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Abstract

We put forward a new model of congestion games where
agents have uncertainty over the routes used by other agents.
We take a non-probabilistic approach, assuming that each
agent knows that the number of agents using an edge is within
a certain range. Given this uncertainty, we model agents who
either minimize their worst-case cost (WCC) or their worst-
case regret (WCR), and study implications on equilibrium
existence, convergence through adaptive play, and efficiency.
Under the WCC behavior the game reduces to a modified con-
gestion game, and welfare improves when agents have mod-
erate uncertainty. Under WCR behavior the game is not, in
general, a congestion game, but we show convergence and
efficiency bounds for a simple class of games.

Introduction
Congestion games (Rosenthal 1973) provide a good abstrac-
tion for a wide spectrum of scenarios where self-interested
agents contest for resources, and can be conveniently ana-
lyzed using game-theoretic tools.

Recently, more complex models of congestion games
have been suggested, taking into account the incomplete
information agents may have when making a decision
(e.g. Ashlagi et al. (2009) and Piliouras et al. (2013); see Re-
lated Work). Uncertainty may stem from multiple sources,
including uncertainty about the state of nature– and thus
the cost of resources –or about other agents’ actions. We
can imagine commuters choosing routes home from work
and facing uncertainty about road conditions (e.g., weather,
roadworks) as well as about the routes selected by others.

Rather than model uncertainty through a distributional
model, we adopt a non-probabilistic approach of strict
uncertainty. Indeed, extensive experimental and empirical
studies have demonstrated that people have difficulties in
representing probabilities, and often adopt other heuristics
in place of probabilistic reasoning (Tversky and Kahne-
man 1974; Slovic, Fischhoff, and Lichtenstein 1980). With
strict uncertainty, each player faces a set of possible states,
where the cost of each action depends on the (unknown)
actual state, and decisions take into account risk attitudes
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and other biases, often applying heuristics rather than opti-
mization. Such alternative approaches to decision making in
general, and to uncertainty in particular, have deep roots in
the AI literature, largely due to the works of Herbert Simon
on bounded rationality and procedural rationality (Simon
1957; 1987).

Having adopted a non-probabilistic approach, we must
make two crucial modeling decisions. First, we must decide
how each agent acts in the face of strict uncertainty. The
simplest behavior follows a minimax approach (Wald 1939;
Simon 1957), and assumes that the decision maker is trying
to minimize her worst-case cost (WCC). Another approach
seeks to minimize the worst-case regret (WCR) of the deci-
sion maker, which goes back to Savage (1951), and has been
also applied to games (Hyafil and Boutilier 2004). Both cost
measures are worst-case approaches, and suitable as an ab-
straction for the behavior of a rational but risk-averse agent.

Second, we need to determine which states are consid-
ered possible by the agents. To construct the set of possible
states, we adopt the recent model of distance-based uncer-
tainty (Meir, Lev, and Rosenschein 2014). All agents share
the same belief about the current “reference state” of the net-
work (i.e., the load on every edge in a routing game), which
may be available for example from an external source such
as traffic reports, or from an agent’s previous experience.
However agents vary in the accuracy they attribute to the
reference state. Each agent i has an uncertainty parameter,
ri, which reflects a belief that the actual load is within some
distance ri of the reference load. A higher ri may reflect ei-
ther that an agent is less informed about the true congestion,
or, alternatively, that she is more risk-averse.

From each heuristic (WCC or WCR) we can derive a nat-
ural equilibrium concept. Intuitively, every action profile in-
duces a reference state s, and we consider the heuristic best
response of every agent to the set of possible states around s.
State s is an equilibrium if every agent minimizes her worst
case cost (or regret) by keeping her current action.

As a simple example, if in some profile 100 players are
using a resource, then agent i believes the actual load to be
anywhere between 100/ri and 100ri. If ri = 1 for all agents,
we get the standard complete information model as a special
case: both minimax cost and minimax regret collapse to sim-
ple cost minimization, and our equilibrium notion coincides
with Nash equilibrium.
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Our contribution. We study equilibrium behavior in
nonatomic congestion games, under our strict, distance-
based model of uncertainty. For simplicity and concrete-
ness, we focus our presentation on routing games, where
resources are edges in a graph, and valid strategies are
paths from source to target.1With worst-case cost players,
we show that the game reduces to a modified, complete-
information routing game with player-specific costs. Fur-
ther, if all agents have the same uncertainty level we get a
potential game.

