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Abstract

We consider the situation in which an organizer is trying to
convene an event, and needs to choose whom out of a given
set of agents to invite. Agents have preferences over how
many attendees should be at the event and possibly also who
the attendees should be. This induces a stability requirement:
All invited agents should prefer attending to not attending,
and all the other agents should not regret being not invited.
The organizer’s objective is to find an invitation of maximum
size, subject to the stability requirement. We investigate the
computational complexity of finding such an invitation when
agents are truthful, as well as the mechanism design problem
when agents act strategically.

1 Introduction
Imagine an event organizer trying to convene an event – for
example, a fundraiser. We assume that the time and venue
for the event are fixed, and that the only remaining deci-
sion for the organizer to make is whom to invite among a
set of agents. An invitation is simply defined to be a subset
of agents. The goal of the organizer is to maximize atten-
dance (for example, in order to maximize donations), but
the potential invitees have their own preferences over how
many attendees there should be at the event and possibly also
who the potential attendees should be. For example, a given
donor may not want to attend if too few attendees show up,
but she may not want the event to be overly crowded. An-
other donor may want to attend the event only if her friends
attend and her business competitor does not.

We first consider agents with anonymous preferences over
invitations – agents only care about how many attendees are
at the event (but not the identities of attendees). An invitation
is stable if all invitees prefer attending to not attending and
if no person who is not invited wishes she had been invited.
Stability is desirable, but a stable invitation may not exist
in general. This naturally raises the question of how hard it
is to determine whether it exists for a given setting, and if
it does, what the maximum stable invitation is. These ques-
tions take an extra meaning in the strategic case, in which
agents may misreport their preferences. Can the organizer
incentivize the agents to disclose their true preferences? We
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call this problem the Anonymous Stable Invitation Problem
(ASIP). If we assume truthful agents, we have an algorithm
design problem, and we obtain positive results in this case.
If we assume strategic agents, we have a mechanism design
problem, and we obtain an impossibility result in general as
well as positive results for a special case of the problem.

We then remove the assumption of anonymous prefer-
ences and define the General Stable Invitation Problem
(GSIP) where each agent can specify her acceptance set of
agents and rejection set of agents (in addition to her prefer-
ence over sizes). An agent is willing to attend only if every-
one in her acceptance set attends, no one in her rejection set
attends, and the number of attendees is acceptable to her. We
generalize the definition of stable invitations, accordingly.
We then ask the same set of questions as in ASIP. In the
non-strategic case we show that computational complexity
depends on the size of the largest acceptance and rejection
sets. In the strategic case, an impossibility for ASIP directly
implies the same impossibility for GSIP. We provide an-
other impossibility result for a different sub-class of GSIP.

In Section 2 we discuss related work in the literature.
In Section 3 we define the Anonymous Stable Invitation
Problem (ASIP), and investigate both the non-strategic and
strategic cases. In Section 4 we define the General Stable
Invitation Problem (GSIP), and investigate both the non-
strategic and strategic cases. In Section 5 we discuss our
contributions and directions for future work.

2 Related Work
Darmann et al. (2012) consider the Group Activity Selection
Problem (GASP), in which the objective is to assign agents
to activities where agents have anonymous preferences over
activities as well as the number of participants. The Anony-
mous Stable Invitation Problem (ASIP in Section 3) can be
viewed as a sub-class of GASP with a single activity. Yet
there are several differences between our work and the work
by Darmann et al. First, our main results are anchored in
the General Stable Invitation Problem (GSIP in Section 4)
where agents no longer have anonymous preferences; there-
fore their hardness results for GASP do not imply similar re-
sults for GSIP. Second, we consider strategic agents in both
ASIP and GSIP, but Darmann et al. only consider truth-
ful agents. Finally, our impossibility results imply the same
negative results for GASP.
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The Stable Invitations Problems (both ASIP and GSIP)
are closely related to hedonic games. In a hedonic game each
agent has preferences over coalitions that she can be a mem-
ber of (usually given by a weak order over all coalitions).
If each agent is indifferent among all coalitions of the same
size that includes her, then a given hedonic game is said to
be anonymous. Much work has been devoted to analyzing
solution concepts in hedonic coalition games such as stabil-
ity and Pareto-optimality (Bogomolnaia and Jackson. 2002;
Dreze and Greenberg. 1980; Aziz and Brandl. 2012). In
this work we take a solution concept of (Nash) stability for
granted, and focus on analyzing complexity of finding stable
solutions. In particular, we are interested in finding Nash-
stable invitations and individually rational invitations (we
provide formal definitions in Section 3).

