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Abstract

We study the problem of locating a single facility on a
real line based on the reports of self-interested agents,
when agents have double-peaked preferences, with the
peaks being on opposite sides of their locations. We ob-
serve that double-peaked preferences capture real-life
scenarios and thus complement the well-studied notion
of single-peaked preferences. We mainly focus on the
case where peaks are equidistant from the agents’ loca-
tions and discuss how our results extend to more general
settings. We show that most of the results for single-
peaked preferences do not directly apply to this setting;
this makes the problem essentially more challenging.
As our main contribution, we present a simple truthful-
in-expectation mechanism that achieves an approxima-
tion ratio of 1+b/c for both the social and the maximum
cost, where b is the distance of the agent from the peak
and c is the minimum cost of an agent. For the latter
case, we provide a 3/2 lower bound on the approxima-
tion ratio of any truthful-in-expectation mechanism. We
also study deterministic mechanisms under some natu-
ral conditions, proving lower bounds and approximation
guarantees. We prove that among a large class of rea-
sonable mechanisms, there is no deterministic mecha-
nism that outpeforms our truthful-in-expectation mech-
anism.

1 Introduction
We study the problem of locating a single facility on a real
line, based on the input provided by selfish agents who wish
to minimize their costs. Each agent has a location xi ∈ R
which is her private information and is asked to report it
to some central authority, which then decides where to lo-
cate the facility, aiming to optimize some function of the
agents’ reported locations. This model corresponds to prob-
lems such as finding the ideal location for building a primary
school or a bus stop along a street, so that the total distance
of all agents’ houses from the location is minimized, or so
that no agent’s house will lie too far away from that location.

In our setting, we assume that agents have double-peaked
preferences, i.e. we assume that each agent i has two unique
most preferred points or peaks, located at some distances
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from xi on opposite sides, where her cost is minimum. Tra-
ditionally, preferences in facility location problems are as-
sumed to be single-peaked, i.e. each agent’s location is her
most preferred point on the line and her cost increases lin-
early (at the same rate) to the left and the right of that
peak. Sometimes however, single-peaked preferences do not
model real-life scenarios accurately. Take for instance the
example mentioned above, where the government plans to
build a primary school on a street. An agent with single-
peaked preferences would definitely want the school built
next to her house, so that she wouldn’t have to drive her
children there everyday. However, it is quite possible that
she is also not very keen on the inevitable drawbacks of
having a primary school next to her house either, like un-
pleasant noise or trouble with parking. On the other hand,
a five-minute walking distance is sufficiently far for those
problems to no longer be a factor but also sufficiently close
for her children to be able to walk to school. There are two
such positions, (symmetrically) in each direction, and those
would be her two peaks.

Our primary objective is to explore double-peaked prefer-
ences in facility location settings similar to the ones stud-
ied extensively for single-peaked preferences throughout
the years (Procaccia and Tennenholtz 2009; Schummer and
Vohra 2002; Lu, Wang, and Zhou 2009; Lu et al. 2010;
Alon et al. 2010; Fotakis and Tzamos 2010; Escoffier et
al. 2011; Fotakis and Tzamos 2012; Dokow et al. 2012;
Feldman and Wilf 2013). For that reason, following the lit-
erature we assume that the cost functions are the same for all
agents and that the cost increases linearly, at the same rate, as
the output moves away from the peaks. The straightforward
extension to the double-peaked case is piecewise-linear cost
functions, with the same slope in all intervals, which gives
rise to the natural model of symmetric agents, i.e. the peaks
are equidistant from the agent’s location. Note that this sym-
metry is completely analogous to the single-peaked case (for
facility location problems, e.g. see (Procaccia and Tennen-
holtz 2009)), where agents have exactly the same cost on
two points equidistant from their peaks. Our lower bounds
and impossibility results naturally extend to non-symmetric
settings, but some of our mechanisms do not. We discuss
those extensions in Section 5.