We are interested in how equilibrium quality (measured
by the price of anarchy (Roughgarden and Tardos 2004))
is affected by introducing uncertainty. For routing games
with affine cost functions, we show that the price of an-
archy (PoA) under uncertainty decreases gradually from 4

3
(without uncertainty) to 1, and then climbs back up, propor-
tionally to the amount of uncertainty. We also show that in
a population of agents with different uncertainty levels, the
PoA is bounded by the PoA of the worst possible uncertainty
level.

With worst-case regret players the induced game is no
longer a congestion game. Yet, we show that for a sim-
ple class of games a weak potential function exists, and
thus equilibrium existence and convergence results are avail-
able. We give some preliminary results on PoA bounds with
worst-case regret players. Due to space constraints most of
our proofs are omitted, and are available in the full version
of this paper.2

Preliminaries
Nonatomic routing games. Following Roughgar-
den (2003) and Roughgarden and Tardos (2004),
a nonatomic routing game (NRG) is a tuple
G = 〈G, c,m,u,v,n〉, where

• G = (V,E) is a directed graph;

• c = (ce)e∈E , ce(t) ≥ 0 is the cost incurred when t agents
use edge e;

• m ∈ N is the number of agent types;

• u,v ∈ V m, where (ui, vi) are the source and target nodes
of type i agents;

• n ∈ Rm
+ , where ni ∈ R+ is the total mass of type i agents.

n =
∑

i≤m ni is the total mass of agents.

We denote by Ai ⊆ 2E the set of all directed paths be-
tween the pair of nodes (ui, vi) in the graph. Thus Ai is the
the set of actions available to agents of type i. We denote
by A = ∪iAi the set of all directed source-target paths. We
assume that the costs ce are non-decreasing, continuous and
differentiable.

A NRG is symmetric if all agents have the same source
and target, i.e., Ai = A for all i. A symmetric NRG is a
resource selection game (RSG) if G is a graph of parallel
links. That is, if A = E and the action of every agent is to
select a single resource (edge).

1Any congestion game is equivalent to a routing game.
2http://arxiv.org/abs/1411.4943

Game states. A state (or action profile) is a vector s ∈
R|A|×m+ , where sf,i is the amount of agents of type i that
use path f ∈ Ai. In a valid state,

∑
f∈Ai

sf,i = ni. The
total traffic on path f ∈ A is denoted by sf =

∑m
i=1 sf,i.

The load state s ∈ R|E|+ is a vector of aggregated edge loads
derived from state s, where se =

∑
f :e∈f sf . This is the total

traffic on edge e ∈ E via all paths going through e. We also
allow load states that cannot be derived from a valid state.

Note that all the information relevant to the costs in state
s is specified in the load state s: all agents using a particular
edge e suffer a cost of ce(se) in state s, and the cost of using
a path f ∈ Ai is c(f, s) =

∑
e∈f ce(se). Thus except in

settings where agents’ types or exact strategies matter, we
may use s and s interchangeably. The social cost in a profile
s is

SC(s) =
m∑
i=1

∑
f∈Ai

sf,ic(f, s) =
∑
e∈E

sece(se).

The second equality is since we multiply the cost c(t) by the
mass t (“number of agents”) who experience it.

Equilibrium and potential. Without uncertainty, a state s
for an NRG is an equilibrium if for every agent type i and
actions f1, f2 ∈ Ai with si,f1 > 0, c(f1, s) ≤ c(f2, s). That
is, if no agent can switch to a path with a lower cost. This is
the analogy of a Nash equilibrium in nonatomic games.

In nonatomic games, φ(s) is a potential function, if any
(infinitesimally small) rational move, i.e., a move that de-
creases the cost of the moving agents, also lowers the poten-
tial. φ(s) is a weak potential function if at any state there is
at least one such move (although some rational moves may
increase φ). Any game with a potential function is acyclic,
in the sense that such “infinitesimal best responses” of self
interested agents are guaranteed to converge to a local mini-
mum of the potential function (and an equilibrium). A game
with a weak potential may have cycles, but from any state
there is some path of rational moves that leads to an equilib-
rium.

