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Abstract

Deciding the outcome of an election when voters have pro-
vided only partial orderings over their preferences requires
voting rules that accommodate missing data. While exist-
ing techniques, including considerable recent work, address
missingness through circumvention, we propose the novel ap-
plication of conventional machine learning techniques to pre-
dict the missing components of ballots via latent patterns in
the information that voters are able to provide. We show that
suitable predictive features can be extracted from the data,
and demonstrate the high performance of our new framework
on the ballots from many real world elections, including com-
parisons with existing techniques for voting with partial or-
derings. Our technique offers a new and interesting concep-
tualization of the problem, with stronger connections to ma-
chine learning than conventional social choice techniques.

Introduction
Sometimes, as in national elections, hiring committees, and
resource allocation problems, a group of agents (human or
computational) will need reach common agreement on a
course of action. This is often best accomplished by tak-
ing a vote, in which the agents (voters) express their pref-
erences about which action to take in some common format.
A voting rule is then applied to aggregate the preferences in
some way, producing an outcome. For example, in an Amer-
ican Presidential election, voters cast a ballot indicating their
most preferred choice, and the ballots are aggregated to pro-
duce a sum total of the ballots cast for each candidate (and
then further aggregated to produce the electoral college tal-
lies), and the outcome action is that the candidate with the
most votes will be asked to serve as President for the next
four years. There are many applications of voting within
artificial intelligence, including multiagent resource alloca-
tion (voting on which resources to assign to which agents);
combing ensembles in machine learning; and coordination
strategies for multiagent systems in general.

Although voting is, in general, a desirable way to han-
dle group decision making, some voting systems may yield
better outcomes than others, and consequently, there exist a
great many possible voting rules. Most of these rules (in-
cluding all those considered in this work) are based on the

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

concept of ranked ballots. Ranked ballot voting systems re-
quire voters to specify not only their favourite alternative,
but a linear ordering over all the alternatives. This format
allows many nice properties to be satisfied. For example,
with this extra information, one can select “compromise” al-
ternatives, or avoid picking polarizing alternatives that are
the first choice of one portion of the electorate, but the last
choice of everyone else. However, this extra information
comes at a price: voters must be able (and willing) to ex-
press their complete preferences.

In some domains, even though the extra ranking informa-
tion could allow for a better outcome, voters may be unable
to provide it. For instance, in multi-agent resource alloca-
tion, we might prefer compromise solutions, under the as-
sumption that these will be less unequal than solutions which
are the absolute favourites of individual voters. However, in
multi-agent resource allocation problems, the set of possi-
ble allocations is usually combinatorially large. Most voters
(humans or agents) would have difficulty expressing a linear
ordering over such a large set. Similarly, certain voting rules
have extremely desirable properties for national elections,
and are able to operate efficiently, but require voters to rank
hundreds of alternatives to work effectively (e.g. Skowron
et al. 2013). Finally, in domains like committee meetings
where votes are public, voters may not wish to supply com-
plete information. Telling one of your colleagues that their
pet proposal is your least preferred alternative may have
greater political impact than merely abstaining.

Domains like the above examples have spurred consider-
able work on deciding elections without complete preference
information. The simplest, and perhaps oldest, technique
is just to treat missing information as abstentions. For in-
stance, the popular Single Transferable Vote scheme (Tide-
man 1995) (notably used in Australian national elections) is
often applied to incomplete ballots. If a voter only specifies
their top three preferences, and all three are eliminated dur-
ing runoffs, then the voter is treated as abstaining from the
remainder of the election.

This approach is elegant in its simplicity, but leaves some-
thing to be desired in its implications. Voters who fail to
complete their ballots are, in many cases, not so much am-
bivalent about the alternatives they omit as uninformed, or
else unwilling to reveal their opinions. Rare indeed is the
case where a person truly has no preferences at all regarding
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the relative quality of two distinct items. Instead, we would
like to decide the election in a way that is consistent with
voters’ true hidden (or unknown) preferences, using only the
information they have chosen (or are able) to reveal.

