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Abstract

We present the first model of optimal voting under adversar-
ial noise. From this viewpoint, voting rules are seen as error-
correcting codes: their goal is to correct errors in the input
rankings and recover a ranking that is close to the ground
truth. We derive worst-case bounds on the relation between
the average accuracy of the input votes, and the accuracy of
the output ranking. Empirical results from real data show that
our approach produces significantly more accurate rankings
than alternative approaches.

Introduction
Social choice theory develops and analyzes methods for ag-
gregating the opinions of individuals into a collective deci-
sion. The prevalent approach is motivated by situations in
which opinions are subjective, such as political elections,
and focuses on the design of voting rules that satisfy nor-
mative properties (Arrow 1951).

An alternative approach, which was proposed by the mar-
quis de Condorcet in the 18th Century, had confounded
scholars for centuries (due to Condorcet’s ambiguous writ-
ing) until it was finally elucidated by Young (1988). The
underlying assumption is that the alternatives can be objec-
tively compared according to their true quality. In particular,
it is typically assumed that there is a ground truth ranking
of the alternatives. Votes can be seen as noisy estimates of
the ground truth, drawn from a specific noise model. For ex-
ample, Condorcet proposed a noise model where — roughly
speaking — each voter (hereinafter, agent) compares every
pair of alternatives, and orders them correctly (according to
the ground truth) with probability p > 1/2; today an equiva-
lent model is attributed to Mallows (1957). Here, it is natural
to employ a voting rule that always returns a ranking that is
most likely to coincide with the ground truth, that is, the vot-
ing rule should be a maximum likelihood estimator (MLE).

Although Condorcet could have hardly foreseen this, his
MLE approach is eminently applicable to crowdsourcing
and human computation systems, which often employ voting
to aggregate noisy estimates; EteRNA (Lee et al. 2014) is a
wonderful example, as explained by Procaccia et al. (2012).
Consequently, the study of voting rules as MLEs has been
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gaining steam in the last decade (Conitzer and Sandholm
2005; Conitzer et al. 2009; Elkind et al. 2010; Xia et
al. 2010; Xia and Conitzer 2011; Lu and Boutilier 2011; Pro-
caccia et al. 2012; Azari Soufiani et al. 2012; 2013; 2014;
Mao et al. 2013; Caragiannis et al. 2013; 2014).

Despite its conceptual appeal, a major shortcoming of the
MLE approach is that the MLE voting rule is specific to a
noise model, and that noise model — even if it exists for
a given setting — may be difficult to pin down (Mao, Pro-
caccia, and Chen 2013). Caragiannis et al. (2013; 2014) have
addressed this problem by relaxing the MLE constraint: they
only ask that the probability of the voting rule returning the
ground truth go to one as the number of votes goes to in-
finity. This allows them to design voting rules that elicit the
ground truth in a wide range of noise models; however, they
may potentially require an infinite amount of information.

Our approach. In this paper, we propose a fundamentally
different approach to aggregating noisy votes. We assume
the noise to be adversarial instead of probabilistic, and wish
to design voting rules that do well under worst-case assump-
tions. From this viewpoint, our approach is closely related to
the extensive literature on error-correcting codes. One can
think of the votes as a repetition code: each vote is a trans-
mitted noisy version of a “message” (the ground truth). How
many errors can be corrected using this “code”?

In more detail, let d be a distance metric on the space
of rankings. As an example, the well-known Kendall tau
(KT) distance between two rankings measures the number
of pairs of alternatives on which the two rankings disagree.
Suppose that we receive n votes over the set of alternatives
{a, b, c, d}, for an even n, and we know that the average
KT distance between the votes and the ground truth is at
most 1/2. Can we always recover the ground truth? No: in
the worst-case, exactly n/2 agents swap the two highest-
ranked alternatives and the rest report the ground truth. In
this case, we observe two distinct rankings (each n/2 times)
that only disagree on the order of the top two alternatives.
Both rankings have an average distance of 1/2 from the in-
put votes, making it impossible to determine which of them
is the ground truth.

