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Abstract

In a classic result in the mechanism design literature, Cremer
and McLean (1985) show that if buyers’ valuations are suf-
ficiently correlated, a mechanism exists that allows the seller
to extract the full surplus from efficient allocation as revenue.
This result is commonly seen as “too good to be true” (in
practice), casting doubt on its modeling assumptions. In this
paper, we use an automated mechanism design approach to
assess how sensitive the Cremer-McLean result is to relaxing
its main technical assumption. That assumption implies that
each valuation that a bidder can have results in a unique con-
ditional distribution over the external signal(s). We relax this,
allowing multiple valuations to be consistent with the same
distribution over the external signal(s). Using similar insights
to Cremer-McLean, we provide a highly efficient algorithm
for computing the optimal revenue in this more general case.
Using this algorithm, we observe that indeed, as the number
of valuations consistent with a distribution grows, the optimal
revenue quickly drops to that of a reserve-price mechanism.
Thus, automated mechanism design allows us to gain insight
into the precise sense in which Cremer-McLean is “too good
to be true.”

Introduction
One of the chief problems in mechanism design, specifically
in the case of a monopolistic seller with one or more buyers,
is to provide incentives for buyers to share their private infor-
mation. Typically this requires the seller to share some of the
expected surplus from allocating the item with the buyer(s)
in exchange for his private information. However, Cremer
and McLean (1985) show that if buyers’ valuations satisfy a
correlation condition, then this is not necessary: the seller is
able to extract the full surplus in expectation. This result is
highly regarded, but it has perhaps not had the impact one
might have expected. But why not?

A standard assumption in the mechanism design literature
is that buyer valuations are independently distributed, and
therefore, knowing the valuation of one agent gives no infor-
mation about other agents’ valuations. This independence is
clearly violated in auctions in which their is a common value
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component to the item that is estimated by each of the buy-
ers individually, such as those for oil drilling rights. More
generally, for any item for which there is a resale market, an
agent’s valuation will generally include a component that is
dependent on the valuation of the rest of the community, and
as a consequence, will be correlated to the extent that poten-
tial resale is a motivation for purchase. Hence, assuming
some degree of correlation seems quite reasonable.

The correlation assumption in the Cremer-McLean result
requires that every buyer valuation corresponds to a unique
conditional distribution over the external signal(s) (e.g., the
other buyer’s valuations), and further, that these conditional
distributions are linearly independent of each other. In this
paper, we explore a relaxation of this correlation assump-
tion. Namely, we let a buyer type consist of a valuation and
a distribution over the external signal(s), and allow multiple
types to have the same distribution (but different valuations).
More specifically, buyer types are partitioned into subsets,
where within each subset all types have the same conditional
distribution over the external signal(s), but within the sub-
set, the conditional distributions are identical, implying that
within such a subset, the buyer’s valuation is independent
of the external signal(s). This setup allows us to gradually
move away from the Cremer-McLean assumption and an-
alyze how quickly the revenue drops as we do so, thereby
assessing the brittleness of the Cremer-McLean result.

To achieve this, we first obtain some structural insights
into optimal mechanisms for our relaxed setting, generaliz-
ing the corresponding insights from Cremer-McLean. These
insights lead us to an algorithm for computing the optimal
revenue that is much more efficient than solving the full lin-
ear program. This allows us to run much larger simulations
of distributions with zero partial correlation over subsets of
various sizes.

We find that as the size of the subsets of buyer types cor-
responding to the same conditional distribution increases
the optimal revenue quickly converges to that achievable
under a significantly simpler mechanism, namely a sec-
ond price auction with a reserve. Thus, in addition to
increasing our understanding of how to solve for optimal
mechanisms under a broader class of distributions, our re-
sult informs the practicality of full surplus extraction along
the lines of Cremer and McLean (1985). Our zero par-
tial correlation assumption can be interpreted as there being
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some degree of uncertainty about the buyer’s beliefs con-
ditional on his valuation, as seems likely to be the case
in practice. Therefore, our result that the revenue from
the optimal mechanism quickly converges to that of simple
mechanisms helps explain why the Cremer-McLean mech-
anism is rarely, if ever, implemented. As such, our re-
sult contributes to the literature on the optimality of sim-
ple, robust mechanisms (Hartline and Roughgarden 1998;
Lopomo 1998; Ronen and Saberi 2002). Methodologically,
our work also fits within the framework of automated mech-
anism design (Conitzer and Sandholm 2002; 2004), and
more specifically the use thereof to build intuition for clas-
sical results in mechanism design (Guo and Conitzer 2010;
Likhodedov and Sandholm 2005).