We are not the first to consider this approach. Notably,
Condorcet’s Jury Theorem (See Black 1987 for a detailed
summary) first proposed the idea of treating ballots as noisy
observations of some hidden truth, and of using statisti-
cal techniques to infer the truth from these observations.
This is sometimes called the Maximum Likelihood Esti-
mation (MLE) approach to voting. Recently this approach
has been developed to address partial preferences. Xia and
Conitzer (Xia and Conitzer 2011) for instance, developed a
model that assumes each partial ballot is a noisy observation
of several pairwise comparisons of candidates. Thus, rank-
ing A before B on one’s ballot is treated as a noisy observa-
tion thatA is a better alternative thanB. However, determin-
ing who has won an election under this rule is computation-
ally expensive, and the rule assumes that ranking A before
B on one’s ballot cannot provide information about whether
A might also be preferred to some other, unranked, candi-
date C, when in practice it often can1. Other related work
includes Lu and Boutilier’s work applying techniques from
robust optimization to the problem (Lu and Boutilier 2011;
2013). In this approach, selecting a winner from an election
with partial information becomes an optimization problem.
The goal is to select a winner according to voting rule from
a commonly applied family, such that an adversarial com-
pletion of the ballots produces the least dissatisfaction with
the choice. This avoids selecting candidates that most voters
(secretly or unknowingly) despise.

In this work, we study the possibility of using existing,
standard, algorithms from machine learning to decide elec-
tions with missing information. These techniques have the
advantage of being able to detect (in principle) arbitrary
patterns contained in the ballots voters cast, and so avoid
the assumptions of pairwise independence found in Xia and
Conitzer’s approach. They also aim to compute the most
likely outcome, rather than the safest one, and so are less
conservative, and should be suited to a somewhat different
set of applications than Lu and Boutilier’s system.

A New Approach
The proposed technique splits the problem into two portions,
each of which has been studied extensively on its own. In the
first portion, existing machine learning techniques are used
to generate a completion of the partial ballots voters cast.
In the second portion, existing voting rules are applied to
the completed ballots to select the winner. This partitioning
of the problem has several advantages. First, existing tech-
niques in both fields are generally well studied and widely
implemented. If the proposed system works well, then this
would greatly simplify the problem of deciding elections
with partial information by reducing it to the combination
of existing approaches. Second, by phrasing the problem of

1For instance, in national elections, a ranking of the form Com-
munists � Socialists � Centrists actually says a great deal about
what this voter thinks of the Conservative candidate

deciding elections with partial preferences as a more gen-
eral machine learning problem, it allows us to consider the
problem from an novel and interesting standpoint.

Completing Ballots
The process we propose for completing ballots is Imputa-
tion via Classification. Imputation is the process of replac-
ing missing data (often referred to as “missingness”) with a
carefully selected guess at the missing value (Schafer 1999).
For instance, if a person’s age is missing from an otherwise
complete questionnaire, a very simple imputation technique
would replace the missing age with the average age of the
other questionnaire-takers. A more sophisticated technique
would be to use the age of another questionnaire-taker with
similar demographic characteristics, especially those known
to be correlated with age.

While imputation techniques are widely used in other do-
mains with missingness, we are unaware of any direct ap-
plication of imputation to the problem of missingness in
election ballots. Intuitively, however, imputing the missing
components of these ballots is possible because real-world
votes have underlying structure: not every ordering of alter-
natives is equally likely to appear on a ballot. By exploiting
this fact, we hope to provide outcomes more reflective of the
electorate’s desires than techniques that treat missing com-
ponents independently of the content of the ballots.