Our model also applies to more general spaces, beyond
the real line. One can imagine for instance that the goal is
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to build a facility on the plane where for the same reasons,
agents would like the facility to be built at some distance
from their location, in every direction. This translates to an
agent having infinitely many peaks, located on a circle cen-
tered around her location. In that case of course, we would
no longer refer to agents’ preferences as double-peaked but
the underyling idea is similar to the one presented in this pa-
per. We do not explore such extensions here; we leave that
for future work.

Agents are self-interested entities that wish to minimize
their costs. We are interested in mechanisms that ensure that
agents are not incentivized to report anything but their actual
locations, namely strategyproof mechanisms. We are also
interested in group strategyproof mechanisms, i.e., mech-
anisms that are resistant to manipulation by coalitions of
agents. Moreover, we want those mechanisms to achieve
some good performance guarantees, with respect to our
goals. If our objective is to minimize the sum of the agent’s
costs, known as the social cost, then we are looking for strat-
egyproof mechanisms that achieve a social cost as close as
possible to that of the optimal mechanism, which need not
be strategyproof. The prominent measure of performance for
mechanisms in computer science literature is the approxima-
tion ratio (Dughmi and Gosh 2010; Guo and Conitzer 2010;
Ashlagi et al. 2010; Caragiannis, Filos-Ratsikas, and Pro-
caccia 2011), i.e., the worst possible ratio of the social cost
achieved by the mechanism over the minimum social cost
over all instances of the problem. The same holds if our ob-
jective is to minimize the maximum cost of any agent. In
the case of randomized mechanisms, i.e., mechanisms that
output a probability distribution over points in R, instead of
a single point, as a weaker strategyproofness constraint, we
require truthfulness-in-expectation, i.e., a guarantee that no
agent can reduce her expected cost from misreporting.

Double-peaked preferences in practice
Single-peaked preferences were introduced in (Black 1957
reprint at 1986) as a way to avoid Condorcet cycles in major-
ity elections. Moulin (1980) characterized the class of strat-
egyproof mechanisms in this setting, proving that median
voter schemes are essentially the only strategyproof mech-
anisms for agents with single-peaked preferences. Double-
peaked preferences have been mentioned in social choice
literature (e.g. see (Cooter 2002)), to describe settings where
preferences are not single-peaked, voting cycles do exist and
majority elections are not possible. In broader social choice
settings, they can be used to model situations where e.g. a
left-wing party might prefer a more conservative but quite
effective policy to a more liberal but ineffective one on a
left-to-right political axis. In fact, Egan (2013) provides a
detailed discussion on double-peaked preferences in polit-
ical decisions. He uses a 1964-1970 survey about which
course of action the United States should take with regard to
the Vietnam war as an example where the status quo (keep
U.S, troops in Vietnam but try to terminate the war) was
ranked last by a considerable fraction of the population when
compared to a left-wing policy (pull out entirely) or a right-
wing policy (take a stronger stand). This demonstrates that
in a scenario where the standard approach would be to as-

sume that preferences are single-peaked, preferences can in-
stead be double-peaked. Egan provides additional evidence
for the occurence of double-peaked preferences supported
by experimental results based on surveys on the U.S. popu-
lation, for many different problems (education, health care,
illegal immigration treatment, foreign oil treatment e.t.c.).
More examples of double-peaked preferences in real-life
scenarios are presented in (Rosen 2004). The related work
demonstrates that although they might not be as popular as
their single-peaked counterpart, double-peaked preferences
do have applications in settings more general than the street
example described earlier. On the other hand, the primary
focus of this paper is to study double-peaked preferences
on facility location settings and therefore the modelling as-
sumptions follow the ones of the facility location literature.