Full Surplus Extraction with Correlation
(Review of Cremer and McLean (1985))

In Cremer and McLean (1985), the optimal mechanism for
the general case where a single monopolistic seller is selling
a quantity x of a good to some number of buyers n is shown
to extract the full surplus as revenue, in expectation. For the
sake of clarity and exposition, in this paper, we restrict our
attention to a simplified setting where the seller has a single
indivisible good that the seller values at zero, there is a single
buyer, and there is an external signal (which, in this case,
does not correspond to another buyer’s valuation—but this
will work just as well for Cremer-McLean) that is correlated
with the buyer’s valuation. Our analysis can be naturally
extended to the case of more than one buyer.

The (risk-neutral) buyer has a valuation for the object
drawn from a discrete set of types denoted by the set V =
{v1, v2, . . . , v|V |} ⊂ [0, v] where vi < vi+1 for all i. The
buyer’s type, which may include information in addition to
his valuation, is denoted by θ ∈ Θ = {1, 2, . . . , |Θ|}, where
v(θ) denotes the valuation associated with this type.

In addition to the buyer, there is a discrete external signal
ω ∈ Ω = {1, 2, . . . , |Ω|} where |Ω| ≥ |V |. The buyer’s type
may be correlated with the external signal, with the joint
distribution over θ and ω given by π(θ, ω). Hence, for our
purposes, a type θ for a buyer consists of a valuation v(θ)
as well as a conditional distribution over the external signal,
π(ω|θ). It is assumed that the buyer and the seller possess a
common prior.

A (direct-revelation) mechanism is defined by the prob-
ability that the seller will allocate the item to the buyer,
q(θ̂, ω), and a monetary transfer from the buyer to the seller,
m(θ̂, ω), for every buyer-reported outcome θ̂ ∈ Θ and ob-
served ω ∈ Ω. The mechanism is permitted to require a pay-
ment from the buyer to the seller whether or not the bidder is
allocated the item, though we do require individual rational-
ity, i.e., the buyer should in expectation receive non-negative
utility for any type.
Definition 1 (Buyer’s Utility). Given true type θ ∈ Θ and
reported type θ̂ ∈ Θ, the buyer’s expected utility under
mechanism (q,m) is:

U(θ, θ̂) =
∑
ω

(v(θ)q(θ̂, ω)−m(θ̂, ω))π(ω|θ) (1)

In the case of full information, the seller observes the
buyer’s type and chooses a mechanism such that q(θ, ω) = 1
and m(θ, ω) = v(θ) for all θ ∈ Θ and ω ∈ Ω. This ensures
that the seller’s revenue is optimal; he is able to extract all
surplus from the buyer. Hence, the seller’s expected revenue
under full information is

∑
θ,ω v(θ)π(θ, ω).

In the case of incomplete information, the seller is only
able to directly observe the realization of the outside signal
ω, so he must induce the agent to report his private informa-
tion. The seller can use the following linear program to find
an optimal (revenue-maximizing) mechanism:
Definition 2 (The Optimal Mechanism Under Incomplete
Information). Optimal mechanisms under incomplete in-
formation correspond to optimal solutions to the following
linear program:

max
q(θ,ω),m(θ,ω)

∑
θ,ω

m(θ, ω) π(θ, ω) (2)

subject to
U(θ, θ) ≥ 0 ∀θ ∈ Θ (3)

U(θ, θ) ≥ U(θ, θ̂) ∀θ ∈ Θ, θ̂ ∈ Θ (4)
0 ≤ q(θ, ω) ≤ 1 ∀θ ∈ Θ, ω ∈ Ω. (5)

An optimal solution to the program in Definition 2 is guar-
anteed to maximize the expected revenue of the seller. How-
ever, in general, it will not generate revenue equivalent to the
case of full information; the seller will have to share some
of the surplus with the buyer. Cremer and McLean (1985)
impose the following additional assumption:
Assumption 1. For all θ ∈ Θ, let Γ be the following matrix
whose rows are indexed by the |Ω| elements of Ω, and whose
columns are indexed by the |Θ| elements of Θ:

Γ =

 π(1|1) · · · π(|Ω||1)
...