Classification algorithms operate over a data matrix X
and label vector Y , with an equal number of rows. The algo-
rithm finds a model (a function) c such that c(X) is a vector
of labels, and a cost function G(c, c(X), Y ) is minimized.
The set of possible functions from which c may be selected
is called the hypothesis space, and is usually restricted in
a way intended to ensure that c captures general patterns
in the data that will allow it to accurately predict the la-
bels of previously unseen datapoints in future. G often has
some related component based on the structure of c as well
as the number of differences (errors) between c(X) and Y .
For instance, G might penalize functions which are not very
“smooth” (regularization).

In the context of this work, we say that a social choice
problem consists of selecting from among a set of alterna-
tives O, according to a set of N ballots collectively repre-
sented by the vote matrix R. The vote matrix is organized
so that each row represents the preferences of a user, with
their most preferred preference in the first column, and each
following preference placed in a following column. For in-
stance Ri,j would be the jth most preferred candidate of
voter i, an element of O. If voter i has specified only j pref-
erences, then Ri,k = ∅,∀ k > j.

A given ballot (row) ri ∈ R thus represents of a total
ordering over an arbitrary subset of O. We assume the ele-
ments of O that are not on the ballot are of lower rank in the
voter’s preferences than those candidates that were ranked2.

Finally, we denote the vote matrix formed by the first j
columns of R with Rj . For instance, R1 denotes the first
preferences of every ballot, while R2 denotes the first and
second preferences of every ballot. We assume that there are

2This is equivalent to top-t orderings (Baumeister et al. 2012).
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at least two candidates (|O| ≥ 2), at least two ballots (N ≥
2), and that every ballot has at least one candidate ranked on
it (|ri| ≥ 1, ∀ 1 < i ≤ N).

Our system begins by extracting R2, the first and second
preferences of every voter’s ballot. Some ballots may state
only a single preference, while others state two. Taking the
subset of R2 which is complete (Rc2 = {r ∈ R2| |r| = 2}),
we use a classification algorithm C to train a classifier c2 =
C(Rc2), which predicts the second preference of each ballot
from their first preferences. The data matrixX used for clas-
sification is some function Φ of the first preferences on every
ballot in Rc2 . The label vector Y is the second preference of
every ballot in Rc2 . Once c2 has been computed, we use it
to impute R2 \ Rc2 , generating a complete ballot matrix of
two columns. We call this imputed ballot matrix R′2.

The process is then extended to the next column of R. We
take the ballot matrix of the first, second and third prefer-
ences (R3), and build a classifier c3 onRc3 . We can then use
c2 to impute all missing second preferences, and c3 to im-
pute R3 \ Rc3 and generate R′3. We can iterate this process
until the generation of R′|O| = R′, an imputation of the en-
tire ballot matrix. A winning alternative can then be selected
by applying any standard voting rule S to the imputed ma-
trix: S(R′) = o′. We formalize this process in Algorithm 1.

Algorithm 1 Algorithm for selecting a winning alternative
in an election with partial ballots using imputation.
1: function IMPUTE BALLOTS(O,R,S,C)
2: for all 2 ≤ j ≤ |O| do
3: LET cj ← C(Rcj )

4: SET missing← Rj \ Rcj
5: for all 2 ≤ k ≤ j do
6: missing← ck( missing )

7: end for
8: SET R′j ← Rcj∪ missing
9: end for
10: RETURN o′ ← S(R′|O|)

11: end function

The correctness of the imputations produced by our algo-
rithms depend on the selection of classification algorithm C
and on the amount of data available (i.e. the total number
of complete preferences at each step), as well as the way
in which voters’ preferences are generated. For instance,
learning a full joint distribution P (Ri,j |Ri,x|0 < x < j) for
preferences will converge with certainty to the correct dis-
tribution of preferences irregardless of how voters’ prefer-
ences are generated, but the error in its estimates will drop
as O(( N

|O||O| )
−0.5), which is impractically large for most

problem domains. Using other classification algorithms al-
lows convergence to some model with much less data, but
assumes that the ballots were generated by a particular
process. Consequentially, we can only guarantee the per-
formance of the algorithm in terms of the closeness with
which the chosen classification algorithm is suited to learn-
ing whatever process has generated the missing ballots. We
provide a more formal description of this relationship in the
Performance Guarantees section below.

