
Optimal Machine Strategies to Commit to in
Two-Person Repeated Games∗

Song Zuo and Pingzhong Tang
Institute for Interdisciplinary Information Sciences,

Tsinghua University, Beijing, China
zuos13@mails.tsinghua.edu.cn,kenshin@tsinghua.edu.cn

Abstract

The problem of computing optimal strategy to commit
to in various games has attracted intense research in-
terests and has important real-world applications such
as security (attacker-defender) games. In this paper, we
consider the problem of computing optimal leader’s ma-
chine to commit to in two-person repeated game, where
the follower also plays a machine strategy.
Machine strategy is the generalized notion of automa-
ton strategy, where the number of states in the automa-
ton can be possibly infinite. We begin with the simple
case where both players are confined to automata strate-
gies, and then extend to general (possibly randomized)
machine strategies.
We first give a concise linear program to compute the
optimal leader’s strategy and give two efficient imple-
mentations of the linear program: one via enumeration
of a convex hull and the other via randomization. We
then investigate the case where two machines have dif-
ferent levels of intelligence in the sense that one ma-
chine is able to record more history information than
the other. We show that an intellectually superior leader,
sometimes considered being exploited by the follower,
can figure out the follower’s machine by brute-force and
exploit the follower in return.

Introduction
The problems of computing game-theoretical solution con-
cepts are of central importance to algorithmic game theory
and AI system design that adopt these solution concepts.
Examples abound, such as computation of Mixed-strategy
Nash equilibrium (Chen and Deng 2006; Daskalakis, Gold-
berg, and Papadimitriou 2006), correlated equilibrium (Jiang
and Leyton-Brown 2011) and Nash equilibrium in large
extensive-form game (Sandholm 2010).

Recently, much work has focused on computing optimal
strategy to commit to (aka. Stackelberg leader strategy) in
two-person games (Stengel and Zamir 2004; Conitzer and
∗This work was supported by the National Basic Research Pro-

gram of China Grant 2011CBA00300, 2011CBA00301, the Natu-
ral Science Foundation of China Grant 61033001, 61361136003,
61303077, a Tsinghua Initiative Scientific Research Grant and a
China Youth 1000-talent program.
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Sandholm 2006; Letchford and Conitzer 2010; Conitzer and
Korzhyk 2011). In such games, one player is able to con-
vince the other that she can commit to a strategy, before
the actual game starts. Clearly, in a two-person normal form
game, being able to commit to an optimal mixed strategy
never hurts, sometimes increases the player’s utility, com-
pared with Nash equilibrium utility. Optimal commitment
finds important application in the real-world security do-
main (cf. (Tambe 2011) for a comprehensive introduction).
A common scenario for such applications is to allocate a
small number of defenders to protect a relatively large num-
ber of targets, each of whom can protect one target, from
being attacked. The problem is then to compute an optimal
strategy to commit to in the induced security game.

For the commitment to be credible, one practical way is
to carry out this commitment repeatedly over time. In other
words, what the players actually engage is a repeated game.
As a result, what the leader should optimize is the commit-
ment in a repeated game rather than the one-shot game.

In this paper, we consider the problem of computing
optimal commitment in two-person repeated game. One
straightforward observation is that the set of strategies in
an infinitely repeated game is infinite and thus previous ap-
proaches in (Conitzer and Sandholm 2006; Letchford and
Conitzer 2010; Marecki, Tesauro, and Segal 2012) do not
apply. Yet, there is a subset of strategies in such games called
automata strategies that are particularly sensible. Automata
strategy has first been studied by Rubinstein (1986) to an-
alyze repeated Prisoner’s Dilemma and then studied exten-
sively (Abreu and Rubinstein 1988; Banks and Sundaram
1990; Ben-Porath 1993; Neyman and Okada 2000) under
the scope of “bounded rationality”1. Simply put, a state in
the automata represents an equivalent class of histories, over
which the player chooses the same action. State transition
function of the automata takes the action profile from the
previous round as input and transits the player to the next
state. In other words, automata is an abstracted, compact
representation of player’s strategy in repeated games. We
generalize this representation to the one allowing for infinite
number of states, which we coin machine strategies.