. . .
...

π(1||Θ|) · · · π(|Ω|||Θ|)

 (6)

Γ has rank |Θ|.
Assumption 1 does not require that the correlations have

any structure or magnitude other than full rank. Under this
assumption, they show that the expected revenue from the
program in Definition 2 and the case of full information are
identical, i.e., the seller can extract the full surplus.
Theorem 1 (Cremer and McLean (1985)). Under As-
sumption 1, there exists a solution to the program in Defi-
nition 2 with an objective value of:∑

θ,ω

π(θ, ω)m(θ, ω) =
∑
θ,ω

π(θ, ω)v(θ) (7)

A proof of Theorem 1 can be found in Cremer and
McLean (1985) or Krishna (2009). Intuitively, what allows
the seller to extract so much surplus is her ability to severely
punish the buyer for not reporting his value truthfully, by
providing a payoff that is dependent on the realization of the
external signal. Thanks to Assumption 1, the seller is able to
construct such payoffs in a way that incentivizes the buyer
both to report his true type and to pay his reported valuation
for the item in expectation. The techniques we use below
will make it clearer why Assumption 1 allows this.
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Depiction of Assumption 1
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Figure 1: Each dot represents one discrete buyer type. On
the horizontal axis is the space of conditional distributions
over the external signal (collapsed to one dimension). As-
sumption 1 implies that no two buyer types are aligned ver-
tically.

Relaxation of Assumption 1
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Figure 2: Each conditional distribution over the external sig-
nal is associated with more than one buyer valuation. As-
sumption 1 is not satisfied because vertically aligned types
have linearly dependent (in fact, identical) conditional dis-
tributions.

Relaxing Assumption 1
Assumption 1, while being satisfied by a “random” dis-
tribution with probability one, in practice adds significant
fragility to the Cremer-McLean mechanism. The mecha-
nism relies on a very precise specification of the joint dis-
tribution over buyer types and external states, being able to
associate with each buyer type a unique conditional distri-
bution over the external signal. In practice, it will be hard
to estimate this distribution so precisely. In particular, the
buyer may well perceive the conditional distribution over the
external signal to be slightly different.

Figure 1 illustrates the crucial feature of Assumption 1
that there are no two types with the same conditional dis-
tribution over the external signal but with different valua-
tions. In contrast, we allow that there exists a range of pos-
sible conditional distributions for each unique buyer valua-
tion. We also allow for the possibility that these distributions
overlap, i.e., a conditional distribution may not uniquely
identify the buyer valuation, breaking Assumption 1. This is
illustrated in Figure 2, where valuations are consistent with
multiple conditional distributions, and vice versa. Formally,

we let the type space be partitioned as Θ =
⋃k
i=1Xi (where

Xi ∩ Xj = ∅ when i 6= j), such that θ and θ′ lead to the
same conditional distribution over Ω if and only if they are
in the same Xi. We do hold on to part of Assumption 1, in
that we assume that the distinct distributions corresponding
to different Xi are linearly independent.
Assumption 2. Define πi(ω) = π(ω|θ) for any θ ∈ Xi.
{π1, . . . ,πk} are linearly independent.

A More Efficient Algorithm
Again, whether or not Assumptions 1 and/or 2 are satisfied,
solving the linear program in Definition 2 will give an op-
timal mechanism for the seller. However, solving the LP in
a straightforward way does not scale to large instances of
the problem. E.g., the algorithm by Karmarkar (1984) gives
a runtime bound of O((|Θ||Ω|)3.5L), where L is the length
of the encoding. This still significantly limits what we can
do, particularly when the external signal is multidimensional
(for example, predicting multiple other valuations). In this
section, we develop a significantly more efficient algorithm
for finding the optimal revenue in our setting. To do so, we
must first define some useful concepts. First, we define a
reserve price mechanism on a restricted subset of the types.
Definition 3 (Reserve Price Mechanism). A mechanism
(q,m) is a reserve price mechanism when restricted to sub-
set of types Θ′ ⊆ Θ if the following holds. There exists
some θ∗ ∈ Θ′ such that for all ω ∈ Ω, (1) for all θ ∈ Θ′

with v(θ) ≥ v(θ∗), q(θ, ω) = 1 and m(θ, ω) = v(θ∗), and
(2) for all θ ∈ Θ′ with v(θ) < v(θ∗), q(θ, ω) = 0 and
m(θ, ω) = 0. Note that this mechanism is optimal among
such mechanisms if and only if