Once ballots are completed, any voting rule capable of op-

erating over complete preferences may be applied to them
to determine the winner. In this paper we primarily con-
sider Borda’s rule. Borda’s Rule operates by selecting the
candidate with the highest mean position on the ballots that
were cast. Each candidate is given a Borda score computed
as BC(o) =

∑
i |O| − Pos(Ri, o) where Pos(Ri, o) is the

position of candidate o on ballotRi (that is, ifRi,j = o, then
Pos(Ri, o) = j). The candidate with the highest score wins.
The rule is used to select compromise candidates; however,
even if a majority of the electorate have the same first pref-
erence, that candidate will not necessarily be declared the
winner (i.e. it does not satisfy the majority criterion). We se-
lected the Borda rule because it is simple to implement, and
because it degrades in an easily understandable way when
errors are introduced into voters’ ballots: swapping the posi-
tions of two candidates on a voter’s ballot affects their scores
in a way directly proportionate to how much the voter pre-
ferred one candidate over the other.

Imputation as Social Choice
Our motivation for Algorithm 1 comes from the interesting
observation that imputation can be viewed as a form of so-
cial choice in its own right. The partial ballots can be viewed
as voting in favour of certain potential completion policies
over others, which provides a nice grounding for the use of
imputation algorithms. We formalize this idea as the follow-
ing theorem. (Proof omitted for space reasons)

Theorem 1 Every classification algorithm, when used to
impute missing information in ballots via the process de-
scribed in Algorithm 1, is equivalent to a social choice func-
tion.

The implication of Theorem 1 is that using classifiers for
imputation entails holding a vote on the treatment of miss-
ingness in the data. Some chained classifiers are equivalent
to voting rules with fairly intuitive interpretations (for in-
stance, random dictator is a perfectly valid voting rule, and
corresponds to a form of ‘hot-deck’ imputation).

A number of results follow directly from this theorem.
For instance, every non-random classification algorithm will
elicit strategic play from voters (by the Gibbard-Satterwaith
theorem), but can also provide computational resistance to
manipulation provided the scoring rule used for the actual
election S is similarly resistant. Although we do not explore
this result further here, there are many promising avenues of
research following from it.

Performance Guarantees
In this section we formalize the process by which the algo-
rithm works, and the various components of the algorithm,
allowing us to provide a concrete performance bound.

We define a positional scoring rule as a voting rule with an
|O|-dimensional scoring vector ~v. The score of a candidate
o is equal to S(o,R) =

∑
i vPos(o,Ri) where Pos(o,Ri)

is the position of candidate o on ballot Ri, and vx is the
xth element of v. Many commonly used rules are positional
scoring rules. For example the Borda count is a positional
scoring rule with vi = |O|− i. A monotonic positional scor-
ing rule satisfies that vx ≥ vx+1 for all 0 < x < |O|.
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Ballots are generated by a parameterized processM.M
is defined by a set of distributions over possible ballots
πo|o ∈ O, and if the “correct” outcome of the election is ô,
then ballots are generated by sampling i.i.d. from πô. A po-
sitional scoring rule S is consistent with a ballot generating
processM if, for every o ∈ O, applying S to an infinite set
of ballots sampled from πo causes S to select o as the winner
of the election with probability one.

Top-t ballots are generated by applying a process N to a
profile of ballots. N is defined by a distribution over possi-
ble ablations of individual ballots. We assume N is neutral,
meaning that the probability of ablating the bottom k posi-
tions on a ballot does not depend on the order of candidates
on the ballot. We defineN (k) to be the probability of ablat-
ing at least the last k positions from the ballot.