Let us, therefore, cast a larger net. Inspired by list decod-
ing of error-correcting codes (see, e.g., Guruswami 2005),
our main research question is:
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Fix a distance metric d. Suppose that we are given n
noisy rankings, and that the average distance between
these rankings and the ground truth is at most t. We
wish to recover a ranking that is guaranteed to be at
distance at most k from the ground truth. How small
can k be, as a function of n and t?

Our results. We observe that for any metric d, one can al-
ways recover a ranking that is at distance at most 2t from
the ground truth, i.e., k ≤ 2t. Under an extremely mild
assumption on the distance metric, we complement this re-
sult by proving a lower bound of (roughly) k ≥ t. Next,
we consider the four most popular distance metrics used in
the social choice literature, and prove a tight lower bound of
(roughly) k ≥ 2t for each metric. This lower bound is our
main theoretical result; the construction makes unexpected
use of Fermat’s Polygonal Number Theorem.

The worst-case optimal voting rule in our framework is
defined with respect to a known upper bound t on the average
distance between the given rankings and the ground truth.
However, we show that the voting rule which returns the
ranking minimizing the total distance from the given rank-
ings — which has strong theoretical support in the litera-
ture — serves as an approximation to our worst-case optimal
rule, irrespective of the value of t. We leverage this observa-
tion to provide theoretical performance guarantees for our
rule in cases where the error bound t given to the rule is an
underestimate or overestimate of the tightest upper bound.

Finally, we test our worst-case optimal voting rules
against many well-established voting rules, on two real-
word datasets (Mao, Procaccia, and Chen 2013), and show
that the worst-case optimal rules exhibit superior perfor-
mance as long as the given error bound t is a reasonable
overestimate of the tightest upper bound.

Related work. Our work is related to the extensive literature
on error-correcting codes that use permutations (see, e.g.,
Barg and Mazumdar 2010, and the references therein), but
differs in one crucial aspect. In designing error-correcting
codes, the focus is on two choices: i) the codewords, a sub-
set of rankings which represent the “possible ground truths”,
and ii) the code, which converts every codeword into the
message to be sent. These choices are optimized to achieve
the best tradeoff between the number of errors corrected and
the rate of the code (efficiency), while allowing unique iden-
tification of the ground truth. In contrast, our setting has
fixed choices: i) every ranking is a possible ground truth,
and ii) in coding theory terms, our setting constrains us to the
repetition code. Both restrictions (inevitable in our setting)
lead to significant inefficiencies, as well as the impossibil-
ity of unique identification of the ground truth (as illustrated
in the introduction). Our research question is reminiscent of
coding theory settings where a bound on adversarial noise is
given, and a code is chosen with the bound on the noise as
an input to maximize efficiency (see, e.g., Haeupler 2014).

List decoding (see, e.g., Guruswami 2005) relaxes classic
error correction by guaranteeing that the number of possible
messages does not exceed a small quota; then, the decoder
simply lists all possible messages. The motivation is that one
can simply scan the list and find the correct message, as all

other messages on the list are likely to be gibberish. In the
voting context, one cannot simply disregard some potential
ground truths as nonsensical; we therefore select a ranking
that is close to every possible ground truth.

A bit further afield, Procaccia et al. (2007) study a prob-
abilistic noisy voting setting, and quantify the robustness
of voting rules to random errors. Their results focus on the
probability that the outcome would change, under a random
transposition of two adjacent alternatives in a single vote
from a submitted profile, in the worst-case over profiles.
Their work is different from ours in many ways, but perhaps
most importantly, they are interested in how frequently com-
mon voting rules make mistakes, whereas we are interested
in the guarantees of optimal voting rules that avoid mistakes.

Preliminaries
Let A be the set of alternatives, and |A| = m. Let L(A) be
the set of rankings overA. A vote σ is a ranking inL(A), and
a profile π ∈ L(A)n is a collection of n rankings. A voting
rule f : L(A)n → L(A) maps every profile to a ranking.1

We assume that there exists an underlying ground truth
ranking σ∗ ∈ L(A) of the alternatives, and the votes are
noisy estimates of σ∗. We use a distance metric d over L(A)
to measure errors; the error of a vote σ with respect to σ∗ is
d(σ, σ∗), and the average error of a profile π with respect to
σ∗ is d(π, σ∗) = (1/n) ·

∑
σ∈π d(σ, σ∗). We consider four

popular distance metrics over rankings in this paper.