θ∗ ∈ arg max
θ∗∈Θ′

∑
θ,ω

π(θ, ω)v(θ∗)1{v(θ)≥v(θ∗)}. (8)

Next, we recall the definition of a proper scoring rule,
of which we will make use in what follows. Informally, a
proper scoring rule rewards a forecaster in a way that makes
it optimal for him to reveal his true subjective distribution.
Definition 4 (Proper Scoring Rule). Let Ω = {1, . . . , |Ω|}
be a sample space consisting of a finite number of mutu-
ally exclusive events and let P = {p = (p1, . . . , p|Ω|) :
p1, . . . , p|Ω| ≥ 0, p1 + . . . + p|Ω| = 1} be the set of prob-
ability distributions over Ω. Then a scoring rule is a set
of |Ω| functions H(·, ω) : P → R for ω ∈ Ω. A proper
scoring rule is one such that for all p = (p1, . . . , p|Ω|) and
p′ = (p′1, . . . , p

′
|Ω|):∑

ω∈Ω

pωH(p, ω) ≥
∑
ω∈Ω

pωH(p′, ω) (9)

A strictly proper scoring rule is one such that Equation 9 is
only satisfied with equality when p′ = p.

Proper scoring rules have been elegantly characterized:
Theorem 2 (Gneiting and Raftery (2007)). A scoring rule
is proper if and only if there exists a convex function G :
P → R such that

H(p, ω) = G(p)−
∑
ω′∈Ω

pω′G
′
ω′(p) +G′ω(p) (10)
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where G′ω(p) is the ωth component of the subgradient of G.
H is strictly proper if and only if G is convex. Note that∑
ω∈Ω pωH(p, ω) = G(p)—that is, G gives the expected

reward for truthful reporting.

We are now in a position to define our mechanism. Intu-
itively, we first obtain the optimal reserve price mechanism
for each Xi, and subsequently add a strictly proper scoring
rule—one that gives an expected value of 0 for truthfully re-
porting any of the πi—to remove the incentive to misreport
into a different Xi. The formal description follows. That
this mechanism is well defined (under Assumption 2) will
be shown in the subsequent theorem.

Definition 5. Let qi andmi be defined for any i (1 ≤ i ≤ k),
such that for ω ∈ Ω and θ ∈ Xi, qi(θ, ω) and mi(θ, ω) are
equivalent to the optimal reserve price mechanism for the
subsets of type inXi. (Note that (qi,mi) as a whole may fail
to be incentive compatible, because an agent may misreport
to a different Xi.) Then, define the following strictly convex
function:

G∗(p) =
∑
ω∈Ω

(p2
ω − aωpω) (11)

where the ai are given by any solution to the following:π1(1) . . . π1(|Ω|)
...

. . .
...

πk(1) . . . πk(|Ω|)


 a1

...
a|Ω|

 =


∑
ω(π1(ω))2

...∑
ω(πk(ω))2


(12)

Then, define a strictly proper scoring rule H∗ using G∗ as
in Equation 10, and let

κ = min
j 6=l,j,l∈{1,...,k}

|
∑
ω

πl(ω)H∗(πj , ω)|

be the minimum loss from misreporting the distribution. Let
K = v/κ, let G(p) = KG∗(p), and define H as in Equa-
tion 10 using G. Let m∗(θ, ω) = −H(πi, ω) for θ ∈ Xi.

Finally, for θ ∈ Xi and ω ∈ Ω, our mechanism is defined
as q(θ, ω) = qi(θ, ω) and m(θ, ω) = m∗(θ, ω) +mi(θ, ω).

Theorem 3. If Assumption 2 holds, then the mechanism in
Definition 5 is well defined and constitutes an optimal solu-
tion to the linear program in Definition 2.

Proof. We first show that the mechanism is well defined and
that the scoring rules are proper. First, note that G∗ as given
by Equation 11 is strictly convex. Since π1, . . . ,πk are lin-
early independent by Assumption 2, Equation 12 has at least
one solution. Also by Equation 12, for all i ∈ {1, . . . , k},
we have

G∗(πi) =
∑
ω∈Ω

(πi(ω)2 − aωπi(ω)) = 0

Because G∗ is strictly convex, by Theorem 2, H∗ is strictly
proper, so

∑
ω πl(ω)H(πj , ω) < 0 for all l 6= j, implying

κ > 0. Therefore, K is well defined and positive. Since
K > 0, G is strictly convex, implying that H is also a
strictly proper scoring rule with expected value 0 for truth-
fully reporting one of the πi.