It is well known that NRGs have a potential function,
which is defined as (we omit the argument G when it is clear
from the context): φ(s) = φ(G, s) =

∑
e∈E

∫ se
t=0

ce(t)dt.
Furthermore, in a NRG every local minimum of the poten-
tial is also a global minimum; all equilibria have the same
social cost; and in every equilibrium all agents of type i
experience the same cost (Aashtiani and Magnanti 1981;
Milchtaich 2000; Roughgarden and Tardos 2004).

Affine routing games. In an affine NRG, all cost functions
take the form of a linear function. That is, ce(t) = aet + be
for some constants ae, be ≥ 0. In an affine game G, the social
cost can be written as SC(G, s) =

∑
e∈E ae(se)

2 + bese;
and the potential as φ(G, s) =

∑
e∈E

1
2ae(se)

2 + bese.
Pigou’s example is the special case of an affine RSG with
two resources, where c1(t) = 1 and c2(t) is defined with
b2 = 0. We will use variations of this example through-
out the paper, and denote by GP (a2, n) the instance where
c2(t) = a2t, and there is a mass of n agents.
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Potential and social cost. The social cost of every NRG
can be written as the potential of a suitably modified game.
For this, let Ĝ be a modification of G, where we replace every
ce(t) with ĉe(t) = ce(t)+tc

′
e(t). Then, φ(Ĝ, s) = SC(G, s)

for all s (Roughgarden 2007). For an affine game, the mod-
ified cost function is ĉe(t) = 2aet + be; and φ(Ĝ, s) =∑

e∈E ae(se)
2 + bese = SC(G, s).

The price of anarchy. Let EQ(G) be the set of equilib-
ria in game G. The price of anarchy (PoA) of a game is
the ratio between the social cost in the worst equilibrium
in EQ(G) and the optimal social cost. Since all equilibria
have the same cost, we can write PoA(G) = SC(s∗)

SC(OPT ) ,
where s∗ is an arbitrary equilibrium of G. In affine NRGs,
it‘ is known that PoA(G) ≤ 4

3 , and this bound is attained by
GP (1, 1) (Roughgarden and Tardos 2004).

Introducing uncertainty
In our strict uncertainty model, there is an underlying base
game G, which is a NRG. However given an action profile
(state) s, each agent believes that there is some set of pos-
sible states, and selects her action based on worst-case as-
sumptions.

To define this set of possible states, we augment the de-
scription of every agent type with an uncertainty parame-
ter ri ≥ 1, and denote r = (ri)i≤m. The special case
where all ri = r is called homogeneous uncertainty. We
adopt distance-based uncertainty, so that in a given state s
(where the actual load on edge e is se), a type i agent be-
lieves that the load is anywhere in the range [se/ri, se · ri].
Consequently, the agent believes that the cost she will suffer
from using resource e is between ce(se/ri) and ce(se · ri).
Agents apply this reasoning separately to each resource, thus
the load state s′ is considered possible in load state s by a
type i agent, if s′e ∈ [se/ri, se · ri] for all e ∈ E.3

In other words, consider the distance metric d(s, s′) =

min{x ≥ 0 : ∀e ∈ E, se ≥ s′e
1+x ∧ s

′
e ≥ se

1+x}. Then

S(s, ri) = S(s, ri) = {s′ ∈ R|E|+ : d(s, s′) ≤ ri − 1} is the
set of load states that a type i agent believes possible given
s. Note that s′ may not correspond to any actual state s′, e.g.
the total load on all paths may not sum up to total mass n,
as an agent may not know exactly how many other agents
participate.

Behavior and equilibria
Worst-case cost. Under the WCC model, each agent cares
about the worst possible cost of each action. Thus for an
agent of type i, the effective cost of choosing path (ac-
tion) f ∈ Ai in state s is c∗i (f, s) = max{c(f, s′) : s′ ∈
S(s, ri)}.

3In the language of modal logic, we say that the s′ is accessible
from s if the above holds. Our accessibility relation is symmetric,
but non-transitive. While transitivity is a well accepted axiom in
epistemic models (Aumann 1999), we argue that it does not make
sense when there is a natural metric over states.