Under these assumptions, we can put a bound on the min-
imum performance of the classifier required to recover the
correct outcome when S is a monotonic positional scoring
rule. In particular, we show that if for any o ∈ O, o 6= ô,
S(ô, R)−S(o, R) +

∑
1≤k≤|O|[P (Pos(ô, Ri) = k)

∑
1≤j≤k(N (j)−N (j +

1))(vk −
vdε|O|+(1−ε)je+vbε|O|+(1−ε)jc

2
)] −

∑
1≤k≤|O|[P (Pos(o, Ri) =

k)
∑

1≤j≤k(N (j) − N (j + 1))(vk −
vd(1−ε)|O|+εje+vb(1−ε)|O|+εc

2
)] ≥

bias(ô, o, c, R), where bias(ô, o, c, R) is the classifier’s bias for
ô over o, and ε is a tolerance parameter, then our proposed
technique will fail to find the correct outcome in expectation.

That is, if difference between classifier’s bias (the ex-
pected change in the score of a candidate as a result of ab-
lating and then imputing the ballots with that classifier) for
the winning candidate and every other candidate exceeds the
margin of victory between those two candidates under as-
sumptions about the damage ablation has done (parameter-
ized with ε), then we can be sure the winner we selected
would have been the true winner in the original ballot. This
means that the technique’s effectiveness depends on the mar-
gin of victory in an election held using the true (hidden) pref-
erences of the voters, and that the more accurate the classi-
fiers are, the closer that margin can be before a mistake is
possible. (Proof omitted for space reasons) We conjecture
that a similar relationship exists for the process in Algorithm
1 for any Generalized Outcome Scoring Rule (Xia 2014), a
much broader class of voting rules.

Validation
In this section, we present the application of our imputa-
tion based approach to social choice to datasets from the
preflib.org repository (Mattei and Walsh 2013). We show
that using imputation to select the winner produces accurate
results under a missingness process N derived empirically
from the data itself.

We examined data from a total of eleven elections from
the Irish and Debian datasets3, which are both comprised of
real-world ballots with ranked preference formats. In both
sets, voters were able to omit preferences if desired. The De-
bian set contains election data for the seven leadership elec-
tions from 2002-2012, and the vote on the Debian Project
logo. The Irish set contains the ballots from the Dublin

3http://www.preflib.org/election/{irish,debian}.php

North, Dublin West, and Meath constituencies during the
2002 national election. Collectively, these elections provide
good diversity both in terms of the number of candidates
running, and the degree of missingness in the voters’ pref-
erences. The Debian sets typically contain between 4 and
8 candidates, and between 50 100 and 400 complete ballots.
The Irish sets contain between 8 and 14 candidates, and each
have around 4000 complete ballots.

Preprocessing: Each dataset was processed as follows:
First, all ballots in the original set which were incomplete
were discarded, after learning an empirical distribution of
missingness from them. The remaining ballots were ablated
according to either an empirically learned distribution of
missingness, and then converted into a set of ballot matrices
R2...R|O|. For each such matrix, we dropped all incomplete
ballots, and used the last preference as a vector of labels
for training a classifier. The other preferences on the ballot
were converted into a numeric matrix of features, encoding
for each candidate whether it appeared on the ballot, and at
which position it appeared; and encoding for each pair of
candidates what the relative ordering of the two candidates
was (if known), and how far ahead of each other they were
on the ballot.

Experiment: For each of the 11 elections, we first empir-
ically measured the distribution of missing information (i.e.
the fraction of voters with at least k candidates on their bal-
lot for every k). We then dropped all the ballots with miss-
ing information to produce the ground truth set (the ballots
where we know exactly how every voter ranked every can-
didate). Using the measured distribution of missingness, we
generated 100 random ablations of this ground truth set. For
each ablation, we used Algorithm 1 to decide the outcome of
the election. We used one-vs-all classification (OVA) (Rifkin
and Klautau 2004) with L1 regularized logistic regression as
the base classifier to learn the imputation model for each po-
sition on the ballot. This is a standard and relatively simple
approach to classification when there are more than two pos-
sible classes (in this case, each ballot can belong to one of
|O| possible classes: the possible values of the next candi-
date on the ballot). We name this combination logres.