We next show that the mechanism satisfies individual ra-
tionality and incentive compatibility. Let the buyer’s true
type be θ ∈ Xi and his reported type by θ̂ ∈ Xj . By Equa-
tion 1,

U(θ, θ̂) =
∑
ω

(v(θ)qj(θ̂, ω)−mj(θ̂, ω)−m∗(θ̂, ω))π(ω|θ),

and if we define

U ′(θ, θ̂) =
∑
ω

(v(θ)qi(θ̂, ω)−mi(θ̂, ω))π(ω|θ),

thenU(θ, θ̂) = U ′(θ, θ̂)+
∑
ω π(ω|θ)H(πj , ω). If the buyer

reports truthfully (θ̂ = θ), then U(θ, θ) = U ′(θ, θ) because
H gives expected value 0 for truthfully reporting one of the
πi. Since U ′(θ, θ) is just the utility of a buyer facing a re-
serve price, Equation 3, the individual rationality constraint
in the program in Definition 2, is satisfied.

We now move on to incentive compatibility. Suppose
θ 6= θ̂; then, there are two possibilities. First, assume that
θ̂ ∈ Xi as well. Then, U(θ, θ̂) = U ′(θ, θ̂). U ′(θ, θ̂) is the
utility for a buyer under a reserve price mechanism, so Equa-
tion 4, the incentive compatibility constraint in the program
in Definition 2, is satisfied, since reserve price mechanisms
satisfy incentive compatibility. Second, assume that θ̂ ∈ Xj

with j 6= i. Because U ′ consists of reserve price mecha-
nisms, the maximum that a buyer can hope to profit under
U ′ from misreporting his true type is v. So,

U(θ, θ̂) = U ′(θ, θ̂) +
∑
ω

π(ω|θ)H(πj , ω)

≤ U ′(θ, θ) + v +
∑
ω

π(ω|θ)H(πj , ω)

≤ U ′(θ, θ) + v + (v/κ)
∑
ω

π(ω|θ)H∗(πj , ω)

≤ U ′(θ, θ) = U(θ, θ)

by the definition of κ. Therefore, the incentive constraint
defined by Equation 4 is satisfied.

We have thus shown that our mechanism constitutes a fea-
sible solution to the program in Definition 2. All that re-
mains to show is that it is optimal. The objective value of
our mechanism (Equation 2) is:∑
θ,ω

m(θ, ω)π(θ, ω) =
∑
θ,ω

(m′(θ, ω) +m∗(θ, ω))π(θ, ω)

=
∑
θ,ω

m′(θ, ω)π(θ, ω) +
∑
θ

π(θ)
∑
ω

m∗(θ, ω)π(ω|θ)

=
∑
θ,ω

m′(θ, ω)π(θ, ω) (13)

where the last equality follows from the fact thatH gives ex-
pected value 0 for truthfully reporting one of the πi. There-
fore, the expected revenue of our mechanism is a weighted
combination of the expected revenues of a set of optimal re-
serve price mechanisms, one for each Xi. More precisely,
conditional on the buyer’s true type being in Xi, the ex-
pected revenue of our mechanism is that of the optimal re-
serve price mechanism for the conditional distribution on the
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valuations in Xi. However, this is the maximum revenue the
seller could hope for, even if she directly observed Xi. This
is because an optimal reserve price mechanism is revenue
optimal for a single buyer whose valuation is independent of
all observable signals (Myerson 1991). It follows that our
mechanism maximizes expected revenue.

It is worth pointing out that Cremer-McLean follows as
the special case where |Xi| = 1 for all i. In this case, of
course, the reserve price for Xi will be set to the unique
valuation in Xi.

Definition 5 corresponds straightforwardly to an algo-
rithm for computing its mechanism.

Theorem 4 (Runtime). Under Assumption 2, the algorithm
corresponding to Definition 5 can be used to find an optimal
mechanism in O(|Ω|2k) steps.

Proof. The most computationally intensive step of the algo-
rithm is computing the coefficients ofG∗ using Equation 12,
which can be done in at most O(|Ω|2k) steps using QR de-
composition.