5

2

c1(s1)

c2(s2)

c∗1(s1)

c∗2(s2)

c ∗∗(e
1 ,s)

c ∗∗(e
2 ,s)

Figure 1: Two resources with base costs c1(s1) = 5 +
s1, c2(s2) = 2 + s2. The figure shows the true costs for
s1 = 3, s2 = 5. The dotted brackets show the range of pos-
sible costs for r = 2, where the upper bracket is the WCC
cost. The dashed lines are the WCR costs. We can see that
the better resource under WCC is e1, but e2 is better under
WCR, as c∗∗(e2, s) = 12− 6.5 = 11− 4.5 = c∗∗(e1, s).

Every NRG G and uncertainty vector r induce a new
nonatomic game G∗(r), where the cost functions are c∗i . That
is, a type i agent playing so as to minimize her worst-case
cost in G, behaves exactly like a “rational” type i agent (min-
imizing exact cost) in G∗(r). A priori, G∗(r) is not a NRG,
but it has a very similar structure. For every action f ∈ Ai,
according to the WCC model,

c∗i (f, s) =
∑
e∈f

max{ce(s′e) : s′ ∈ S(s, ri)} =
∑
e∈f

ce(rise).

Since ce(rit) can be written as a player-specific cost func-
tion, c∗i,e(t), we have that G∗(r) is a NRG with player-
specific costs (Milchtaich 2005), where each player type
can adopt a different cost function; e.g., for affine games
c∗i,e(t) = riaet+ be.

Worst-case regret. We get a different modified game,
G∗∗(r), under the WCR model. The regret (for a type
i agent) of playing action f in state s′ is defined as
REGi(f, s

′) = c(f, s′)−minf ′∈Ai c(f
′, s′). Given this, the

cost c∗∗i (f, s) in the modified game, which is the worst-case
regret a type i agent may suffer for playing f , is defined as:

c∗∗i (f, s) = max{REGi(f, s
′) : s′ ∈ S(s, ri)}.

This cost function c∗∗i (f, s) does not have a natural de-
composition to edge-wise costs, since regret depends also on
the load on unused edges. An example of WCC and WCR
costs in a simple 2-resource RSG appear in Figure 1.

988



Equilibrium. A WCC equilibrium is a state where no
agent can improve her worst-case cost w.r.t. her uncertainty
level. By definition of the cost function c∗, the WCC equilib-
ria of G for uncertainty values r are exactly the Nash equilib-
ria of G∗(r). Similarly , a WCR equilibrium is a Nash equi-
librium of G∗∗(r). Since both of G∗(r) and G∗∗(r) are spe-
cial cases of nonatomic games, existence of equilibria fol-
lows from general existence theorems (Schmeidler 1973).
However the other properties of NRG, such as the existence
of a potential function, and bounds on the PoA, are not guar-
anteed.

Routing Games with WCC players
Equilibrium and convergence. For the special case of
ri = r for all i ≤ m, it is not hard to see that G∗(r) is a
non player-specific NRG. This is since c∗e,i(s) = ce(r ·se) is
only a function of se. We denote this modified cost function
by cre(t). It follows that G∗(r) is a potential game, where
φ(G∗(r), s) =

∑
e

∫ se
t=0

cre(t)dt. Thus G∗(r) is acyclic, the
equilibria of G∗(r) are the minima of φ(G∗(r), s), and all
equilibria have the same social cost.

The more interesting question is what properties of NRG
are maintained when agents have different uncertainty pa-
rameters. We have already noted that in G∗(r) there is at
least one equilibrium. Player-specific RSGs are known to
have a weak potential (Milchtaich 1996), but this does not
preclude cycles. Indeed, we show that a cycle may occur
even in an RSG where agents only differ in their uncertainty
level.

Proposition 1. There is an RSG G with 3 resources, and a
vector r s.t. G∗(r) contains a cycle.

Equilibrium quality for affine games
Recall that under the WCC model, agents play as if they
take part of the game G∗(r), while their actual, realized costs
are those in underlying game G. We thus define the Price of
Anarchy for WCC players with uncertainty vector r as:

C-PoA(G, r) = max
s∈EQ(G∗(r))

SC(G, s)
SC(G, OPT (G))

.