Ballester (2004) provides a number of computational
complexity results (in fact, hardness results) for finding a
core-stable, Nash-stable, or individually rational outcome
in hedonic games and anonymous hedonic games. These
hardness results do not imply similar hardness results for
GSIP for two reasons. First, the hardness results on anony-
mous hedonic games do not hold for GSIP because GSIP
is not equivalent to anonymous hedonic games. Second, one
can transform an instance of GSIP into a (non-anonymous)
hedonic game in a naı̈ve manner by listing all possible
coalitions, but this increases the size of input exponentially.
Therefore our results discussed in this work are original and
should not be considered as a derivative of the work by Dar-
mann et al. or Ballester.

3 Anonymous Stable Invitation Problem
3.1 Definitions and Notation
Definition 1. An instance of the Anonymous Stable In-
vitation Problem (ASIP) is a pair (N,P ) where N =
{a1, a2, . . . , an} is a set of n agents and P is an n-tuple
of preferences of agents where P = (P1, P2, . . . , Pn). For
each agent ai, we define Pi to be a total preorder (�i)
on the set of outcomes, X = {0, 1, 2, . . . , n}. An out-
come x ∈ (X \ {0}) denotes the number of attendees
and x = 0 is a special outcome of not attending. For any
x1, x2 ∈ (X \ {0}), x1 �i x2 is interpreted as agent ai
weakly preferring attending the event if x1 attendees are
present (including herself) to attending if x2 attendees are
present (including herself). We use �i and ∼i to denote the
induced strict preferences and indifference relations, respec-
tively. We drop the subscript (i) if it is clear from the context.

We assume that for each ai and each x ∈ (X \{0}), either
x �i 0 or 0 �i x. That is, no agent is indifferent between not
attending and any other outcome. This assumption is made
for convenience and does not change our technical results.

We now formally define invitations and notion of stability.

Definition 2. Given an instance (N,P ), an invitation S is a
subset of N , and is interpreted as the organizer inviting the
agents in S. An invitation S satisfies individual rationality
(IR) if for every agent ai ∈ S it holds that |S| �i 0. An invi-
tation S exhibits no exclusion-regret with addition (a-ER) if
for every agent aj 6∈ S it holds that |S∪{aj}| = (|S|+1) ≺j

0. An invitation S exhibits no exclusion-regret with replace-
ment (r-ER) if for every agent aj 6∈ S it holds that |S| ≺j 0.
An invitation is a-stable (r-stable, respectively) if it satisfies
IR and exhibits no a-ER (IR and no r-ER, respectively).

In words, a-ER states that an agent who is not invited
should not wish that she had been invited in addition to
those who are invited (hence the name ‘addition’), while r-
ER states that an agent who is not invited should not wish
that she had been invited in place of someone else who is in-
vited (hence the name ‘replacement’). These two definitions
are not equivalent. In most parts of this paper we only use
a-ER and a-stable and refer to them simply as ER and sta-
ble. However our technical results are unchanged when we
instead use r-ER and r-stable (see Section 4.5 for details).

For each agent ai, we can naturally induce from Pi her
preference over the set of all invitations. Given S and S′,
if both contain ai, then the preference relation between S
and S′ is induced from Pi on |S| and |S′| (their cardinal-
ity). If neither contains ai, then both invitations are equiva-
lent to 0 (the outside option). If S contains ai and S′ does
not, then the preference relation is induced from Pi on |S|
and 0. We overload our notation (∼i,�i,�i) for the induced
preferences over invitations. The preferences of agents over
invitations are now well-defined.