• The Kendall tau (KT) distance, denoted dKT , measures
the number of pairs of alternatives over which two rank-
ings disagree. Equivalently, it is also the minimum num-
ber of swaps of adjacent alternatives required to convert
one ranking into another.

• The (Spearman’s) Footrule (FR) distance, denoted dFR,
measures the total displacement of all alternatives be-
tween two rankings, i.e., the sum of the absolute differ-
ences between their positions in two rankings.

• The Maximum Displacement (MD) distance, denoted
dMD , measures the maximum of the displacements of all
alternatives between two rankings.

• The Cayley (CY) distance, denoted dCY , measures the
minimum number of swaps (not necessarily of adjacent
alternatives) required to convert one ranking into another.

All four metrics described above are neutral: A distance
metric is called neutral if the distance between two rank-
ings is independent of the labels of the alternatives; in other
words, choosing a relabeling of the alternatives and applying
it to two rankings keeps the distance between them invariant.

Worst-Case Optimal Rules
Suppose we are given a profile π of n noisy rankings that are
estimates of an underlying true ranking σ∗. In the absence
of any additional information, any ranking could potentially
be the true ranking. However, because essentially all crowd-
sourcing methods draw their power from the often-observed

1They are known as social welfare functions, which differ from
social choice functions that choose a single winning alternative.
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fact that individual opinions are accurate on average, we can
plausibly assume that while some agents may make many
mistakes, the average error is fairly small. An upper bound
on the average error may be inferred by observing the col-
lected votes, or from historical data (but see the next section
for the case where this bound is inaccurate).

Formally, suppose we are guaranteed that the average dis-
tance between the votes in π and the ground truth σ∗ is at
most t according to a metric d, i.e., d(π, σ∗) ≤ t. With this
guarantee, the set of possible ground truths is given by the
“ball” of radius t around π.

Bdt (π) = {σ ∈ L(A) | d(π, σ) ≤ t}.
Note that we have σ∗ ∈ Bdt (π) given our assumption; hence,
Bdt (π) 6= ∅. We wish to find a ranking that is as close to
the ground truth as possible. Since our approach is worst
case in nature, our goal is to find the ranking that minimizes
the maximum distance from the possible ground truths in
Bdt (π). For a set of rankings S ⊆ L(A), let its minimax
ranking, denoted MINIMAXd(S), be defined as follows.2

MINIMAXd(S) = arg min
σ∈L(A)

max
σ′∈S

d(σ, σ′).

Let the minimax distance of S, denoted kd(S), be the max-
imum distance of MINIMAXd(S) from the rankings in S
according to d. Thus, given a profile π and the guarantee
that d(π, σ∗) ≤ t, the worst-case optimal voting rule OPTd

returns the minimax ranking of the set of possible ground
truths Bdt (π). That is, for all profiles π ∈ L(A)n and t > 0,

OPTd(t, π) = MINIMAXd
(
Bdt (π)

)
.

Furthermore, the output ranking is guaranteed to be at dis-
tance at most kd(Bdt (π)) from the ground truth. We overload
notation, and denote kd(t, π) = kd(Bdt (π)), and

kd(t) = max
π∈L(A)n

kd(t, π).

While kd is explicitly a function of t, it is also implicitly a
function of n. Hereinafter, we omit the superscript d when-
ever the metric is clear from context.

Let us illustrate our terminology with a simple example.
Example 1. Let A = {a, b, c}. We are given profile π con-
sisting of 5 votes: π = {2 × (a � b � c), a � c � b, b �
a � c, c � a � b}.

The maximum distances between rankings in L(A) al-
lowed by dKT , dFR, dMD , and dCY are 3, 4, 2, and 2, re-
spectively; let us assume that the average error limit is half
the maximum distance for all four metrics.3

Consider the Kendall tau distance with t = 1.5. The aver-
age distances of all 6 rankings from π are given below.
dKT (π, a � b � c) = 0.8 dKT (π, a � c � b) = 1.0
dKT (π, b � a � c) = 1.4 dKT (π, b � c � a) = 2.0
dKT (π, c � a � b) = 1.6 dKT (π, c � b � a) = 2.2

2We use MINIMAXd(S) to denote a single ranking. Ties among
multiple minimizers can be broken arbitrarily; our results are inde-
pendent of the tie-breaking scheme.