We focus our analysis on games with affine costs, and
look for bounds on C-PoA(G, r). In particular, we explore
whether players with uncertainty reach better or worse social
outcomes under WCC behavior than under standard, com-
plete information equilibria.

Homogeneous uncertainty. We start with the simplifying
assumption that ri = r for all types. Recall that in this
case G∗(r) is a non player specific NRG, where the cost of
each edge is modified to cre(t) = raet+ be. These modified
costs can be attained in other contexts that do not involve
uncertainty. For example, this can be achieved through tax-
ation (Cole, Dodis, and Roughgarden 2003). Following the
discussion in Potential and Social Cost, an optimal taxation
scheme would perturb the cost functions so that the realized
cost is ĉe(t) = ce(t) + tc′e(t), as this will guarantee that

φ(Ĝ, s) = SC(G, s) for all s. In this way, minimizing the
potential of Ĝ, as happens in equilibrium, also minimizes the
social cost in G (see Section 18.3.1 in Roughgarden (2007)
for a detailed explanation).

For the special case of affine games, it is easy to see
that the effect of uncertainty level r = 2 is equivalent to
that of an optimal taxation scheme. That is, φ(G∗(2), s) =
SC(G, s) for all s. This means that if all agents adopt the
WCC viewpoint for an uncertainty type of r = 2, then they
would play the social optimum. Unfortunately, the value of
r is not a design parameter—we cannot decide for the agents
how uncertain they should be, since this reflects their beliefs.
We would therefore like to have guarantees on equilibrium
quality for any value of r. The next lemma provides our first
result in this direction.

We denote φr(s) = φ(G∗(r), s). It will be convenient to
treat the cases r ≥ 2 and r ≤ 2 separately.

Lemma 2. Let G be an affine NRG, and suppose that r ≥ 2.
Then for all s, φr(s) ∈ [SC(G, s), r2SC(G, s)].
Proposition 3. For r ≥ 2, and any affine NRG G,
C-PoA(G, r) ≤ r

2 .

Proof. Let s∗ be a global optimum of φr, sO = OPT (G).
By Lemma 2 SC(G, s∗) ≤ φr(s∗) ≤ φr(sO) ≤
r
2SC(G, sO).

We can similarly derive a bound of 2/r for the range r ∈
[1, 2), but we can do better. We next show that as we increase
the uncertainty level r from 1 towards 2, we get a smooth
improvement in social cost.

Theorem 4. For r ∈ [1, 2], and for any affine NRG G,
C-PoA(G, r) ≤ 2− 2

r + ( 2r − 1)PoA(G) ≤ 2+2r
3r .

Let q∗(r) = maxG C-PoA(G, r); and q∗P (r) =
maxGP C-PoA(GP , r). The results above give us an upper
bound on q∗(r). By a careful analysis of the Pigou-type in-
stances, we can compute q∗P (r) exactly, which also provides
us with a lower bound on q∗(r).

Corollary 5. For r ∈ [1, 2], q∗(r) ∈ [ 4
4r−r2 ,

2+2r
3r ]. For

r > 2, we have q∗(r) ∈ [ r2

4(r−1) , r/2] = [r/4 + o(1), r/2].
Also, q∗P (r) is equal to our lower bound on q∗(r).4

Note that for r = 1 and r = 2, we have q∗(r) = q∗P (r),
and both are equal to the familiar values of 4/3 and 1, re-
spectively. See Figure 2 for a graphical comparison of the
bounds.

Diverse population. We would like to show that if we
have a population of agents with different uncertainty lev-
els, the social cost does not exceed that of the upper bound
we have on the worst type; i.e., that q∗(r) ≤ q∗(ri) for some
type i in the mixture. We show something very close (our

4Roughgarden (2003) showed that for any class of cost func-
tions, a worst-case example for the PoA can be constructed on an
RSG with two resources. It is not clear if this is also true for the
C-PoA, as in our case the optimum and the equilibrium are com-
puted for two different games. However if a similar result can be
proved, then our upper bounds would collapse to the lower bounds.
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Figure 2: The solid red lines are upper- and lower-bounds
on q∗(r), i.e. the maximum PoA, across all games, for WCC
players with uncertainty parameter r (the lower bound is also
exactly q∗P (r), the maximum PoA across Pigou examples).
The blue dashed line is exactly q∗∗P (r). The dotted lines mark
4/3 and 1.

bound is slightly worse when there are types both below and
above r = 2).