For each dataset, we measured the performance of our
imputation-based system in several different ways. First, we
measured distance of the winner selected after applying our
system from the true winner in the ground truth ranking. We
call this the “single winner” distance. For example, a system
that recommended the true third place candidate as the
winner would have a “single winner” distance of 2, while
one that recommended the correct winner would have a
distance of 0. Second, we measured the Kendall correlation
between the overall ordering of the candidates produced
using our method, and the ordering produced using the
ground truth rankings. The Kendall correlation is the num-
ber of pairwise comparisons between candidates on which
the rankings agree, less the number on which they disagree,
normalized by the total number of possible comparisons
(
2
∑
x∈O

∑
y∈O\x I(t1(x,y)∧t2(x,y))−I(t1(x,y)∧t2(y,x))

|O|(|O|−1) ) for
rankings t1 and t2. Although the Kendall correlation is
a different distance metric than the one on which the
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Borda count is based, we use it here because it provides
information about the similarity of the two rankings on
the whole, rather than just the positions of the first place
candidates. The Kendall correlation ranges from -1.0 (one
ranking is the reverse of the other), to 1.0 (the rankings are
the same). A randomly generated ranking has an expected
Kendall correlation of 0 with any other ranking. We also
measured the performance of several controls, namely the
minimax regret technique of (Lu and Boutilier 2011) (a
state-of-the-art competing method) and a worst-case method
that completed the ballots in a fashion exactly opposite
to the correct overall ordering (i.e. if in the true election
A � B � C, then unassigned positions on ballots are
assigned preferentially first to C, then B, then A.).

To verify that the ground truth sets were similar to the
original datasets from which they were drawn, we also mea-
sured the single winner distances and Kendall correlations
between the outcome selected using the original set and
each ablated set, using the version of the Borda scoring
rule where candidates not appearing on a partial ballot re-
ceived no points from that ballot. The ablated version of the
ground truth set produced exactly the same outcome as the
ground truth on 10 of the eleven sets, with an error of 2 on
the remaining Debian 2005 set. Kendall correlations were
between 0.85 and 0.9 for the Irish sets, and averaged 0.85
on the Debian sets as well. This indicates that the ablated
ground truth sets are highly representative of the original
data from which they are generated, and thus representative
of real world elections. All differences are statistically sig-
nificant at a Bonferroni corrected confidence level of 95%.

Results: The proposed, imputation based, approach to so-
cial choice relies on machine learning algorithms providing
reasonable imputations of user ballots. This is by no means
certain, as the resulting machine learning problems are quite
difficult. For example, the Dublin North election has twelve
candidates and only about 40% of the total preference infor-
mation. This results in a 12-class classification problem (i.e.
a model needs to predict which of 12 possible candidates
a given voter would prefer) with many features missing on
any given record. Despite this, logres performs very well,
strongly validating our approach.

The single winner distances of our new technique (lo-
gres), are compared to those of the two control techniques
(MMR, worst-case) in Table 1. Sets where the winner was
fully determined after ablation (where no possible imputa-
tion could change the outcome) are not shown. The new
technique performs very well, finding the correct winner in
100% of cases on all three of the large Irish datasets, and all
but one of the Debian sets. On the Dublin West and Meath
datasets, we find the correct winner in 100% of cases, even
though MMR consistently picks the second or third place
candidates instead. The only set where our system performs
less than perfectly is on the Debian 2007 set. Here, in about
25% of runs, we select the second place candidate instead of
the first place one. Close examination of this set provides an
explanation. The margin of victory for the first place candi-
date over the second place candidate averaged just 0.002%
of their respective Borda Scores (equivalent to inverting ad-
jacent pairs on approximately 10 ballots). This is well within

logres MMR worst-case
Debian 2005 0.000 0.000 1.350
Debian 2007 0.240 0.000 0.770
Debian Logo 0.000 0.000 0.050
North 2002 0.000 0.000 6.200
West 2002 0.000 1.990 2.000