3Scaling by the maximum distance is not a good way of com-
paring distance metrics; we do so for the sake of illustration only.

Thus, the set of possible ground truths isBdKT
1.5 (π) = {a �

b � c, a � c � b, b � a � c}. This set has a unique
minimax ranking OPTdKT (1.5, π) = a � b � c, which
gives kdKT (1.5, π) = 1. Table 1 lists the sets of possible
ground truths and their minimax rankings4 under different
distance metrics.

Voting Rule
Possible Ground

Truths Bdt (π)
Output Ranking

OPTdKT (1.5, π),
OPTdCY (1, π)

{ a � b � c,
a � c � b,
b � a � c

}
a � b � c

OPTdFR(2, π),
OPTdMD (1, π)

{ a � b � c,
a � c � b

} {a � b � c,
a � c � b

}
Table 1: Application of the optimal voting rules on π.

Note that even with identical (scaled) error bounds, differ-
ent distance metrics lead to different sets of possible ground
truths as well as different optimal rankings. This demon-
strates that the choice of the distance metric is significant.

Upper Bound
Given a distance metric d, a profile π, and that d(π, σ∗) ≤ t,
we can bound k(t, π) using the diameter of the set of pos-
sible ground truths Bt(π). For a set of rankings S ⊆ L(A),
denote its diameter by D(S) = maxσ,σ′∈S d(σ, σ′).

Lemma 1. 1
2 · D(Bt(π)) ≤ k(t, π) ≤ D(Bt(π)) ≤ 2t.

Proof. Let σ̂ = MINIMAX(Bt(π)). For rankings σ, σ′ ∈
Bt(π), we have d(σ, σ̂), d(σ′, σ̂) ≤ k(t, π) by definition
of σ̂. By the triangle inequality, d(σ, σ′) ≤ 2k(t, π) for all
σ, σ′ ∈ Bt(π). Thus, D(Bt(π)) ≤ 2k(t, π).

Next, the maximum distance of σ ∈ Bt(π) from all rank-
ings in Bt(π) is at most D(Bt(π)). Hence, the minimax dis-
tance k(t, π) = k(Bt(π)) cannot be greater than D(Bt(π)).

Finally, let π = {σ1, . . . , σn}. For rankings σ, σ′ ∈
Bt(π), the triangle inequality implies d(σ, σ′) ≤ d(σ, σi) +
d(σi, σ

′) for every i ∈ {1, . . . , n}. Averaging over these in-
equalities, we get d(σ, σ′) ≤ t + t = 2t, for all σ, σ′ ∈
Bt(π). Thus, we have D(Bt(π)) ≤ 2t, as required. �

Lemma 1 implies that k(t) = maxπ∈L(A)n k(t, π) ≤ 2t
for all distance metrics and t > 0. In words:

Theorem 1. Given n noisy rankings at an average distance
of at most t from an unknown true ranking σ∗ according to
a distance metric d, it is always possible to find a ranking at
distance at most 2t from σ∗ according to d.

Importantly, the bound of Theorem 1 is independent of the
number of votes n. Most statistical models of social choice
restrict profiles in two ways: i) the average error should be
low because the probability of generating high-error votes
is typically low, and ii) the errors should be distributed al-
most evenly (in different directions from the ground truth),

4Multiple rankings indicate a tie that can be broken arbitrarily.
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which is why aggregating the votes works well. These as-
sumptions are mainly helpful when n is large, that is, per-
formance may be poor for small n (see, e.g., Caragiannis
et al. 2013). In contrast, our model restricts profiles only
by making the first assumption (explicitly), allowing voting
rules to perform well as long as the votes are accurate on
average, independently of the number of votes n.

We also remark that Theorem 1 admits a simple proof,
but the bound is nontrivial: while the average error of the
profile is at most t (hence, the profile contains a ranking with
error at most t), it is generally impossible to pinpoint a single
ranking within the profile that has low error (say, at most 2t)
with respect to the ground truth in the worst-case (i.e., with
respect to every possible ground truth in Bt(π)).