We make the following contributions. We begin with the

1For introduction of automation strategy, refer to (Parkes and
Seuken 2013, Chapter 3)

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

1071

simple machines and then extend the techniques to general,
possibly randomized machines. We give a concise linear
program to compute the optimal leader’s machine. The lin-
ear program involves operations over the convex hull formed
by the set of utility profiles. We give two efficient implemen-
tations for this part of the linear program: one via determin-
istic implementation and the other via randomization.

We further consider a more interesting case where two
players use machine strategies with different complexities,
in the sense that one can record more history information
than the other. We show that a superior leader can exploit
the follower by explicitly computing the follower’s machine
configuration.

Preliminaries
We now recall some game-theoretical preliminaries.

Repeated games and machine strategies
Definition 1. A two-person normal-form game is a tuple
G = (A,B, u), where

• A = {a1, . . . , am} is the action set for player 1.
• B = {b1, . . . , bn} is the action set for player 2.
• u : A×B → R2 is the utility function for pure strategies.

Let S1 = ∆(A), S2 = ∆(B) be the sets of all probabilis-
tic distributions over A,B and hence the sets of all mixed
strategies for player 1 and player 2 respectively. The defini-
tion of utility function naturally extends to mixed strategies,
i.e., for s1 ∈ S1, s2 ∈ S2, u(s1, s2) = Eα∼s1,β∼s2u(α, β).

Definition 2. In a repeated game GT , the same stage game
G is played by the same players for T periods. We consider
the case where the stage game is a two-person normal-form
game and is infinitely repeated, i.e., T =∞.

One observation is that the set of strategies in an infinitely
repeated game is infinite and thus previous approaches
in (Conitzer and Sandholm 2006; Letchford and Conitzer
2010; Marecki, Tesauro, and Segal 2012) do not apply.
Yet, there is a subset of strategies called automata strate-
gies that are widely used (Osborne and Rubinstein 1994;
Shoham and Leyton-Brown 2009; Parkes and Seuken 2013).
We extend this notion to formulate the memory complexity
measure of all feasible strategies.

Definition 3. A machine strategy (or simply machine), M ,
is a tuple M = (Q, q0, λ, µ), where Q is the set of states,
q0 ∈ Q is the initial state, λ : Q → A for player 1 (or
λ : Q → B for player 2) specifies the action for each state,
and finally µ : Q × A × B → Q is the state transition
function.

In each stage,M chooses the action prescribed by the cur-
rent state, receives the action profile played in the last stage
and transits to the next state according to the state transition
function.

Notice that Q is not restricted to be finite, so we actu-
ally define all feasible strategies as machines. For machine
strategies with finite state sets, we call them automata strate-
gies.

Definition 4. A machine strategy M = (Q, q0, λ, µ) is an
automata strategy, if Q is a finite set.

The flexibility of allowing for infinite state set facilitates
our study of complex machines that use states to record past
plays. Let M be the set of all machine strategies for G∞.
We can partitionM into sub-classes of machine strategies.
Within each sub-class memory space (size of the state set)
grows at the same “rate”.

Definition 5. LetMO(f(t)) be the set of machine strategies
that may reach at most 2O(f(t)) different states in the first t
periods of G∞. Formally as follows

MO(f(t)) =
{
M ∈M : |Qt| ≤ 2O(f(t))

}
where Qt is recursively defined as follows,

Q0 = {q0}

Qt = Qt−1∪{µ(q′, a, b) : q′ ∈ Qt−1, a ∈ A, b ∈ B}, t ≥ 1

The O function here and o function in the next paragraph
refer to the standard big and small O notations. By defini-
tion, M is an automata strategy if and only if M ∈ MO(1).
Restricting attention to the set MO(t) in fact does not lose
any generality since the memory space of size O