Our results
Our main contribution is a truthful-in-expectation mecha-
nism (M1) that achieves an approximation ratio of 1 + b/c
for the social cost and max{1 + b/c, 2} for the maximum
cost, where b is the distance between an agent’s location
and her peak and c is her minimum cost. We also prove
that no truthful-in-expectation mechanism can do better than
a 3/2 approximation for the maximum cost proving that
at least for the natural special case where b = c, Mecha-
nism M1 is not far from the best possible. For deterministic
mechanisms, we prove that no mechanism in a wide nat-
ural class of strategyproof mechanisms can achieve an ap-
proximation ratio better than 1 + b/c for the social cost and
1 + 2b/c for the maximum cost and hence cannot outper-
form Mechanism M1. To prove this, we first characterize
the class of strategyproof, anonymous and position invariant
mechanisms for two agents by a single mechanism (M2).
Intuitively, anonymity requires that all agents are handled
equally by the mechanism while position invariance essen-
tially requires that if we shift an instance by a constant, the
location of the facility should be shifted by the same con-
stant as well. This is a quite natural condition and can be
interpreted as a guarantee that the facility will be located
relatively to the reports of the agents and independently of
the underlying network (e.g. the street).

We prove that the approximation ratio of Mechanism M2
for the social cost is Θ(n), where n is the number of agents
and conjecture that no deterministic strategyproof mech-
anism can achieve a constant approximation ratio in this
case. For the maximum cost, the ratio of Mechanism M2 is
max{1 + 2b/c, 3} which means that the mechanism is actu-
ally the best in the natural class of anonymous and position
invariant mechanisms. For any deterministic strategyproof
mechanism, we prove a lower bound of 2 on the approx-
imation ratio, proving that at least for the natural case of
b = c, Mechanism M2 is also not far from optimal. Finally,
we prove an impossibility result; there is no group strate-
gyproof, anonymous and position invariant mechanism for
the problem. This is in constrast with the single-peaked pref-
erence setting, where there is a large class of group strat-
egyproof mechanisms that satisfy those properties. Our re-
sults are summarized in Table 1.

Most of our results appear without proofs, due to lack of
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space; the proofs appear in the full version.

2 Preliminaries
Let N = {1, 2, . . . , n} be a set of agents. We consider the
case where agents are located on a line, i.e., each agent i ∈
N has a location xi ∈ R. We will occasionally use xi to refer
to both the position of agent i and the agent herself. We will
call the collection x = 〈x1, . . . , xn〉 a location profile or an
instance.

A deterministic mechanism is a function f : Rn 7→ R that
maps a given location profile to a point in R, the location of
the facility. We assume that agents have double-peaked pref-
erences, symmetric with respect to the origin. We discuss
how our results extend to non-symmetric agents in Section
5. Given any instance x and a location y ∈ R, the cost of
agent i is

cost(y, xi) =

{
c+ |xi − b− y| if y ≤ xi
c+ |xi + b− y| if y > xi

where c and b are positive constants. We will say that y ad-
mits a cost of cost(y, xi) for agent i on instance x. For a
mechanism that outputs f(x) on instance x, the cost of agent
i is cost(f(x), xi). Intuitively, each agent has two most fa-
vorable locations, i.e., xi − b and xi + b, which we refer to
as the peaks of agent i. Note that these peaks are actually
the troughs of the curve of the cost function, but much like
most related work, we refer to them as peaks. The parameter
c > 0 is the minimum cost incurred to an agent when the
facility is built on one of her peaks.1 Note that the special
case, where b = c corresponds to the natural setting where
the incurred minimum cost of an agent is interpreted as the
distance she needs to cover to actually reach the facility. This
case is particularly appealing, since the bounds we obtain are
clean numbers, independent of b and c. The bounds for the
natural case can be obtained directly by letting b = c in all
of our results.

A randomized mechanism is a function f : Rn 7→ ∆(R),
where ∆(R) is the set of probability distributions over R.
It maps a given location profile to probabilistically selected
locations of the facility. The expected cost of agent i is
Ey∼D [cost(y, xi)], where D is the probability distribution
of the mechanism outputs.