Lower Bounds
The upper bound of 2t (Theorem 1) is intuitively loose —
we cannot expect it to be tight for every distance metric.
However, we can prove a generic lower bound of (roughly
speaking) t for a wide class of distance metrics.

Formally, let d↓(r) denote the greatest feasible distance
under distance metric d that is less than or equal to r. k(t) is
the minimax distance under some profile, and hence must be
a feasible distance under d. Thus, we prove a lower bound
of d↓(t), which is the best possible bound up to t.
Theorem 2. For a neutral distance metric d, k(t) ≥ d↓(t).

Proof. For a ranking σ ∈ L(A) and r ≥ 0, let Br(σ) denote
the set of rankings at distance at most r from σ. Neutrality
of the distance metric d implies |Br(σ)| = |Br(σ′)| for all
σ, σ′ ∈ L(A) and r ≥ 0. In particular, d↓(t) being a feasi-
ble distance under d implies that for every σ ∈ L(A), there
exists some ranking at distance exactly d↓(t) from σ.

Fix σ ∈ L(A). Consider the profile π consisting of n
instances of σ. It holds that Bt(π) = Bt(σ). We want to
show that the minimax distance k(Bt(σ)) ≥ d↓(t). Suppose
for contradiction that there exists some σ′ ∈ L(A) such
that all rankings in Bt(σ) are at distance at most t′ from
σ′, i.e., Bt(σ) ⊆ Bt′(σ′), with t′ < d↓(t). Since there ex-
ists some ranking at distance d↓(t) > t′ from σ′, we have
Bt(σ) ⊆ Bt′(σ′) ( Bt(σ′), which is a contradiction because
|Bt(σ)| = |Bt(σ′)|. Therefore, k(t) ≥ k(t, π) ≥ d↓(t). �

The bound of Theorem 2 holds for all n,m > 0 and all
t ∈ [0, D], whereD is the maximum possible distance under
d. It can be checked easily that the bound is tight given the
neutrality assumption, which is an extremely mild — and in
fact, a highly desirable — assumption for distance metrics
over rankings.

Note that since k(t) is a valid distance under d, the upper
bound of 2t from Theorem 1 actually implies a possibly bet-
ter upper bound of d↓(2t). Thus, Theorems 1 and 2 establish
d↓(t) ≤ k(t) ≤ d↓(2t) for a wide range of distance metrics
d. For the four special distance metrics considered in this
paper, we close this gap by establishing a tight lower bound
of d↓(2t), for a wide range of values of n and t.
Theorem 3. If d ∈ {dKT , dFR, dMD , dCY }, and the max-
imum distance allowed by the metric is D ∈ Θ(mα), then
there exists T ∈ Θ(mα) such that:

1. For all t ≤ T and even n, we have k(t) ≥ d↓(2t).
2. For all L ≥ 2, t ≤ T with {2t} ∈ (1/L, 1 − 1/L), and

odd n ≥ Θ(L ·D), we have k(t) ≥ d↓(2t). Here, {x} =
x− bxc denotes the fractional part of x ∈ R.

Theorem 3 is our main theoretical result. Here we only
provide a proof sketch for the Kendall tau distance, which
gives some of the key insights. The full proof for Kendall
tau, as well as for other distance metrics, can be found in the
full version of the paper.5

Proof sketch for Kendall tau. Let d be the Kendall tau dis-
tance; thus, D =

(
m
2

)
and α = 2. First, we prove the case

of even n. For a ranking τ ∈ L(A), let τrev be its reverse.
Assume t = (1/2) ·

(
m
2

)
, and fix a ranking σ ∈ L(A). Ev-

ery ranking must agree with exactly one of σ and σrev on a
given pair of alternatives. Hence, every ρ ∈ L(A) satisfies
d(ρ, σ) + d(ρ, σrev) =

(
m
2

)
. Consider the profile π consist-

ing of n/2 instances of σ and n/2 instances of σrev. Then,
the average distance of every ranking from rankings in π
would be exactly t, i.e., Bt(π) = L(A). It is easy to check
that k(L(A)) =