(
(mn)t

)
=

2O(t) is sufficient to record perfect history information.
However, if both machines’ memory spaces do not grow

fast enough, both of them only use finite many states through
out the game. Consider the machine generated by M1 ×M2

(in analogy to Cartesian product of automata). If M1 ∈
MO(f1(t)),M2 ∈ MO(f2(t)) and f1(t) + f2(t) ≤ o(log t),
then the number of states of machine M1 ×M2 is o(t). It
means that the number of states for recording the play se-
quence grows slower than t. Therefore, the play will end up
in a loop. It also implies that, there exist M ′1,M

′
2 ∈ MO(1)

that can perfectly represent M1,M2.
We use the standard notion of limit-of-means utility for

infinite repeated game.

Definition 6. The limit-of-means utility over the infinite ac-
tion sequence (at, bt)∞t=1 resulted by M1 and M2 is

u1(M1,M2) = lim
T→∞

1

T

T∑
t=1

u(at, bt)

Our final notion is called security level (Shoham and
Leyton-Brown 2009, Chapters 3).

Definition 7. Security level (aka. minmax value) is the max-
imum utility a player can ensure in the game regardless of
the strategies of the other player. In other words, if the utility
one gets is less than his security level, he always has incen-
tive to deviate to some other strategy.

Let σl(G,M1,M2) be the security level of player l ∈
{1, 2} in gameG withM1 andM2 being the machine strat-
egy spaces respectively.

We include two examples of machine strategy in the full
version of this paper.

1072

Folk Theorem for Machine Strategies
Before our results, we present an alternative Folk theorem as
a useful lemma when two players are confined to machine
strategies.
Lemma 1 (Folk Theorem for Machine Strategies). If
the utility profile (v1, v2) is a convex combination of P =
{u(a, b) : a ∈ A, b ∈ B} and dominates the security levels
for both players, then it can be
• realized as a Nash equilibrium utility profile played by

two machine strategies with growing memory space (i.e.,
∃M1,M2 ∈ MO(log t) such that (M1,M2) is a Nash
equilibrium and the utility u1(M1,M2) = (v1, v2)),

• or ε-approximated by a Nash equilibrium utility profile
played by two automata strategies for any given ε > 0
(i.e., ∀ε > 0,∃M1,M2 ∈ MO(1) such that (M1,M2) is
a Nash equilibrium and ‖u1(M1,M2)− (v1, v2)‖2 ≤ ε).
Especially, if the utility profile (v1, v2) is further a ratio-

nal combination of P , then it can be realized by a Nash equi-
librium utility profile played by two automata strategies.

Here (v1, v2) is a convex and rational combination of P
if there exists kab ∈ N for a ∈ A, b ∈ B such that

(v1, v2) =

∑
a∈A,b∈B kabu(a, b)∑

a∈A,b∈B kab

For readers not familiar with Folk theorem, an explicit
constructive proof can be found in the full version.
Remark 1. A two-person normal-form game may not have
a pure NE, so the utility profile that dominates the security
levels for both players (aka. enforceable utility profile) may
not be located in the convex hull of P . In this case,G∞ does
not have any NE. In contrast, if randomization is allowed,
the existence of NE for G∞ is guaranteed, which we will
discuss in the last section.

However, the existence of optimal commitment is indepen-
dent with the existence of pure NE of G, (we will show the
independence in the next section), so our results do not rely
on any assumption on G.

Commitment
We study the two-person Stackelberg game between players
who use automata strategies in this section and extend the
results to machine strategies in next section. We prove the
existence by explicit construction and give a linear algorithm
for its computation.

Definitions
Consider G∞ as a two-person Stackelberg game where the
leader (player 1) first commits to a strategy M1 and then
the follower (player 2) chooses a best response strategy M2

with respect to M1. Given player 1 choosing M1, player 2’s
problem is to solve the following optimization problem:

M∗2 = arg max
M2

u12(M1,M2).