We will call a deterministic mechanism f strategyproof
if no agent would benefit by misreporting her location, re-
gardless of the locations of the other agents. This means
that for every x ∈ Rn, every i ∈ N and every x′i ∈
R, cost(f(x), xi) ≤ cost(f(x′i,x−i), xi), where x−i =
〈x1, . . . , xi−1, xi+1, . . . , xn〉. A mechanism is truthful-in-
expectation if it guarantees that every agent always mini-
mizes her expected cost by reporting her location truthfully.
Throughout the paper we will use the term strategyproofness
when refering to deterministic mechanisms and the term
truthfulness when refering to randomized mechanisms.

1It is not hard to see by our results that if we let an agent’s cost
be zero on her peaks, then in very general settings, no determnis-
tic strategyproof mechanism can guarantee a finite approximation
ratio.

A mechanism is group strategyproof if there is no coali-
tion of agents, who by jointly misreporting their locations,
affect the outcome in a way such that the cost of none of
them increases and the cost of at least one of them strictly
decreases. In other words, there is no S ⊆ N such that for
some misreports x′S of agents in S and some reports x−S of
agents in N\S, cost(f(x′S ,x−S), xi) ≤ cost(f(x), xi) for
all i ∈ S, and cost(f(x′S ,x−S), xj) < cost(f(x), xj) for at
least one j ∈ S.

Given an instance x and a location y ∈ R, the social cost
and the maximum cost of y are defined respectively as:

SCy(x) =
n∑
i=1

cost(y, xi) , MCy(x) = max
i∈N

cost(y, xi).

We will say that y admits a social cost of SCy(x) or a
maximum cost of MCy(x). We will call y ∈ R an optimal
location (for the social cost), if y ∈ arg miny SCy(x). The
definition for the maximum cost is analogous. Let SCopt(x)
andMCopt(x) denote the social cost and the maximum cost
of an optimal location respectively, on instance x. For a
mechanism f that outputs f(x) on instance x, we will call
SCf(x)(x) the social cost of the mechanism and we will de-
note it by SCf(x); and analogously for the maximum cost.

We are interested in strategyproof mechanisms that per-
form well with respect to the goal of minimizing either the
social cost or the maximum cost. We measure the perfor-
mance of the mechanism by comparing the social/maximum
cost it achieves with the optimal social/maximum cost, on
any instance x.

The approximation ratio of mechanism f , with respect to
the social cost, is given by

r = sup
x

SCf(x)

SCopt(x)
.

The approximation ratio of mechanism f , with respect to
maximum cost, is defined similarly.

For randomized mechanisms, the definitions are similar
and the approximation ratio is calculated with respect to the
expected social or maximum cost, i.e., the expected sum of
costs of all agents and expected maximum cost of any agent,
respectively.

Finally we consider some properties which are quite natu-
ral and are satisfied by many mechanisms (including the op-
timal mechanism). A mechanism f is anonymous, if for ev-
ery location profile x and every permutation π of the agents,
f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)). We say that a mech-
anism f is onto, if for every point y ∈ R on the line, there
exists a location profile x such that f(x) = y. Without loss
of generality, for anonymous mechanisms, we can assume
x1 ≤ · · · ≤ xn.

A property that requires special mention is that of position
invariance, which is a very natural property as discussed in
the introduction. This property was independently defined
by (Feigenbaum, Sethuraman, and Ye 2013) where it was
referred to as shift invariance. One can view position invari-
ance as an analogue to neutrality in problems like the one
studied here, where there is a continuum of outcomes in-
stead of a finite set.
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Definition 1. A mechanism f satisfies position invariance, if
for all location profiles x = 〈x1, ..., xn〉 and t ∈ R, it holds
f(x1 + t, x2 + t, . . . , xn + t) = f(x) + t. In this case, we
will call such a mechanism position invariant. We will refer
to instances x and 〈x1 + t, x2 + t, . . . , xn + t〉 as position
equivalent.