However, the precise solution to Equation 12 does not af-
fect the optimal revenue. Hence, if we are only interested in
computing the optimal revenue (without explicitly finding a
mechanism that attains this revenue), then we only need to
compute the optimal reserve price mechanisms. This is in-
deed the situation in which we find ourselves, with our goal
of assessing how quickly the optimal revenue drops off as
we relax Assumption 1 from Cremer-McLean.

Theorem 5 (Runtime, optimal revenue only). Under As-
sumption 2, the optimal objective value of the program in
Definition 2 can be calculated in O(|Ω||Θ|) steps by com-
puting each mi as in Definition 5 for i ≤ i ≤ k.

Proof. From Equation 13, it follows that the optimal objec-
tive value of the program in Definition 2 can be calculated
using just the values ofmi, where eachmi is calculated sep-
arately for each Xi (i ∈ {1, . . . , k}). The most computa-
tionally intensive step is calculating the conditional distri-
butions, πi, to determine the subsets Xi, and the marginal
distribution over types, π(θ); these can be computed in
O(|Ω||Θ|) steps.

Then we can calculate the revenue and reserve price for
the optimal reserve price mechanism in O(|Xi|) steps for
each Xi. To see this, start with θmax ∈ Xi such that
v(θmax) ≥ v(θ) for all θ ∈ Xi. Then, if we set v(θmax)
as the reserve price and πmax = π(θ), then the revenue is
πmaxv(θmax). Record this value, type, and πmax, and then
repeat the same procedure with the next highest type, i.e.,
θ′max ∈ X ′i = Xi\{θmax}, and set π′max = πmax +π(θ′max).
Repeat untilX ′i = ∅. The maximum value realized across all
types is the revenue for an optimal reserve price mechanism
under Xi, requiring O(|Xi|) steps to calculate. The revenue
from the mechanism as a whole is just the sum of the rev-
enues of the individual optimal reserve price mechanisms.
If we do this for every Xi, it takes O(

∑
i |Xi|) = O(|Θ|)

steps. Therefore, the revenue from the optimal mechanism
can be calculated in O(|Ω||Θ|) steps.
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Figure 3: Runtimes of the various algorithms. This demon-
strates the scaling in buyer types of or our algorithms com-
pared to the naive method, so there is no distributional over-
lap (i.e., |Θ| = |Ω| = k, or Assumption 1 holds). Distri-
butions and valuations are randomly generated 20 times for
each point and runtimes are averaged. Note the logarithmic
scale for runtime.1

Experimental Results
To explore the effects of relaxing Assumption 1, we simulate
increasing amounts of overlap in conditional distributions,
along the lines of Figure 2. We perform simulations us-
ing problem instances generated under two conditions, one
where the instances are deterministically specified and one
where they are randomly generated.

For the deterministically specified problem instance, we
create a base set of conditional distributions, πi, indexed
by i ∈ {1, . . . , |V |}, implying k = |V |. First, we define
π′i, a linear function of ω ∈ Ω = {1, . . . , |Ω|} such that
π′i(1) = 11

2 − εi and π′i(|Ω|) = 11
2 + εi, where each εi is

the ith point on a straight line of evenly spaced points from
−ε to ε. These k functions are simply linear functions with
a range bounded by [1, 2] where as i increases, the slope of
the function increases. We then set π(ω) = log(π′(ω)), to
ensure that linear independence is satisfied (the choice of
log(•) is arbitrary; any non-linear transformation will do),
and we normalize to create a valid probability distribution.
The range of the linear functions, [1, 2] is chosen to en-
sure that all values are positive after this non-linear trans-
formation. We end up with conditional distributions such
that for all i ∈ {1, . . . , |V | − 1}, πi+1 first order stochas-
tically dominates πi. We calculate the marginal probability
of any particular buyer type, π(θ), by assigning a uniform
probability equal to 1/|Θ|. Valuations are given by the set
{1, 2, . . . , |V |}.

