudd: Cu decision diagram package release.
University of Colorado at Boulder.
Weisstein, E. W. 2014. Tic-tac-toe. From MathWorld–A Wolfram
Web Resource; [Online; accessed 9-September-2014].
Wikipedia. 2014. Chess960 – wikipedia, the free encyclopedia.
[Online; accessed 9-September-2014].
Williams-King, D.; Denzinger, J.; Aycock, J.; and Stephenson, B.
2012. The gold standard: Automatically generating puzzle game
levels. In AIIDE.
XUE, Y.; JIANG, B.; LI, Y.; YAN, G.; and SUN, H. 2009. Sudoku
puzzles generating: From easy to evil. Mathematics in Practice
and Theory 21:000.

752