The goal of player 1 is to maximize his own utility, i.e., to
solve the following optimizing problem:

M∗1 = arg max
M1

u11
(
M1, arg max

M2

u12(M1,M2)
)
.

Optimal automata strategy to commit to
In this section, we prove the base of our main results. We
prove by construction that the optimal automata strategy to
commit to exists and can be found in linear time.

Theorem 1. For the infinite repeated gameG∞ under limit-
to-means utility, there exists an optimal automata strategy
for player 1 to commit to, i.e.,

M∗1 = arg max
M1∈MO(1)

u11
(
M1, arg max

M2∈M
u12(M1,M2)

)
Furthermore, it can be computed in linear time O(mn).

Following previous observations, the utility profile, de-
noted by (v1, v2), of this game must be located in the con-
vex hull of the set of all utilities reachable from pure strat-
egy profiles P = {u(a, b) : a ∈ A, b ∈ B}, denoted by
Conv(P), in order to be attainable by G∞. Moreover, since
the strategy of player 2, M2, is the best response to M∗1 , v2
must be no less than the security level of player 2 which can
be guaranteed by player 2 alone. Notice that for any utility
profile satisfying these two conditions (and is rational com-
bination of P)2, by the constructive proof of lemma 1, there
exist M1 and M2 such that M2 is the best response to M1

and they together achieve the utility profile (v1, v2). (De-
spite the Nash equilibrium of G may not exist.) Let (a′, b′)
and (a′′, b′′) be the utility profiles that reach the security lev-
els for player 1 and player 2 respectively, i.e.,

b′ = arg min
b∈B

max
a∈A

u1(a, b), a′ = arg max
a∈A

u1(a, b′)

a′′ = arg min
a∈A

max
b∈B

u2(a, b), b′′ = arg max
b∈B

u2(a′′, b)

Hence the remaining problem is how to maximize the util-
ity of player 1. The problem of player 1 is as follows,

maximize v1 = u11(M1,M2) (1)
subject to (v1, v2) ∈ Conv(P)

v2 ≥ u12(a′′, b′′) = v′′2

which is in fact a linear program (LP) of v1 and v2. Notice
that the solution to this linear program is always non-empty,
since solution (v′′1 , v

′′
2) =

(
u11(a′′, b′′), u12(a′′, b′′)

)
satisfies

all the boundary conditions.

Proof. We give a constructive proof to theorem 1.

1. Solve linear program (1) and get the solution (v∗1 , v
∗
2).

2. ConstructM∗1 ,M
∗
2 as we did in the proof of lemma 1 such

that the utility profile of (M∗1 ,M
∗
2) is (v∗1 , v

∗
2).

3. Output M∗1 as the final result.

The complexity will be discussed in the next subsection.

A very useful observation is that the solution to the linear
program (1) can be achieved at an extreme point of the poly-
tope, i.e., either an element of P , or the intersection of line
v2 = v′′2 and the boundary of Conv(P).

2If it is irrational combination of P , this problem can be solved
in an arbitrarily approximated sense.

1073

C D

D

D

bt = C bt = C

bt = C
bt = D

bt = D

bt = ∗
bt = D

v2

v1

v2 = v′′
2

Solution

v2

v1

v2 = v′′
2

Solution

p2

p1

(a) Example (b) Case 1 (c) Case 2

Figure 1: (a) Optimal commitment for player 1 in PD. (b)(c) Two types of solutions.

Example Consider an example where the stage game G
is Prisoner’s dilemma: A = B = {C,D} and u(C,C) =
(3, 3), u(C,D) = (0, 5), u(D,C) = (5, 0), u(D,D) =
(1, 1). Hence v′′2 = 1, and the linear program is

max v1

subj.t. (v1, v2) ∈ Conv({(1, 1), (0, 5), (3, 3), (5, 0)})
v2 ≥ v′′2 = 1

The optimal solution is (v1, v2) = (13/3, 1), and the con-
structed result M∗1 is shown as figure 1 (a).