Meath 2002 0.000 1.000 11.700

Table 1: The single-winner distances for the proposed sys-
tem (logres), and two comparison methods. 0 indicates a per-
fect performance.

the classifier’s reported error rate on the dataset, and so it is
not surprising that errors can occur, given the performance
bounds derived earlier. The reported classifier performance
together with a narrow margin of victory in both the ablated
and imputed ballots all indicate that this set would be a good
candidate for the model to suggest a tie or request more in-
formation from the voters, allowing for an appropriate re-
sponse and recovery when used in practice. It is notable that,
despite the extreme difficulty of the set, we give the correct
result in more than two thirds of cases where an error is pos-
sible, which is still acceptable for some applications, like
votes on hiring committees, where occasionally picking a
close second candidate is an acceptable outcome. The mar-
gin of the winner over the second place candidate is also
very tight (under 1%) on the West and Meath sets, but here,
our technique consistently finds the correct outcome while
MMR and the worst-case model do not.

Table 2 shows the Kendall Correlation for our technique
along with the comparison methods. Again, we omit the
datasets where the entire ordering is unchangeable after ab-
lation, and show only the remaining 8 sets where errors
are possible. The new technique performs very well, and
achieves higher Kendall correlation than MMR on four of
the eight datasets, and ties with near perfect performance on
two more. On the remaining two sets (Dublin North 2002
and Meath 2002), our correlation values are still very high,
but are slightly worse than those for MMR. However, these
are unquestionably the most difficult sets, as illustrated by
the possibility for very poor performance by the worst-case
method, and our performance is still very good (Kendall
Correlations of 0.72 and 0.82 respectively indicate that 86%
and 91% of the pairwise orderings of candidates are correct).
MMR’s better performance likely results from the very high
ablation rates for the lower positions on the ballots in these
sets, which makes them challenging to learn. Dublin North
offers about 400 ballots to learn the relationships between
12 candidates for many of the lower positions on the bal-
lots, while Meath is even more severely ablated, and has 14
candidates. Since logistic regression needs sufficient data to
learn patterns from, the combination of limited data avail-
ability, many candidates to chose from, and some candidates
receiving very few votes at all from which to learn, all con-
tribute to the performance reduction. Nevertheless, the new
system still recovers the overwhelming majority of the cor-
rect ordering, even on these more difficult sets, including the
correct ordering for all three of the closely ranked top candi-
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logres MMR worst-case
Debian 2005 0.999 0.998 0.991
Debian 2006 0.999 0.999 0.939
Debian 2007 0.985 0.982 0.843
Debian 2010 1.000 1.000 0.996
Debian Logo 0.926 0.901 0.584
North 2002 0.821 0.959 -0.259
West 2002 0.889 0.868 -0.038

Meath 2002 0.727 0.910 -0.627

Table 2: The Kendall Correlation for the proposed system
(logres), and two comparison methods. 1 indicates perfect
correlation, -1 perfect anti-correlation.

dates which MMR and fails to order correctly. We conclude
that logres may be most useful in applications where the ex-
act ordering of relatively unpopular candidates is less vital,
though generally it performs very well.

We also considered two other voting rules: |O|2 -approval
(in which voters may cast a single, equally weighted, vote
for up to half the candidates) and Copeland (in which the
candidate winning the most pairwise contents is declared the
winner). Across all combinations of datasets and rules where
errors appeared, our model has an average single winner dis-
tance 1.24 positions lower than MMR. We also recover more
of the true ordering than MMR. The average Kendall corre-
lation on sets where mistakes were made by either model
was 0.83 for MMR and 0.90 for logres. This demonstrates
that our model can function well under many voting rules,
not just the Borda count. Run times were consistently under
5 minutes per ablated datset, with up to 5,000 ballots and
14 candidates per set, on a contemporary desktop machine.
Runtimes scale as the product of |O| and N , and can be im-
proved with the use of sampling techniques whenN is large.
In summary, imputation based social choice is shown to be
a viable and fast technique, applicable to real world prob-
lems and capable of outperforming existing state-of-the-art
methods on many datasets.