(
m
2

)
= 2t = d↓(2t) because every ranking

has its reverse ranking in L(A) at distance exactly 2t.
Now, let us extend the proof to t ≤ (m/6)

2. If t < 0.5,
then d↓KT (2t) = 0, which is a trivial lower bound. Hence,
assume t ≥ 0.5. Thus, d↓(2t) = b2tc. We use Fermat’s
Polygonal Number Theorem (see, e.g., Heath 2012). A spe-
cial case of this remarkable theorem states that every nat-
ural number can be expressed as the sum of at most three
“triangular” numbers, i.e., numbers of the form

(
k
2

)
. Let

b2tc =
∑3
i=1

(
mi

2

)
. It is easy to check that 0 ≤ mi ≤ 2

√
t

for all i ∈ {1, 2, 3}. Hence,
∑3
i=1mi ≤ 6

√
t ≤ m.

Partition the set of alternatives A into four disjoint groups
A1, A2, A3, and A4 such that |Ai| = mi for i ∈ {1, 2, 3},
and |A4| = m−

∑3
i=1mi. Let σA4 be an arbitrary ranking

of the alternatives in A4; consider the partial order PA =
A1 � A2 � A3 � σA4 over alternatives in A. Note that a
ranking ρ is an extension of PA iff it ranks all alternatives
in Ai before any alternative in Ai+1 for i ∈ {1, 2, 3}, and
ranks alternatives in A4 according to σA4 . Choose arbitrary
σAi ∈ L(Ai) for i ∈ {1, 2, 3} and define

σ = σA1 � σA2 � σA3 � σA4 ,

σ′ = σA1
rev � σA2

rev � σA3
rev � σA4 .

Note that both σ and σ′ are extensions of PA. Once again,
take the profile π consisting of n/2 instances of σ and n/2
instances of σ′. It is easy to check that a ranking disagrees
with exactly one of σ and σ′ on every pair of alternatives
that belong to the same group in {A1, A2, A3}. Hence, every
ranking ρ ∈ L(A) satisfies

d(ρ, σ) + d(ρ, σ′) ≥
3∑
i=1

(
mi

2

)
= b2tc . (1)

5The full version is accessible from http://www.cs.cmu.edu/
∼arielpro/papers.html
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Clearly an equality is achieved in Equation (1) if and only if
ρ is an extension of P(A). Thus, every extension of PA has
an average distance of b2tc /2 ≤ t from π. Every ranking
ρ that is not an extension of PA achieves a strict inequality
in Equation (1); thus, d(ρ, π) ≥ (b2tc + 1)/2 > t. Hence,
Bt(π) is the set of extensions of PA.

Given a ranking ρ ∈ L(A), consider the ranking in Bt(π)
that reverses the partial orders over A1, A2, and A3 induced
by ρ. The distance of this ranking from ρ would be at least∑3
i=1

(
mi

2

)
= b2tc, implying k(Bt(π)) ≥ b2tc. (In fact, it

can be checked that k(Bt(π)) = D(Bt(π)) = b2tc.)
While we assumed that n is even, the proof can be ex-

tended to odd values of n by having one more instance of σ
than σ′. The key idea is that with large n, the distance from
the additional vote would have little effect on the average
distance of a ranking from the profile. Thus, Bt(π) would be
preserved, and the proof would follow. �

The impossibility result of Theorem 3 is weaker for odd
values of n (in particular, covering more values of t requires
larger n), which is reminiscent of the fact that repetition
(error-correcting) codes achieve greater efficiency with an
odd number of repetitions; this is not merely a coincidence.
Indeed, an extra repetition allows differentiating between
tied possibilities for the ground truth; likewise, an extra vote
in the profile prevents us from constructing a symmetric pro-
file that admits a diverse set of possible ground truths (see
the full version of the paper for details).

Approximations for Unknown Average Error
In the previous sections we derived the optimal rules when
the upper bound t on the average error is given to us. In
practice, the given bound may be inaccurate. We know that
using an estimate t̂ that is still an upper bound (t̂ ≥ t) yields
a ranking at distance at most 2t̂ from the ground truth in the
worst case. What happens if it turns out that t̂ < t? We show
that the output ranking is still at distance at most 4t from the
ground truth in the worst case.