Let j = argmini ri, k = argmaxi ri; let αj =
C-PoA(G, rj) if rj < 2 and 1 otherwise; let αk = rk

2 if
rk > 2 and 1 otherwise.
Lemma 6. Let s, s′ be any two states in affine NRG G, and
consider r3 ≥ r2 ≥ r1. If φr3(s) ≥ φr3(s′) and φr2(s) ≤
φr2(s′), then φr1(s) ≤ φr1(s′) as well.
Theorem 7. Let G be an affine NRG, r be an uncertainty
vector. Then C-PoA(G, r) ≤ αj · αk.

Proof of Theorem 7 for rj ≥ 2. Let s∗ be an equilibrium of
G∗(r). Let s∗i be a state minimizing φri(s). Note that
φr(s) < φr

′
(s) for all r < r′ and any s. By Lemma 2,

φ2(s) = SC(G, s) for any s. We next bound SC(G, s∗), di-
viding into cases: rj ≥ 2; rk ≤ 2; rj < 2 < rk. We prove
for rj ≥ 2.

Consider the state s∗k, which is an equilibrium of the game
G∗(rk). If φrk(s∗) = φrk(s∗k), then s∗ is also an equilibrium
of G∗(rk). Since G∗(rk) is an NRG, all equilibria have the
same social cost, thus

φ2rk(s∗) = SC(G∗(rk), s∗) = SC(G∗(rk), s∗k) = φ2rk(s∗k).

As 2rk > rk ≥ 2, by Lemma 6 φ2(s∗k) ≥ φ2(s∗) (in fact
equal). Thus

SC(s∗) = φ2(s∗) ≤ φ2(s∗k) = SC(s∗k). (1)

Thus suppose that φrk(s∗k), φ
rk(s∗) differ. By definition,

φrk(s∗k) < φrk(s∗). There must be some (non zero measure
of) agents with different actions in both states. It cannot be
that all of these agents have uncertainty rk, since the states
s∗, s∗k have a different φk potential.

Consider any such agent of type i, ri < rk, whose action
under s∗ differs from the one in s∗k. If φri(s∗k) < φri(s∗)
then s∗ is not an equilibrium of G∗(r), as some agents of
type i would deviate. We conclude that there is at least one
type i s.t. ri < rk, and φri(s∗k) ≥ φri(s∗).

Since rk > ri ≥ 2, and φ2(s∗k) ≥ φ2(s∗) by Lemma 6,
we get Eq. (1) again. Thus SC(s∗) ≤ SC(s∗k).

By Lemma 2, we have that C-PoA(G, r) ≤
C-PoA(G, rk) ≤ αk (note that αj = 1).

Finally, in a RSG a small fraction of the agents with high
uncertainty cannot inflict too much damage.
Theorem 8. Let G be an affine RSG. Suppose that r is
composed of two types, rk > rj . Then C-PoA(G, r) ≤
rj
2 + nk

n O(rk).

Worst-Case Regret
For what follows, we assume that ri = r for all i. In addi-
tion, we focus on RSGs, as the analysis is non-trivial even
for such simple games.

Equilibrium and convergence. In a RSG, the set of edges
E is also the set of actions. For every resource e in state s,
we have

c∗∗({e}, s) =WCR(e, s) = ce(rse)−min
d6=e

cd(sd/r).

As G is an RSG, s ∈ EQ(G∗∗(r)) if and only if
WCR(e, s) is the same for all occupied edges, and at
least as high in unoccupied edges. Denote MR(s) =
maxe∈E:se>0WCR(e, s).

Recall that every RSG with player-specific costs has a
weak potential (Milchtaich 1996). We show a similar re-
sult for an RSG played by WCR players. Our result requires
an additional technical property, but allows an explicit con-
struction of the potential. We say that a function z(t) is r-
convex if z′(t/r)/r ≤ r · z′(r · t) for all t, where c′ is the
derivative of c. We note that r-convexity holds for convex
and other commonly used functions (see full version).
Proposition 9. Consider an RSG G, and suppose that all
cost functions are r-convex. ThenMR(s) is a weak potential
function of G∗∗(r). Then if there are WCR moves, there is a
WCR move that reduces MR(s).