Implementing the LP
According to the proof of theorem 1, the bottleneck of solv-
ing the problem is to solve the specific linear program effi-
ciently. Direct implementation of the linear program would
induce a linear program of O(mn) constraints. For more ef-
ficient implementations, we provide two algorithms. One is
deterministic and the other is randomized.

A deterministic algorithm in O
(
mn log(mn)

)
The de-

terministic algorithm is simply to compute the convex hull
of P in time O

(
mn log(mn)

)
(Graham 1972), find the in-

tersection of the remaining inequality and the convex hull in
time O(mn), and finally get the optimal v1 in time O(mn).

A randomized algorithm in O(mn) The randomized al-
gorithm solves the linear program as follows.

Case 1: There exists element in P that is the solution. In
this case, we are done (see figure 1(b)).

Case 2: Otherwise (see figure 1(c)) the solution must be
the intersection point of line p1p2 and line v2 = v′′2 , where
p1, p2 ∈ P are on different sides of line v2 = v′′2 . Without
loss of generality, suppose p1 is above line v2 = v′′2 and p2
is below it. Then the first coordinate of p2 is greater than p1.

Let Pa be the set of elements in P above the separating
line, and Pb be the set of elements in P below the separating
line. Then the following Algorithm 1 deals with this case.

Proof. Correctness: In each iteration, the algorithm either
returns the solution when the “if” condition is satisfied, or
removes at least one element, pM , from PM ∪ Pm. Thus it
always terminates. If we show that it never removes any el-
ement that might be the solution, it must return the solution.

Algorithm 1: Solving for case 2.
input : {PM , Pm} = {Pa, Pb}
output: {p1, p2}
while result is not found do

Let PM be the larger set, Pm be the smaller set;
Pick pM from PM uniformly at random;
Find pm ∈ Pm s.t. Pm is to the left of line pMpm;
if PM is also to the left of line pMpm then

return {p1, p2} = {pM , pm};
else

Remove all the elements in PM that are on or to
the left of line pMpm;

v2

v1

v2 = v′′
2

Solution

pm

pM

p′
M

Area 1

Area 2

Area 3 Area 4

Figure 2: The plane is divided into 4 regions

Now we prove that the algorithm never removes “good”
elements from Pa nor Pb. W.l.o.g., suppose Pa = PM has
more elements than Pb. Lines pMpm and v2 = v′′2 divide
the plane into four pieces (see figure 2). If the iteration
ever reaches the removing step, there must be an element
p′M ∈ Pa in area 1. Notice that pm is selected such that
there is no element in area 4. Therefore the final solution
which keeps all the elements on or to the left of it must:
i).go through area 1 and area 3; ii).keep pm and p′M on or
to its left. Thus it never goes through area 2. In other words,
removing elements in area 2 does not block the true solution.

Complexity: Let h(n1, n2) be the expected running time

1074

of Algorithm 1 on input Pa, Pb, where n1 = |Pa|, n2 =
|Pb|. Then we prove that h(n1, n2) ≤ c1n1 + c2n2 + c0 for
sufficiently large constants c0, c1, c2 by induction.

• When n1, n2 ≤ 3, h(n1, n2) = O(1).
• Suppose ∀n1, n2 ≤ N , h(n1, n2) ≤ c1n1 + c2n2 + c0.
• Let O(N) ≤ c1N/2 be the time for a single iteration.

h(N + 1, N) ≤ O(N) +
1

N + 1

N+1∑
i=1

h(i,N)

≤ O(N) + (N/2 + 1)c1 +Nc2 + c0
≤ (N + 1)c1 +Nc2 + c0

• Notice that h(n1, n2) is symmetric, then by the same ar-
gument h(N + 1, N + 1) ≤ (N + 1)c1 + (N + 1)c2 + c0.

• Therefore h(n1, n2) ≤ c1n1 + c2n2 + c0 ≤ O(n1 + n2).

So the expected time complexity is O(|P |) = O(mn).