Note that position invariance implies the onto condition.
Indeed, for any location profile x, with f(x) = y, we have
f(x1 + t, x2 + t, . . . , xn + t) = y′ = y+ t for any t ∈ R, so
every point y′ ∈ R is a potential output of the mechanism.

3 A truthful-in-expectation mechanism
We start the exposition of our results with our main con-
tribution, a truthful-in-expectation mechanism that achieves
an approximation ratio of 1 + b/c for the social cost and
max{1 + b/c, 2} for the maximum cost.
Mechanism M1. Given any instance x = 〈x1, ..., xn〉,
find the median agent xm = median(x1, ..., xn), breaking
ties in favor of the agent with the smallest index. Output
f(x) = xm − b with probability 1

2 and f(x) = xm + b

with probability 1
2 .

Theorem 1. Mechanism M1 is truthful-in-expectation.

Proof. First, note that the median agent does not have an
incentive to deviate, since her expected cost is already min-
imum, neither does any agent i for which xi = xm. Hence,
for the deviating agent i it must be either xi < xm or
xi > xm. We consider three cases when xi < xm. The
proof for the case xi > xm is symmetric. Observe that for
agent i to be able to move the position of the facility, she
has to report x′i ≥ xm and change the identity of the me-
dian agent. Let x′m be the median agent in the new instance
〈x′i, x−i〉, after agent i’s deviation. If x′m = xm, then ob-
viously agent xi does not gain from deviating, so we will
assume that x′m > xm.

Case 1: xi+b ≤ xm−b (symmetrically xi−b ≥ xm+b).
In this case, the cost of agent i is calculated with respect to

xi + b for both possible outcomes of the mechanism. Since
x′m − b > xm − b and x′m + b > xm + b, it holds that
|(xi + b) − (x′m − b)| > |(xi + b) − (xm − b)| and |(xi +
b)− (x′m + b|) > |(xi + b)− (xm + b)| and agent i can not
gain from misreporting.

Case 2: xm − b < xi + b ≤ xm (symmetrically xm ≤
xi − b < xm + b).

Again, the cost of agent i is calculated with respect to
xi + b for both outcomes of the mechanism. This time, it
might be that |(xi + b)− (x′m− b)| < |(xi + b)− (xm− b)|
but since (x′m−b)−(xm−b) = (x′m+b)−(xm+b), it will
also hold that |(xi + b)− (x′m + b)| > |(xi + b)− (xm + b)|
and also |(xi + b) − (xm − b)| − |(xi + b) − (x′m − b)| =
|(xi + b) − (x′m + b)| − |(xi + b) − (xm + b)|. Hence, the
expected cost of agent i after misreporting is at least as much
as it was before.

Case 3: xm < xi+ b ≤ xm+ b (symmetrically xm− b ≤
xi − b < xm).

The cost of agent i before misreporting is calculated with
respect to xi−bwhen the outcome is xm−b and with respect
to xi + b when the outcome is xm + b. For any misreport

x′i < xi + b, this is still the case (for x′m − b and x′m + b
respectively) and since (x′m − b)− (xm − b) = (x′m + b)−
(xm + b), her expected cost is not smaller than before. For
any misreport x′i > xi+b, her cost is calculated with respect
to xi + b for both possible outcomes of the mechanism and
for the same reason as in Case 2, her expected cost is at least
as much as it was before misreporting.

Next, we will calculate the approximation ratio of the
mechanism. In order to do that, we will need the following
lemma.

Lemma 1. Let x = 〈x1, ..., xm, ..., xn〉, where xm =
median (x1, ..., xn), breaking ties in favor of the smallest
index. There exists an optimal location for the social cost in
[xm − b, xm + b].

Proof. Assume for contradiction that this is not the case.
Then, for any optimal location y, it must be that either
y < xm − b or y > xm + b.