Equilibrium quality for Pigou instances. In the special
case of the family of Pigou instances, we have:
Proposition 10. Let q∗∗P (r) = maxGP R-PoA(GP , r).

(1) For any r∈ [1, 2+
√
3], we have q∗∗P (r) = 16

8(r+1
r )−(1+

1
r )

2 .

(2) For any r ≥ 2 +
√
3, we have q∗∗P (r) =

(r+ 1
r )

2

8(r+ 1
r )−16)

.

Thus R-PoA(GP , r) for r ≥ 2+
√
3 is an increasing func-

tion in r, and asymptoting to r/8+o(r) (see Figure 2). It re-
mains an open question to derive an upper bound for games
over more complex networks.

Discussion
Related work. We focus on previous work on uncertainty
(especially strict uncertainty) in congestion games (CG).
Strict uncertainty been considered by Ashlagi et al. (2006;
2009). They analyze “safety-level” strategies (similar to
WCC) for agents who do not know the total number of play-
ers k, but only an upper bound on k, and focus on prov-
ing the existence of a symmetric mixed equilibrium. For
atomic RSGs, they show that (as in our case) uncertainty im-
proves the social welfare. Both the the analysis techniques
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and the reasoning required from agents in their setting are
quite complex, despite the focus on a simple class of games,
whereas in our case the game with WCC behavior reduces
to a modified (player-specific) congestion game.

The next two papers are closer to our approach, where
agents react to some noisy variation of the current state. Meir
et al. (2012) study the effect of Bayesian uncertainty due to
agents who may fail to play with some probability (in the
spirit of trembling-hand perfection). They focus mainly on
RSGs and show that the PoA generally improves if failure
probabilities are negligible, but not if they are bounded from
0. Angelidakis et al. (2013) study a related model of RSGs
with agents who react based on a quantile of the cost distri-
bution. We further discuss these two papers below.

Piliouras et al. (2013) also study CGs with strict uncer-
tainty with motivation similar to ours, and look at a wide
range of decision-making approaches including WCC and
WCR. However, agents in their model know the actions of
others exactly, and uncertainty over costs stems from the un-
known order in which players arrive. Our model is more di-
rect, and closer to the traditional view of congestion games.

Babaioff et al. (2007) study the effect of introducing a
small fraction v of malicious agents. This is related to our
WCC model, where agents behave as if the load on each
edge is increased by v = (r − 1)se additional (malicious)
agents. However, in our model this added load only affects
the behavior of real agents, and does not affect the outcome
directly. Babaioff et al. (2007) observe that adding some
amount of malicious agents may decrease the social cost
in equilibrium; see also followup work (Blum et al. 2008;
Roth 2008).

Lastly, Halpern and Pass (2012) suggested iterated regret
minimization as an explanation to human behavior in many
games. We emphasize that in contrast to our model, such
behavior requires agents to explicitly reason about the in-
centives of other agents.

Distance-based uncertainty. Our epistemic model adapts
the multiplicative distance-based uncertainty model, initially
introduced in the context of voting theory (Meir, Lev, and
Rosenschein 2014; Meir 2015). There, the state was the
number of votes for each candidate, analogous to the mea-
sure of agents on each resource in the present setting. While
the epistemic model in both papers is derived from a similar
approach, both the behavioral heuristics and the techniques
for analysis are quite different. For example in voting games
payoffs are highly discontinuous, so it is not a priori clear
whether pure equilibria exist.

There may appear to be a contradiction between our no-
tion of uncertainty and equilibrium play: if agents converge
to a particular state and play it repeatedly, then after a while
we might expect them to be certain about this state. However
even in “standard” congestion game the state (action profile)
is only an abstraction of reality, where there is noise from
various sources– from players’ actions and failures, to vary-
ing costs. Thus an equilibrium is a fixed point in the abstract
model, although in reality there remain fluctuations around
the equilibrium point. Thus even in equilibrium there may

be some uncertainty about the exact loads.
Some papers model the underlying distribution explicitly

(e.g.,(Meir et al. 2012; Angelidakis, Fotakis, and Lianeas
2013)), and assume a belief structure that is derived from
this distribution. Such an approach does not necessarily pro-
vide a better description of the way human players perceive
the game. In our model we avoid such an explicit descrip-
tion, and instead use s (as an abstraction of the current state)
and derive agents’ beliefs directly from this state using the
distance metric. These beliefs may or may not be consis-
tent with the “real” underlying distribution, which may be
highly complex. This simple belief structure allows us to de-
rive PoA bounds on a much wider class of games.