Commitments for general machine strategies
As the succession of the previous section, we continue
studying the Stackelberg game where two players are us-
ing general machines beyond automata. Especially, we fo-
cus on how fast memory space grows can make a difference
in asymmetric intelligence games. We show that the space
complexity significantly affects the dynamics between these
two machines. In the next section, we apply these results to
extend our main theorem to randomized case and most of
the machine cases.

Optimal machine strategy to commit to
We first present our main theorem for machine strategies.
Later we show by construction that the optimal machine
strategy to commit to exists and can be found efficiently.

Theorem 2. For the infinite repeated gameG∞ under limit-
to-means utility, given that the machine strategy of player 2
is chosen from a subset M′ ⊂ M, there exists an optimal
machine strategy inMO(f(t)) for player 1 to commit to, i.e.,

M∗1 = arg max
M1∈MO(f(t))

u11
(
M1, arg max

M2∈M′
u12(M1,M2)

)
where f(t) is an arbitrary function such that ω(1) ≤ f(t) ≤
O(t), and the subsetM′ is defined as follows3,

M′ =
(
MO(t) \MO(log t)

)
∪Mo(log f(t)/ log log f(t))

Notice that generally machines have infinite states, so
usually cannot be described explicitly. However, the state
transition function of our construction is Turing computable
(see algorithm 2), so we can find the Turing machine that
computes this function efficiently and use it as an alternative
presentation of the actual machine.

3M′ contains the powerful machines, which are too powerful
to be exploited, and the weaker ones, which can be exploited by
other machines with certain power.

v2

v1

v2 = v′′
2

Solution

Solution
Better

Security Level
Lower

Figure 3: Lowering player 2’s security level

Growing memory space enables machines to “record”
increasingly more information as the game proceeds. Es-
pecially, compared with automata, machines with growing
memory space (at least O(log t)) can avoid looping forever.

However, the additional memory does not change the fact
that the utility profile must lie in the convex hull, Conv(P).
By lemma 1, if the utility profile lies in Conv(P) and domi-
nates security levels of both players, it is achievable by Nash
equilibrium. If it only dominates the security level of player
2, it is still achievable under Stackelberg game. Conversely
if it is not in Conv(P) or it does not dominate the security
level of player 2, it is never achievable under Stackelberg
game, even if machine strategies were allowed.

In fact, it helps one to lower the security level of the adver-
sary and ensure a relatively high security level of the player.
Even though one can do nothing to the convex hull with ad-
vanced intelligence, being able to manipulate the security
level is powerful enough to change the outcome of the game.

In other words, the extra memory does not help the play-
ers while they are still in cooperation, but ensures a higher
utility once the cooperation is no longer sustained.

Manipulate the security levels
In this subsection, we discuss how to manipulate the secu-
rity levels. An extreme way for one with its memory space
growing sufficiently faster than the other one is to analyze
its adversary’s strategy and predict the future actions.

Lemma 2 describes how much extra memory is necessary
for player 1 to suppress the security level of player 2.
Lemma 2. For Ω(log t) ≤ f1(t) ≤ O(t), Ω(1) ≤ f2(t)
such that f2(t) = o(log f1(t)/ log log f1(t))

σ2(G∞,MO(f1(t)),MO(f2(t))) = max
b∈B

min
a∈A

u2(a, b)

Recall that σl(G,M1,M2) is the security level of player
l ∈ {1, 2} in game G withM1 andM2 being the machine
strategy spaces for player 1 and player 2 respectively. If both
use automata strategies, the security level of player 2 is

σ2(G∞,MO(1),MO(1)) = min
a∈A

max
b∈B

u2(a, b)

which is greater than the quantity given in lemma 2.
In other words, with sufficient memory ability player 1

gains extra chance to increase his utility by reducing the se-
curity level of player 2. It is even more powerful in Stack-
elberg games, i.e., player 1 can further squeeze player 2’s