Theorem 4. For a distance metric d, a profile π consisting
of n noisy rankings at an average distance of at most t from
the true ranking σ∗, and t̂ < t, d(OPTd(t̂, π), σ∗) ≤ 4t.

To prove the theorem, we make a detour through min-
isum rules. For a distance metric d, let MINISUMd, be the
voting rule that always returns the ranking minimizing the
sum of distances (equivalently, average distance) from the
rankings in the given profile according to d. Two popular
minisum rules are the Kemeny rule for the Kendall tau dis-
tance (MINISUMdKT ) and the minisum rule for the footrule
distance (MINISUMdFR ), which approximates the Kemeny
rule (Dwork et al. 2001). For a distance metric d (dropped
from the superscripts), let d(π, σ∗) ≤ t. We claim that
the minisum ranking MINISUM(π) is at distance at most
min(2t, 2k(t, π)) from σ∗. This is true because the minisum
ranking and the true ranking are both in Bt(π), and Lemma 1
shows that its diameter is at most min(2t, 2k(t, π)).

Returning to the theorem, if we provide an underestimate

t̂ of the true worst-case average error t, then using Lemma 1,
d (MINIMAX(Bt̂(π)),MINISUM(π)) ≤ 2t̂ ≤ 2t,

d (MINISUM(π), σ∗) ≤ D(Bt(π)) ≤ 2t.

By the triangle inequality, d (MINIMAX(Bt̂(π)), σ∗) ≤ 4t.

Experimental Results
We compare our worst-case optimal voting rules OPTd

against a plethora of voting rules used in the literature: plu-
rality, Borda count, veto, the Kemeny rule, single transfer-
able vote (STV), Copeland’s rule, Bucklin’s rule, the max-
imin rule, Slater’s rule, Tideman’s rule, and the modal rank-
ing rule (for definitions see, e.g., Caragiannis et al. 2014).

Our performance measure is the distance of the output
ranking from the actual ground truth. In contrast, for a given
d, OPTd is designed to optimize the worst-case distance to
any possible ground truth. Hence, crucially, OPTd is not
guaranteed to outperform other rules in our experiments.

We use two real-world datasets containing ranked prefer-
ences in domains where ground truth rankings exist. Mao,
Procaccia, and Chen (2013) collected these datasets — dots
and puzzle — via Amazon Mechanical Turk. For dataset dots
(resp., puzzle), human workers were asked to rank four im-
ages that contain a different number of dots (resp., different
states of an 8-Puzzle) according to the number of dots (resp.,
the distances of the states from the goal state). Each dataset
has four different noise levels (i.e., levels of task difficulty),
represented using a single noise parameter: for dots (resp.,
puzzle), higher noise corresponds to ranking images with a
smaller difference between their number of dots (resp., rank-
ing states that are all farther away from the goal state). Each
dataset has 40 profiles with approximately 20 votes each, for
each of the 4 noise levels. Points in our graphs are averaged
over the 40 profiles in a single noise level of a dataset.

First, as a sanity check, we verified (Figure 1) that the
noise parameter in the datasets positively correlates with our
notion of noise — the average error in the profile, denoted
t∗ (averaged over all profiles in a noise level). Strikingly, the
results from the two datasets are almost identical!

1 2 3 4
1

2

3

4

Noise Level

A
ve

ra
ge

t∗

KT
FR
MD
CY

(a) Dots

1 2 3 4
1

2

3

4

Noise Level

A
ve

ra
ge

t∗

KT
FR
MD
CY

(b) Puzzle

Figure 1: Positive correlation of t∗ with the noise parameter

Next, we compare OPTd and MINISUMd against the vot-
ing rules listed above, with distance d as the measure of er-
ror. We use the average error in a profile as the bound t given
to OPTd, i.e., we compute OPTd(t∗, π) on profile π where
t∗ = d(π, σ∗). While this is somewhat optimistic, note that
t∗ may not be the (optimal) value of t that achieves the low-
est error. Also, the experiments below show that a reasonable
estimate of t∗ also suffices.
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Figure 2: Performance of different voting rules (Figures 2(a) and 2(b)), and of OPT with varying t̂ (Figures 2(c) and 2(d)).