1We use a core i7 3770 CPU with 8 GB of memory. The lin-
ear program in Definition 2 is solved using CPLEX with a .lp file
specifying the full linear program. The algorithms corresponding
to Definition 5 and calculating optimal revenue only (as in Theo-
rem 5) are computed using Matlab R2013b. In Figure 4, CPLEX
required all of system memory to specify the linear program after
an overlap of 10 causing significant thrashing, so we discarded any
further runtimes for the linear program.
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Figure 4: Runtimes of the various algorithms when we hold
fixed the number of buyer valuations (|V | = 20) and vary
the degree of overlap from 0 to complete. Probabilities and
valuations are randomly generated 20 times for each point
and runtimes are averaged. Note that |k| = |V | = 20, and
|Θ| = |Ω| varies from k (no distributional overlap) to k|V |
(full distributional overlap, or |V | types in each of k subsets).
Note the logarithmic scale for runtime.1

This specification of the conditional distributions gives us
a natural interpretation of distributional “closeness”: specif-
ically, two distributions are close if their value of εi is close.
We increase overlap in a way analogous to Figure 2, where
the degree of overlap would be two in the figure (two ad-
ditional marginal distributions on each side of the original
distribution).

To demonstrate that our results are not driven by the de-
tails of our deterministic specification, we also generate
random instances. In these, both the marginal and condi-
tional distributions’ probabilities are drawn randomly from
the uniform distribution over [0, 1] and then normalized. The
elements of V are drawn uniformly, without replacement,
from the set {1, 2, . . . , 500}.

Figures 3 and 4 demonstrate the improvements in run-
time for both calculating the full mechanism using the al-
gorithm corresponding to Definition 5 and just calculating
the revenue only as in Theorem 5 relative to solving the lin-
ear program from Definition 2. Our improvement in runtime
is especially dramatic for increasing distributional overlap:
the runtimes for both revenue only and the full mechanism
increase very slowly, while the linear program fails due to
memory constraints for a relatively small problem size.

In Figure 5, we demonstrate the value of the optimal
mechanism as we go from no distributional overlap (As-
sumption 1 holds), with a relative performance of 1, to full
overlap (i.e., each Xi contains a type corresponding to ev-
ery valuation). We also report the scaled value of an optimal
pure reserve price mechanism on the full set of types for
comparison (that is, not a separate reserve price for eachXi,
but just a single reserve price overall). As can be seen in
the figure, once a small degree of overlap is introduced, the
revenue from the optimal auction rather quickly converges
to that of a simple optimal reserve price mechanism.

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Relative Performance with Distributional Overlap

Degree of Overlap in Conditional Distributions

R
e

la
ti
v
e

 S
e
lle

r 
R

e
v
e
n

u
e

 

 

Full Surplus (Cremer−McLean)

Optimal Revenue (Random)

Optimal Revenue (Deterministic)

Pure Reserve Price Mechanism

Figure 5: Revenue comparisons. We have |V | = 50, |Ω| =
2500, and ε = .4 (for deterministically specified). Probabil-
ities and valuations are generated as described in the text for
both the deterministically specified and randomly generated
instances (relative performance is effectively identical). We
generate random data 20 times for each point and average
the relative performance. On the vertical axis, a value of one
denotes full surplus extraction, as in Cremer and McLean
(1985), and .55 is the value of a pure reserve price mecha-
nism (the average scaled value in the simulations).

Conclusion
In practice, there are many situations where a buyer’s valu-
ation is correlated with an external signal. However, the ac-
curacy required of the seller and buyer’s common prior for
the Cremer and McLean (1985) mechanism is likely imprac-
tical. In addition to increasing our understanding of mecha-
nism design with non-independent buyer valuations in gen-
eral, our relaxation of the Cremer-McLean assumption al-
lows us to investigate what happens in an environment with
more limited accuracy. Figure 5 suggests that as the accu-
racy goes down, the gains relative to a simple reserve price
auction, which does not use the correlation information at
all, rapidly disappear. We view our result as further justify-
ing the use in practice of such simple, robust mechanisms.

To be able to run these experiments, we introduced a new
algorithmic approach to calculate the optimal mechanism for
a single buyer with a valuation that is correlated with an ex-
ternal signal. This algorithm is correct if our Assumption 2
(which is a relaxation of the original Cremer-McLean as-
sumption, Assumption 1) holds. This algorithm is signifi-
cantly faster than the standard approach of solving the linear
program directly, both under the Cremer-McLean assump-
tion (as evidenced by Figure 3) and under Assumption 2
(Figure 4), and the decreased runtime allowed us to explore
much larger problem instances than would otherwise have
been possible. As such, our work illustrates how automated
mechanism design, with the help of algorithmic tools de-
veloped for the specific mechanism design problem at hand,
allows us to develop new high-level insight into the problem.
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