1075

utility to increase his utility (see figure 3). The utility pro-
file in theorem 2 is calculated in the same way as theorem
1 except using security level given by lemma 2 when player
1 is able to exploit player 2. Finally, we explicitly construct
player 1’s machine that (when cooperation no longer sus-
tained) achieves the security level specified in Lemma 2.4

Algorithm 2: Suppressing the security level of player 2.

input : Previous state (t,H, t0,K, s, at, b̃t) and
previous action profile (at, bt)

output: Next state (t+ 1,H, t0,K, s, at+1, b̃t+1)
M∗K ←MK ;
foreach M̃2 ∈M∗K do

go though the record sequenceH;
if M̃2 conflicts withH then M∗K ←M∗K \ {M̃2} ;

if M̃2 = ∅ or (b̃t 6= bt and s = paused) then
K ← max{k : logmn · (k + 1) · |Mk| ≤ f1(t)};
H ← ∅, t0 ← t, s← recording;
let at+1 and b̃t+1 be anything;

else
let b̃t+1 be the predicted action of M2 by simulating
the game between M1 and M̃2 from period t0 to t;
let at+1 be the best response to b̃t+1;

if s = recording and there is extra space then
H ← H∪ {(at, bt)};

else
s← paused;

Algorithm 2 describes the transition function of our con-
structed M1 when the cooperation is not sustained. The
state consists of current stage number t, record sequence
H, which begins at stage t0, enumerating size K, record-
ing state s, predicting action of player 2 b̃t, and action of
current state at. Initially, K = 1, t0 = t = 1, H = ∅,
s = recording. In each stage, M1 enumerates all automata
strategies in MK (which contains those using at most K
states) and predict M2’s action by anyone that never con-
flicts with record sequence H. If everyone inMK conflicts
with H then M1 increases the search space K and makes a
newH.

To sum up, as long as M1 has enough memory, it almost
correctly predicts M2’s action and plays the best response.

Randomness
As defined in definition 3, the action function and the tran-
sition function are both deterministic. A natural extension is
to consider the machines with random inputs, so that they
can change their states randomly and play mixed strategies.

To facilitate further discussion, we use superscript r to de-
note the randomness, i.e.,Mr is a randomized machine,Mr

is the collection of all randomized machines, andMr
O(f(t))

4The correctness of the construction is shown in the full version.

MO(g(t)) Mr
O(g(t)) M(r)

O(log t)

MO(1) min
a∈A

max
b∈B

min
a∈A

max
b∈B

min
a∈A

max
b∈B

Mr
O(1) min

s1∈S1

max
b∈B

min
s1∈S1

max
b∈B

min
s1∈S1

max
b∈B

MO(f(t)) max
b∈B

min
a∈A

max
s2∈S2

min
a∈A

min
a∈A

max
b∈B

Mr
O(f(t)) max

b∈B
min
a∈A

max
s2∈S2

min
a∈A

min
s1∈S1

max
b∈B

Table 1: Security levels of player 2

contains all machines that require at most 2O(f(t)) different
states in period t.

Since the randomized machine is able to use mixed
strategies in stage games, the security level changes. Actu-
ally, equipped with randomness, the player who was well-
understood by the adversary is able to guarantee better se-
curity level, since even if the other knows what the player
is thinking, he still cannot predict the exact action. We
present without proofs our results in table 1. Each entry
specifies the security level of player 2 under different in-
telligences of both players. Formally, each entry quanti-
fies σ2(G∞, row, column) with u2(a, b) omitted. For exam-
ple, the maxb∈B mina∈A in third row first column means
σ2(G∞,MO(f(t)),MO(g(t))) = maxb∈B mina∈A u2(a, b),
where f(t) and g(t) satisfies ω(1) ≤ f(t) ≤ O(t), g(t) ≤
o(log f(t)/ log log f(t)). By minimax theorem,

min
a∈A

max
b∈B

u2(a, b) ≥ min
s1∈S1

max
b∈B

u2(s1, b)

= max
s2∈S2

min
a∈A

u2(a, s2) ≥ max
b∈B

min
a∈A

u2(a, b)

Allowing randomization has one more advantage, which
is less related to this paper but of independent interest. As we
mentioned previously, the intersection of Conv(P) and util-
ity profile that dominates the security levels might be empty
for some games with deterministic players. However, if the
players are equipped with randomness, the security levels
move so that the intersection is guaranteed to be non-empty,
i.e., the Nash equilibrium of the stage game.