Let us define two special classes of preferences of agents,
increasing (INC) and decreasing (DEC). Informally, agents
with INC-preferences (DEC, respectively) prefer the event
with more attendees (fewer, respectively). In particular INC-
preference implies that n is the most favorable outcome and
DEC-preference that 1 is the most favorable outcome.
Definition 3. Agent ai has an INC-preference if there is
some threshold li such that n �i (n− 1) �i · · · �i (li) �i

0 ∼ k for all 1 ≤ k < li. Agent ai has a DEC-preference
if there is some threshold hi such that 1 �i 2 �i · · · �i

(hi) �i 0 ∼ k for all hi < k ≤ n.
We assume that agents can have arbitrary preferences, but

these two special types preferences play an important role in
the strategic case in Section 3.4.

3.2 Examples of ASIP
Example 1 (Stable invitations are not unique). Let us
consider two agents with identical preferences:

P1 : 1 � 0 � 2, P2 : 1 � 0 � 2

Note that both agents have DEC-preferences (with h1 =
h2 = 1). The two stable invitations are S1 = {a1} and
S2 = {a2}. The empty invitation (∅) exhibits ER while the
full invitation (N ) is not IR.
Example 2 (A stable invitation may not exist). Let us con-
sider three agents with the following preferences:
P1 : 3 � 2 � 0 � 1, P2 : 1 � 0 � 2 ∼ 3, P3 : 0 � 1 ∼ 2 ∼ 3

Note that a1 has an INC-preference (with l1 = 2) while a2
has a DEC-preference (with h2 = 1). a3 is simply unwilling
to attend the event (no outcome is acceptable to her). Due to
a3, any invitation including a3 is not IR. Between a1 and a2
only, the empty invitation exhibits ER due to a2, S1 = {a1}
is not IR due to a1, S2 = {a2} exhibits ER due to a1, and
{a1, a2} is not IR due to a2.
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3.3 The Non-strategic Case
We first consider the non-strategic case of ASIP in which
agents are truthful. As Theorem 1 states, one can find a max-
imum stable invitation (if it exists) in polynomial time.1 Due
to space we only state our theorem here (formal proof can be
found in a long version).

Theorem 1. There exists a polynomial time algorithm that,
given an instance of ASIP, determines whether a stable in-
vitations exists, and finds a maximum one if it exists.

3.4 The Strategic Case
In the strategic case of ASIP, we assume that agents may act
strategically in reporting their preferences to the event orga-
nizer. Example 3 shows how agents may have an incentive
to act strategically.

Example 3 (An agent may act strategically.). Let us revisit
Example 1 with two agents with identical preferences:

P1 : 1 � 0 � 2, P2 : 1 � 0 � 2

Recall from Example 1 that S1 = {a1} and S2 = {a2}
are the only two stable invitations provided that both agents
are truthful. If S1 were to be chosen by the organizer, a2
would have an incentive to act strategically, by reporting
P̂2(1 � 2 � 0) instead of P2. Given (P1, P̂2), the only
stable invitation is S2 (S1 now exhibits ER due to a2). No-
tice that a2 strictly prefers S2 over S1 (because 1 �2 0) and
has an incentive to misreport in this example. By symmetry,
a1 may act strategically if S2 were to be chosen.

We first provide a formal definition of a mechanism in the
context of ASIP with strategic agents. We then state several
impossibility results for general cases of ASIP, and also pro-
vide a strategy-proof mechanism for special cases of ASIP.
Although we only consider deterministic mechanisms here,
we discuss how one can generalize to randomized mecha-
nisms at the end of this section.

Definition 4. Given an instance (N,P ) of ASIP, we define
Vi (the set of available actions to ai) to be the set of all pref-
erences overX whereX = {0, 1, 2, . . . , n} is the set of out-
comes. A (deterministic) mechanism is a pair (V,Z) where
V = (V1×· · ·×Vn) is the set of action profiles of all agents
(i.e., Vi is a subset of total preorder on X) and Z : V 7→ U
is a mapping from each action profile to an invitation in U
whereU = 2N . Let V−i = (V1×· · ·×Vi−1×Vi+1×· · ·×Vn)
be the set of action profiles available to all agents but agent
ai. A mechanism (V,Z) is said to be strategy-proof if for
all ai ∈ N it holds that Z(Pi, v−i) �i Z(vi, v−i) for all
vi ∈ Vi and v−i ∈ V−i.

We now formally state our first impossibility result.

Theorem 2. No strategy-proof mechanism can find a stable
invitation, even if it exists, for arbitrary instances of ASIP.

Proof. Example 3 can serve as a proof; no strategy-proof
mechanism can find a stable invitation for this instance.