Related Work
While our approach to solving the problem of interest is
novel, there exists considerable prior work on this problem,
much of it couched in terms of vote elicitation.

Interest in vote elicitation extends back to at least the 2002
work of Conitzer and Sandholm (Conitzer and Sandholm
2002), who considered the problem of eliciting preferences
from strategic voters, that might not wish to reveal their true
preferences. A flurry of more recent work has examined the
practical aspect of the problem, emphasizing elicitation of
more informative preferences. Kalech et al.’s work (Kalech
et al. 2011) showed that, although complete information is
required to make optimal decisions in the worst case, many
real world applications yield solutions with far less prefer-
ence information. Similarly, Oren et al. (Oren, Filmus, and
Boutilier 2013) considered the number of top-t style queries
(where voters are repeatedly asked for their next highest
preference) required to find the underlying global preference

ordering given certain assumptions about the underlying dis-
tribution of voter preferences, while Soufiani et al. (Soufiani,
Parkes, and Xia 2013) examined a similar problem for gen-
eral random utility models. Our work differs from this recent
context insofar as it does not recommend a particular elici-
tation strategy for voters, but instead works with the prefer-
ences it has been given to accomplish the same goal.

The work most similar ours is that of Lu and Boutilier (Lu
and Boutilier 2011), who proposed the use of minimax re-
gret as a heuristic measure for selecting a winner from par-
tial preferences. Here, each candidate is considered in turn.
For each candidate, a completion of the ballots making the
candidate as undesirable as possible is computed. The can-
didate most desirable in spite of their corresponding worst-
case completion becomes the winner.

Irrespective of the performance obtained by this strategy,
our system has an advantage in applications where it is im-
portant that skeptical voters accept the system’s result. Our
system provides a completion of each ballot that is as consis-
tent as possible with the patterns of voting that we observed,
while MMR decides the election on the basis of a worst-case
imputation, which may be quite unlikely, and which skepti-
cal voters might have more difficulty accepting.

Conclusions and Future Work
We have presented and validated a novel approach to the
problem of social choice with partial preferences. Our new
approach imputes the missing components of the ballots
using patterns inferred from the ballots themselves. This
allows conventional voting rules for complete preferences
to be applied directly, and provides a ranking based on a
plausible completion of the ballots, rather than a conserva-
tive worst-case arrangement. We showed that the process
of picking an imputation is itself a form of implicit social
choice, which could allow many computational hardness re-
sults to be directly applied to the new model, and that it per-
forms well on a large number of real-world election datasets.
We also performed a direct comparison with the minimax
regret system of Lu and Boutilier (Lu and Boutilier 2011),
showing that our preliminary model picks the correct win-
ner significantly more often, and exhibits generally low error
rates on the rest of the ordering as well.

An especially interesting component of our work is the fu-
sion of conventional social choice with standard techniques
from machine learning. There are strong parallels between
these fields, and much room for similar future work (See
Xia’s visions paper Xia 2013.). Some interesting extensions
might include the application of machine learning mod-
els that are specifically designed for problems with a large
amount of class imbalance; controlled studies with artificial
datasets to provide further insight into the best conditions
to apply our new technique; integration of other of pref-
erence learning algorithms within our system (Kamishima,
Kazawa, and Akaho 2011); and an exploration of the optimal
policy for a tie to be declared when using our technique, uti-
lizing the classifier’s error on validation data, and the margin
of victory both before and after imputation. 4

4We acknowledge NSERC Canada and the VCGS program.
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