Conclusion and Future Work
Computing Stackelberg leader strategy in various games has
been shown to be both theoretically important and practi-
cally useful in settings such as security games. In this paper,
we built a model of machine strategies with memory space
increasing at different “rate”. Then we studied the prob-
lem of computing the optimal machine strategies to com-
mit to, and gave two efficient implementations to this prob-
lem. Finally we extended this result to machine strategies
with asymmetric intelligence, i.e., randomness and growing
memory space.

There are at least two exciting future directions. 1). To
come up with a better algorithm for player 1 to “under-
stand” player 2’s strategy M2, or prove that these machine
strategies are unpredictable so that we are able to solve the
problem for all machine strategies. (M2 ∈ MO(g(t)) where
Ω(log t/ log log t) ≤ g(t) ≤ o(log t)). 2). To extend asym-
metric intelligence to the case where agents have asymmet-
ric computational power.

1076

References
Abreu, D., and Rubinstein, A. 1988. The structure of Nash
equilibrium in repeated games with finite automata. Econo-
metrica: Journal of the Econometric Society 1259–1281.
Banks, J. S., and Sundaram, R. K. 1990. Repeated games,
finite automata, and complexity. Games and Economic Be-
havior 2(2):97–117.
Ben-Porath, E. 1993. Repeated games with finite automata.
Journal of Economic Theory 59(1):17–32.
Chen, X., and Deng, X. 2006. Settling the complexity of
two-player Nash equilibrium. In In Proc. 47th FOCS, 261–
272.
Conitzer, V., and Korzhyk, D. 2011. Commitment to corre-
lated strategies. In AAAI.
Conitzer, V., and Sandholm, T. 2006. Computing the optimal
strategy to commit to. In Proceedings of the 7th ACM EC
(ACM-EC), 82–90. ACM Press.
Daskalakis, C.; Goldberg, P. W.; and Papadimitriou, C. H.
2006. The complexity of computing a Nash equilibrium. In
In Proc. STOC, 71–78.
Graham, R. L. 1972. An efficient algorith for determining
the convex hull of a finite planar set. Information processing
letters 1(4):132–133.
Jiang, A. X., and Leyton-Brown, K. 2011. Polynomial-
time computation of exact correlated equilibrium in compact
games. In ACM EC, 119–126.
Letchford, J., and Conitzer, V. 2010. Computing optimal
strategies to commit to in extensive-form games. In ACM
EC, 83–92.
Marecki, J.; Tesauro, G.; and Segal, R. 2012. Playing
repeated Stackelberg games with unknown opponents. In
Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems-Volume 2, 821–
828. International Foundation for Autonomous Agents and
Multiagent Systems.
Neyman, A., and Okada, D. 2000. Two-person repeated
games with finite automata. International Journal of Game
Theory 29(3):309–325.
Osborne, M. J., and Rubinstein, A. 1994. A Course in Game
Theory. MIT Press.
Parkes, D., and Seuken, S. 2013. Economics and Computa-
tion. Cambridge University Press.
Rubinstein, A. 1986. Finite automata play the repeated pris-
oner’s dilemma. Journal of economic theory 39(1):83–96.
Sandholm, T. 2010. The state of solving large incomplete-
information games, and application to poker. AI Magazine
31(4):13–32.
Shoham, Y., and Leyton-Brown, K. 2009. Multiagent Sys-
tems: Algorithmic, Game theoretic and Logical Fundations.
Cambridge Uni. Press.
Stengel, B. V., and Zamir, S. 2004. Leadership with commit-
ment to mixed strategies. Technical report, London School
of Economics.

Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.

1077