1We acknowledge that Theorem 1 is implied by the work by
Darmann et al. (2012)

Intuitively this result is due to the conflicting interests of
the organizer and agents – the organizer is trying to max-
imize attendance while the agents (with DEC-preferences)
to minimize. Since no strategy-proof mechanisms can find a
stable invitation, one can instead seek to design a strategy-
proof mechanism that can find a non-empty IR invitation
that may exhibit exclusion-regret. We show that this is also
impossible as Theorem 3 states.

Theorem 3. No strategy-proof mechanism can find a non-
empty individually rational (IR) invitation, even if it exists,
for arbitrary instances of ASIP.

Proof. Consider three agents with preferences as follows:
P1 : 3 � 0 � 2 ∼ 1, P2 : 2 � 3 � 2 � 1, P3 : 3 � 2 � 0 � 1

There are two non-empty IR invitations: S1 = {a1, a2, a3}
and S2 = {a2, a3}. If a mechanism chooses S1 given
(P1, P2, P3), a2 can report (2 � 0 � 3 ∼ 1) and make
S2 the only non-empty IR invitation. Similarly, if a mecha-
nism chooses S2 given (P1, P2, P3), a3 can report (3 � 0 �
2 ∼ 1) so as to make S3 the only non-empty IR invitation.
The rest of the proof is similar to that of Theorem 2.

Earlier we emphasized that the conflict between agent(s)
and the organizer is the main factor that leads to an impos-
sibility result. Indeed, in the example we used in the proof
of Theorem 2, both agents have DEC-preferences while the
organizer’s goal is to maximize attendance.

We now consider a special case of ASIP in which all
agents have INC-preferences. We obtain a positive result in
this case as Theorem 4 states.
Theorem 4. There is a strategy-proof mechanism for INC-
instances of ASIP, which can also find a maximum stable
invitation in linear time (after sorting).

Proof sketch. For simplicity let us assume that each agent
reports her threshold value (i.e., li as defined in Definition 3)
as Li (Li may differ from li). Our mechanism then chooses
the largest k such that Lk ≤ k holds and chooses the set of
k agents with largest threshold values (if no such k exists,
mechanism chooses the empty invitation).

Although our mechanism is simple, proof of Theorem 4 is
not trivial. First, the full invitation is not necessarily stable
(if at least one agent is unwilling to attend at all). Second,
an agent may have an incentive to under-report such that
the organizer would invite more agents than when the agent
is truthful. It is indeed possible to under-report (Li < li)
and lead to a larger invitation, but we show that this larger
invitation would contain less than li agents.

3.5 Extensions
Although we have so far only discussed deterministic mech-
anisms, our impossibility results can be extended to random-
ized mechanisms. First we define Z to be a mapping from V
to Π(U) where Π(U) denotes the set of all probability dis-
tributions over U . The definition of a strategy-proof mech-
anism must change accordingly – we do this by adopting
the axioms in the von Neumann-Morgenstern utility theo-
rem (Von Neumann and Morgenstern 1947). We introduce
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lotteries over invitations and define preferences of agents
over lotteries. Given a probability distribution over invita-
tions, one can compute the expected cardinal utility of lotter-
ies. We then define a strategy-proof mechanism analogously
to Definition 4: for each ai, it must hold that the expected
utility of Z(Pi, v−i) is no less than the expected utility of
Z(vi, v−i) for all vi ∈ Vi and for all v−i ∈ V−i. The impos-
sibility result given by Theorem 2 still holds: If (V,Z) is a
strategy-proof mechanism, then Z(P1, P2) must assign zero
probability to both {a1} and {a2}, yet these are the only two
stable invitations. All other impossibility results we mention
in this work can be extended in this manner.

We can extend our results in a different direction by con-
sidering multiple time-alternatives for the event. In such set-
tings, agents may have preferences over time-alternatives
for the event, in addition to size of invitations. In the non-
strategic case, our easiness result is still applicable: One
can run the algorithm used in Theorem 1 iteratively for
each time-alternative, and choose the maximum stable invi-
tation among all. In the strategic case, our impossibility re-
sults immediately imply the same negative results. For INC-
instances of ASIP, we obtain a similar impossibility result
even if there is only two time-alternatives. The intuition is
that over-reporting (Li > li) can give the veto power to
an agent, which prevents us from designing a strategy-proof
mechanism even for INC-instances of ASIP. Note that all
of our impossibility results can be naturally extended to the
Group Activity Selection Problem by Darmann et al. (2012)
since ASIP is a sub-class of GASP with a single activity.