Distance-based uncertainty can also be derived from a
statistical viewpoint. Suppose that an agent believes that
the actual load is distributed around the reference load se.
A simple heuristic considers a confidence interval around
se, with the size of the interval modeled through ri. Under
this interpretation, ri is higher for agent types that are ei-
ther more risk-averse or less-informed.5 A crucial point is
that if agents act independently the actual congestion would
be highly concentrated around its expectation (that is, ri
should approach 1 as the size of the population grows),
and for nonatomic agents there should be no uncertainty
at all. However, experimental work in behavioral decision
making suggests people perceive uncertainty over quantities
as if the standard deviation is proportional to the expecta-
tion, even when this is false (Kahneman and Tversky 1974;
Tversky and Kahneman 1974).6

While in our model the uncertainty is over the actions
of the other agents, an alternative way is to present it as
strict uncertainty over the agent’s own cost function, also
known as Knightian Uncertainty (Knight 1921). Chiesa et
al. (2014) have recently applied Knightian uncertainty to
auctions, where an agent may have a valuation for an item,
but only be aware of some interval in which this valuation
resides. Further studying the conceptual and technical con-
nection between distance-based uncertainty and Knightian
uncertainty may help to gain better understanding of both
concepts.

Conclusions
Game-theoretic models should explain and predict the be-
havior of players in games. Merely adding to such mod-
els uncertainty about the environment is insufficient, since
as Simon (1957) wrote: “...the state of information may as
well be regarded as a characteristic of the decision-maker as
a characteristic of his environment.” Indeed, psychological
studies suggest that people are both risk-averse and avoid

5For example, if the noise on edge e is a normal distribution
with standard deviation σ and mean 0, and an agent of type i re-
quires confidence of 95% (roughly two standard deviations), then
this translates to a strict uncertainty interval of [se − 2σ, se + 2σ]

6The most famous example is an experiment where subjects are
told the average number of girls born daily in a hospital is s. People
believe that the probability that on a given day the number is within
[(1− r′)s, (1+ r′)s] is fixed and does not depend on s. Kahneman
and Tversky (1974) highlight the contrast with standard, statistical
analysis, where the range r′ is proportional to 1/

√
s.
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probabilistic calculations (Tversky and Kahneman 1974;
Slovic, Fischhoff, and Lichtenstein 1980), and raise con-
cerns with standard models of rationality. We believe that
our model captures these behavioral assumptions, and that it
is simpler than other approaches for uncertainty representa-
tion. In addition, we show that the model still permits the use
of standard game-theoretic tools such as equilibrium analy-
sis. The model is flexible, and variations of the belief struc-
ture (the distance metric) can be easily made. One limitation
of our approach is that distance based uncertainty (an inter-
val) cannot capture bi-modal scenarios. For example, when
congestion is usually mild, but in rare cases (an accident)
congestion is very high. This is similar to the reason that a
normal distribution cannot capture such a scenario.

Our results show that in a risk-averse population, an inter-
mediate level of uncertainty helps to align the incentives of
the agents with those of the society. This message is empha-
sized by showing similar results for two different interpre-
tation of risk-aversion, and is consistent with findings from
other models of uncertainty (see Related Work).

Finally, lab experiments with routing games show that
human subjects converge to states that are close to, but do
not coincide with the Nash equilibria (Rapoport et al. 2009)
(especially when looking at individual behavior rather than
aggregate congestion). We believe that these discrepancies
might be at least partially due to bounded-rational behavior
of the agents, who may be risk-averse and/or applying sim-
ple variations of best-response heuristics. Thus our model
might be able to better explain observed outcomes in con-
gestion games. More empirical and experimental work is re-
quired in that respect.
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