Figures 2(a) and 2(b) show the results for the dots and
puzzle datasets, respectively, under the Kendall tau distance.
It can be seen that OPTdKT (solid red line) significantly out-
performs all other voting rules. The three other distance met-
rics considered in this paper generate similar results; the cor-
responding graphs appear in the full version.

Finally, we test OPTd in the more demanding setting
where only an estimate t̂ of t∗ is provided. To synchro-
nize the results across different profiles, we use r = (t̂ −
MAD)/(t∗−MAD), where MAD is the minimum average
distance of any ranking from the votes in a profile, that is, the
average distance of the ranking returned by MINISUMd from
the input votes. For all profiles, r = 0 implies t̂ = MAD
(the smallest value that admits a possible ground truth) and
r = 1 implies t̂ = t∗ (the true average error). In our experi-
ments we use r ∈ [0, 2]; here, t̂ is an overestimate of t∗ for
r ∈ (1, 2] (a valid upper bound on t∗), but an underestimate
of t∗ for r ∈ [0, 1) (an invalid upper bound on t∗).

Figures 2(c) and 2(d) show the results for the dots and
puzzle datasets, respectively, for a representative noise level
(level 3 in previous experiments) and the Kendall tau dis-
tance. We can see that OPTdKT (solid red line) outperforms
all other voting rules as long as t̂ is a reasonable overesti-
mate of t∗ (r ∈ [1, 2]), but may or may not outperform them
if t̂ is an underestimate of t∗. Again, other distance metrics
generate similar results (see the full version for the details).

Discussion
Uniformly accurate votes. Motivated by crowdsourcing
settings, we considered the case where the average error in
the input votes is guaranteed to be low. Instead, suppose we
know that every vote in the input profile π is at distance at
most t from the ground truth σ∗, i.e., maxσ∈π d(σ, σ∗) ≤ t.
If t is small, this is a stronger assumption because it means
that there are no outliers, which is implausible in crowd-
sourcing settings but plausible if the input votes are expert
opinions. In this setting, it is immediate that any vote in the
given profile is at distance at most d↓(t) from the ground
truth. Moreover, the proof of Theorem 2 goes through, so

this bound is tight in the worst case; however, returning a
ranking from the profile is not optimal for every profile.

Randomization. We did not consider randomized rules,
which may return a distribution over rankings. If we take
the error of a randomized rule to be the expected distance
of the returned ranking from the ground truth, it is easy to
obtain an upper bound of t. Again, the proof of Theorem 2
can be extended to yield an almost matching lower bound
of d↓(t). While randomized rules provide better guarantees,
they are often impractical: low error is only guaranteed when
rankings are repeatedly selected from the output distribution
of the randomized rule on the same profile; however, most
social choice settings see only a single outcome realized.6

Complexity. A potential drawback of the proposed ap-
proach is computational complexity. For example, consider
the Kendall tau distance. When t is small enough, only
the Kemeny ranking would be a possible ground truth, and
OPTdKT or any finite approximation thereof must return the
Kemeny ranking, if it is unique. The NP-hardness of com-
puting the Kemeny ranking (Bartholdi, Tovey, and Trick
1989) therefore suggests that computing or approximating
OPTdKT is NP-hard.

That said, fixed-parameter tractable algorithms, integer
programming solutions, and other heuristics are known to
provide good performance for these types of computational
problems in practice (see, e.g., Betzler et al. 2011; 2014).
More importantly, the crowdsourcing settings that motivate
our work inherently restrict the number of alternatives to
a relatively small constant: a human would find it difficult
to effectively rank more than, say, 10 alternatives. With a
constant number of alternatives, we can simply enumer-
ate all possible rankings in polynomial time, making each
and every computational problem considered in this paper
tractable. In fact, this is what we did in our experiments.
Therefore, we do not view computational complexity as an
insurmountable obstacle.

6Exceptions include cases where randomization is used for
circumventing impossibilities (Procaccia 2010; Conitzer 2008;
Boutilier et al. 2012).
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