4 General Stable Invitation Problem
We now allow agents to specify which agents they like or do
not like, in addition to preferences over sizes of invitations.

4.1 Definitions and Notation
Let us formally define the General Stable Invitation Problem
(GSIP) and solution concepts.

Definition 5. An instance of the General Stable Invitation
Problem (GSIP) is a tuple (N,P, F,R) where N and P
are defined the same as before (see Definition 1), F =
(F1, F2, . . . , Fn) is a collection of acceptance sets, and
R = (R1, R2, . . . , Rn) is a collection of rejection sets
where Fi ⊆ (N \ {ai}) and Ri ⊆ (N \ {ai}) for all i.2
We interpret (Pi, Fi, Ri) such that ai is willing to attend the
event only if all agents in Fi attend, no agent in Ri attends,
and the number of attendees is acceptable according to Pi.

Given an instance (N,P, F,R) of GSIP, we say that it
is an (α, β)-instance, where α = maxai∈N |Fi| and β =
maxai∈N |Ri|. It holds by definition that 0 ≤ α, β ≤ n− 1;
in particular empty acceptance sets and rejection sets are al-
lowed under our definition. We will later see that our easi-
ness and hardness results rely on (α, β) values. Notice that
any ASIP instance is a (0, 0)-instance of GSIP, and there-
fore ASIP is a special case of GSIP. We now define stability
of invitations analogously to Definition 2.

2One may assume Fi∩Ri = ∅ for all i, but this is not necessary
in this work.

Definition 6. An invitation is a subset S of N as before.
An invitation S satisfies individual rationality (IR) if for
every agent ai ∈ S it holds that Fi ⊆ S, Ri ∩ S = ∅,
and |S| �i 0. An invitation S exhibits no exclusion-regret
with addition (a-ER) if for every agent aj 6∈ S it holds that
0 �j (S ∪ {aj}). An invitation S exhibits no exclusion-
regret with replacement (r-ER) if for every agent aj 6∈ S
there is no ai ∈ S such that (S \ {ai} ∪ {aj}) �j 0. An
invitation is a-stable (r-stable, respectively) if it satisfies IR
and exhibits no a-ER (IR and no r-ER, respectively).

Note that Definition 6 coincides with Definition 2 when
all {Fi, Ri}’s are empty. From here one we use the def-
initions of a-ER and a-stable and refer to them simply as
ER and stable. However our technical results are unchanged
when we instead use r-ER and r-stable (see Section 4.5).

For each agent ai, we can naturally induce from Pi the
preference of ai over the set of all invitations, 2N , in the
same manner as we did in Section 3.1. Therefore, the prefer-
ences of agents over invitations are well-defined. Note that
individual rationality and exclusion-regret are properties of
an invitation, not preferences of agents, and therefore we de-
fine the induced preferences over invitations to be indepen-
dent of the properties of a solution concept. Next we define
a special class of preferences, called simple preferences.

Definition 7. A preference Pi is simple, if agent ai strictly
prefers any outcome x ∈ X with x 6= 0 to 0. That is, for all
x ∈ X with x 6= 0, x �i 0.

Note that when an agent has a simple preference, she may
still have an arbitrary preference ordering over outcomes,
but she strictly prefers attending to not attending.

We emphasize that in GSIP agents still have preferences
(P ) over sizes of invitations. Most of our hardness and
impossibility results for GSIP are stated while assuming
that all agents have simple preferences – this assumption
strengthens our negative results because they directly im-
ply the same negative results for general cases. On the other
hand, we provide our easiness result for GSIP assuming ar-
bitrary preferences, which of course implies the same posi-
tive result for GSIP with simple preferences.

4.2 An Example of GSIP
We present two examples of GSIP.

Example 4. Consider four agents with simple preferences
and the following acceptance-rejection sets:

F1 = {a2}, F2 = {a1}, F3 = {a4}, F4 = {a3},
R1 = {a3}, R2 = {a4}, R3 = {a1}, R4 = {a2}.

Agents a1 and a2 have each other in their acceptance sets,
while they reject agents a3 and a4, respectively. Similarly,
agents a3 and a4 have each other in their acceptance sets,
while they reject agents a1 and a2, respectively. Among
2|N | = 16 possible invitations, there are three stable invi-
tations: ∅, {a1, a2}, and {a3, a4} (the latter two being max-
imum). One can easily verify that all other invitations are
not stable; for example, S = {a1, a3, a4} is not IR due to
agents a1 and a3. Although we did not describe preferences
of agents on sizes, we can still find stable invitations because
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they all have simple preferences. Note that this example is a
(1, 1)-instance of GSIP with simple preferences.

4.3 The Non-strategic Case
The decision problem of GSIP is whether a stable invi-
tation of size k exists given (N,P, F,R). Computational
complexity of this problem depends on (α, β) values – re-
call that an instance of GSIP is an (α, β)-instance where
α = maxai∈N |Fi| and β = maxai∈N |Ri|. We state NP-
hardness results while assuming agents with simple prefer-
ences (this strengthens our negative results) and easiness re-
sults while assuming agents with arbitrary preferences (this
strengthens our positive results) whenever possible.

Note that NP-hardness for GSIP implies NP-
completeness because GSIP is clearly in NP (i.e., one
can efficiently check whether a given invitation is stable).

Theorem 5 states that the decision problem of GSIP is
NP-hard even if the size of all acceptance sets and rejection
sets are at most one. Theorem 6 delivers a similar negative
result even if acceptance sets are empty and rejection sets
contain at most two agents. Most of our NP-hardness results
are obtained by reducing form the MAX-2-SAT problem or
the 3-SAT problem. Due to space we omit proofs.

Theorem 5. It is NP-hard to decide whether a (1, 1)-
instance of GSIP admits a stable invitation of size k, even
if all agents have simple preferences.

Theorem 6. It is NP-hard to decide whether a (0, 2)-
instance of GSIP admits a stable invitation of size k, even
if all agents have simple preferences.

We now consider the remaining cases of GSIP whose
computational complexity is not implied by Theorems 5 and
6. We know that (0, 0)-instances of GSIP with arbitrary
preferences are solvable in polynomial time (due to Theo-
rem 1) because those are instances of ASIP. In addition if
we are given (1, 0)-instances or (0, 1)-instances of GSIP
with arbitrary preferences, we can find a maximum stable
invitation in polynomial time.

Theorem 7. One can find a maximum stable invitation in
polynomial time, given any (1, 0)-instance of GSIP (with
arbitrary preferences, P ).

Proof sketch. One con construct a directed graph where
each node corresponds to an agent and each edge corre-
sponds to membership of an agent in a rejection set. Since
each node contributes at most one edge, we know that each
component of G either is a tree or contains a cycle such that
each node on the cycle is the root of a tree. By utilizing this
structure, we can determine for fixed k whether a stable in-
vitation of size k exists in polynomial time via a dynamic
programming algorithm.

Theorem 8. One can find a maximum stable invitation in
polynomial time, given any (0, 1)-instance of GSIP (with
arbitrary preferences, P ).

Proof sketch. We can use a similar technique that was de-
scribed in the proof sketch of Theorem 7.

We emphasize that our algorithms for Theorems 7 and 8
rely on the restriction that each agent’s acceptance set (rejec-
tion set, respectively) is limited to singleton or empty sets.

Finally, we consider (2, 0)-instances of GSIP. In this sub-
class of GSIP, the decision problem is in P if we assume
simple preferences, whereas it is NP-hard if we assume ar-
bitrary preferences.

Theorem 9. It is NP-hard to decide whether a (2, 0)-
instance of GSIP admits a stable invitation of size k, when
agents may have arbitrary preferences.

Lemma 1. Given any (α, 0)-instance of GSIP with simple
preferences, the full invitation is the unique maximum stable
invitation.

Proof. Consider S = N , the full invitation. S exhibits no
ER by definition because there is no aj 6∈ S. For all ai ∈ S,
we know that Fi ⊆ S = N and Ri = ∅ as β = 0. Therefore
S is individually rational and stable. Since S = N , it is
indeed the unique maximum stable invitation.

While Lemma 1 is easy to prove, it is worth noting that the
interests of the agents and organizer align in this case, which
enables us to efficiently find a maximum stable invitation.

We summarize in Table 1 (on left) our analysis of com-
putational complexity for the non-strategic case of GSIP.
P denotes the existence of polynomial time algorithms and
NP-C denotes NP-completeness. The entries in boldface re-
mark the results shown in this work, and the other entries
are implied by those results. For comparison, we also sum-
marize hardness and easiness results for finding maximum
individually rational (IR) invitations on the right. Notice that
the only difference between the two problems is the entry for
(α, 0)-instances with α ≥ 2 with arbitrary preferences. Also
note that the full invitation is trivially the maximum if we
look for no-ER invitations.

In what follows we state our hardness and easiness results
for finding maximum IR invitations in GSIP.

Theorem 10. It is NP-hard to decide whether a (1, 1)-
instance of GSIP admits an individually rational invitation
of size k, even if all agents have simple preferences.

Theorem 11. It is NP-hard to decide whether a (0, 2)-
instance of GSIP admits an individually rational invitation
of size k, even if all agents have simple preferences.

Proof sketch. We reduce from the Maximum-Independent-
Set problem in (undirected) cubic graphs, which was shown
to be NP-complete (Michael R. Garey and Stockmeyer.
1976). Given a cubic graph with n nodes, we first create
n agents each of which corresponds to a node. We then
assign either of the two directions to each edge such that
each directed edge corresponds to an agent belonging to
another agent’s rejection set. If we can find an assignment
of directions such that each node has at most two outgo-
ing edges, then we can construct a (0, 2)-instance of GSIP
by putting at most two agents in each agent’s rejection set.
Using the Lovász local lemma we can show that such as-
signment always exists (we use Theorem 2 of the work by
Shearer (1985)).
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Finding Max. Stable Invitations Finding Max. IR Invitations
Simple Preferences Arbitrary Preferences Simple Preferences Arbitrary Preferences

β = 0 β = 1 β ≥ 2 β = 0 β = 1 β ≥ 2 β = 0 β = 1 β ≥ 2 β = 0 β = 1 β ≥ 2
α = 0 P P NP-C P P NP-C P P NP-C P P NP-C
α = 1 P NP-C NP-C P NP-C NP-C P NP-C NP-C P NP-C NP-C
α ≥ 2 P NP-C NP-C NP-C NP-C NP-C P NP-C NP-C P NP-C NP-C

Table 1: Computational complexity of finding maximum stable invitations (on left) and maximum IR invitations (on right).

Theorem 12. One can find a maximum individually rational
invitation in polynomial time, given any (α, 0)-instance of
GSIP (with arbitrary preferences, P ).

Theorem 13. One can find a maximum individually rational
invitation in polynomial time, given any (0, 1)-instance of
GSIP (with arbitrary preferences, P ).

4.4 The Strategic Case
Recall that the impossibility results for the strategic case of
ASIP (namely, Theorems 2 and 3) immediately imply the
same negative results for GSIP since ASIP is a sub-class
of GSIP. These results are mainly due to arbitrary prefer-
ences over size of invitations, and we now consider another
sub-class of GSIP where all agents have simple preferences.
Recall that ai has a simple preference if x �i 0 for all
x ∈ (X \ {0}).

When β = 0 (i.e., all rejection sets are empty), we im-
mediately obtain an optimal, strategy-proof mechanism due
to Lemma 1. We know that the full invitation is the unique
maximum stable invitation given (α, 0)-instances of GSIP
with simple preferences. Therefore a trivial mechanism that
invites everyone is strategy-proof and optimal. When β > 0,
we show an impossibility result as stated in Theorem 14. Al-
though we do not formally define a mechanism and strategy-
proofness in the context of GSIP, the reader should assume
definitions analogous to the one provided in Section 3.4.

Theorem 14. No strategy-proof mechanism can find a sta-
ble invitation, even if it exists, for an arbitrary (α, β) in-
stance of GSIP when β > 0. This remains true even if all
agents have simple preferences.

Proof. Consider a (0, 1)-instance of GSIP with two agents
N = {a1, a2}. Assume both agents have simple prefer-
ences and their rejects sets are given by R1 = {a2} and
R2 = {a1}. Given (R1, R2), the only two stable invitations
are S1 = {a1} and S2 = {a2}. Suppose that a mechanism
chooses S2 given (R1, R2). Then a1 has an incentive to mis-
report as if her rejection set were empty (i.e., R̂1 = ∅). Given
(R̂1, R2), the only stable invitation is now S1 (and S2 ex-
hibits ER due to a1). Since a1 prefers S1 to S2 (because
S1 ∼ 1 � 0 ∼ S2 for a1), a1 has an incentive to report
R̂1. By symmetry a2 would have an incentive to misreport if
S1 to be chosen. Thus there is no strategy-proof mechanism
that can find a stable invitation for this instance.

4.5 From a-stability to r-stability
Recall that we defined a-stable and r-stable invitations in
Definition 6, but we have so far only discussed the former.

However, our technical results (both easiness and hardness
results) remain unchanged when we consider r-stable invita-
tions instead. Specifically in the non-strategic case of GSIP,
our results in Table 1 do not change (this includes ASIP). In
the strategic-case, Theorem 3 implies an impossibility result
for both ASIP and GSIP regardless of which definition of
exclusion-regret (ER) and stability is chosen.

5 Contributions and Future Work
The main contribution of this work is a thorough analysis
of the Stable Invitation Problem from both computational
complexity perspective and game-theoretic perspective. For
the former, we provide a number of easiness and hardness
results on ASIP and GSIP with truthful agents. We show
that finding a stable invitation or an individually rational
invitation is computationally hard in general. For the lat-
ter, we show several impossibility results for mechanism
design, and also provide a strategy-proof, optimal mecha-
nism for special cases of ASIP when all agents have INC-
preferences. It is worth emphasizing that we obtained posi-
tive results when the interests of agents and organizer align
(via INC-preferences or empty rejection sets). We also pro-
vided a few interesting extensions of ASIP and GSIP.

While we answered many interesting questions, there are
many interesting directions for future work. One interesting
direction is to study a case where the organizer is interested
in hosting a certain number of (identical) events such that
each agent is invited to one of those events and that each
event admits a stable invitation. This generalization is well-
motivated (for instance, consider a series corporate info-
sessions for recruiting). Other interesting directions include
probabilistic algorithms and mechanisms – for instance, we
can relax the individual rationality constraint and allow al-
gorithms or mechanisms to ‘fail’ with a small probability.
This relaxation may let us circumvent the impossibility re-
sults stated in Theorems 2, 3, and 14.

Missing Proofs
Due to space we only provided proof sketches and omitted
formal proofs. They can be found in the extended version.

Acknowledgements
This work was funded in part by the National Science Foun-
dation (under grants IIS-0963478 and IIS-1347214), the
U.S. Army (under grant W911NF1010250), and the Kwan-
jeong Educational Foundation. The authors also thank the
reviewers, Eric Huang, Euiwoong Lee, and Qiang Zhang for
providing fruitful suggestions.

970



References
Aziz, H., and Brandl., F. 2012. Existence of stability in hedo-
nic coalition formation games. In Proceedings of the 11th In-
ternational Conference on Autonomous Agents and Multiagent
Systems, 763–770.
Ballester, C. 2004. Np-completeness in hedonic games. Games
and Economic Behavior 49(1):1–30.
Bogomolnaia, A., and Jackson., M. O. 2002. The stability of
hedonic coalition structures. Games and Economic Behavior
38(2):201–230.
Darmann, A.; Elkind, E.; Kurz, S.; Lang, J.; Schauer, J.; and
Woeginger, G. 2012. Group activity selection problem. In
Proceedings of the Internet and Network Economics, 156–169.
Dreze, J. H., and Greenberg., J. 1980. Hedonic coalitions: Op-
timality and stability. Journal of the Econometric Society 987–
1003.
Michael R. Garey, D. S. J., and Stockmeyer., L. 1976. Some
simplified np-complete graph problems. Theoretical Computer
Science 1(3):237–267.
Shearer, J. B. 1985. On a problem of spencer. Combinatorica
5(3):241–245.
Von Neumann, J., and Morgenstern, O. 1947. The Theory of
Games and Economic Behavior. Princeton University Press.

971