Assume first that y < xm − b. Since xm is the median
agent, it holds that for at least dn/2e agents, xi−b ≥ xm−b,
that is xm− b admits a smaller cost for at least dn/2e agents
when compared to y. Let X1 be the set of those agents. On
the other hand, for each agent xi < xm, xm − b may admit
a smaller or larger cost than y, depending on her position
with respect to y. In the worst case, the cost is larger for
every one of those agents, which happens when xi + b ≤ y
for every agent with xi < xm. Let X2 be the set of those
agents. Now observe that for any two agents xa ∈ X1 and
xb ∈ X2, it holds that cost(xa, y) − cost(xa, xm − b) =
cost(xb, xm − b)− cost(xb, y). Since |X1| ≥ |X2|, it holds
that that SCxm−b(x) ≤ SCy(x). Since it can not be that
SCxm−b(x) < SCy(x), xm − b is an optimal location and
we get a contradiction.

Now assume y > xm + b. Let y = xm + b. If the num-
ber of agents is odd, then we can use an exactly symmet-
ric argument to prove that SCxm+b ≤ SCy . If the number
of agents is even, the argument can still be used, since our
tie-breaking rule selects agent xn/2 as the median. Specifi-
cally, xm + b admits a smaller cost for exactly n/2 of the
agents (including agent xn/2) and in the worst case, y ad-
mits a smaller cost for n/2 agents as well. If X1 and X2

are the sets of those agents respectively, then again it holds
that cost(xa, y) − cost(xa, xm + b) = cost(xb, xm + b) −
cost(xb, y) for xa ∈ X1 and xb ∈ X2 and we get a contra-
diction as before.

We now proceed to proving the approximation ratio of
Mechanism M1.

Theorem 2. Mechanism M1 has an approximation ratio of
1 + b

c for the social cost.

Proof. Consider an arbitrary instance x = 〈x1, ..., xn〉 and
let xm be the median agent. By Lemma 1, there exists an op-
timal location y ∈ [xm−b, xm+b]. Let δ = y−(xm−b). For
every agent i, it holds that cost(xi, xm−b) ≤ cost(xi, y)+δ.
To see this, first observe that |(xi − b) − (xm − b)| ≤
|(xi − b) − y| + δ and that |(xi + b) − (xm − b)| ≤
|(xi + b) − y| + δ. If the cost of an agent admitted by y
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and xm− b is calculated with respect to the same peak, then
min(|(xi−b)−(xm−b)|, |(xi+b)−(xm−b)|) ≤ min(|(xi−
b)−y|, |(xi+b)−y|)+δ and the inequality holds. If the cost
is calculated with respect to different peaks for y and xm−b,
it must be that cost(xi, xm− b) = c+ |(xi− b)− (xm− b)|
and cost(xi, y) = c + |xi + b − y|, because xm − b < y.
Since |(xi−b)−(xm−b)| ≤ |(xi+b)−(xm−b)| ≤ |(xi+
b)−y|+δ, the inequality holds. Similarily, we can prove that
cost(xi, xm + b) ≤ cost(xi, y) + (2b − δ) for every agent
i. Hence, we can upper bound the cost of Mechanism M1
by 1

2

∑n
i=1 cost(xi, xm − b)+ 1

2

∑n
i=1 cost(xi, xm + b) ≤

1
2

∑n
i=1 (cost(xi, y) + δ) + 1

2

∑n
i=1 (cost(xi, y) + 2b− δ)

= SCy(x) + nb = SCopt(x) + nb. The approximation ratio
then becomes 1 + nb

SCopt(x)
, which is at most 1 + b

c , since
SCopt(x) is at least nc.

For the lower bound, consider the location profile x =
〈x1, ..., xn〉 with x1 = ... = xk−1 = xk − b = xk+1− 2b =
... = xn − 2b. Note that the argument works both when
n = 2k and when n = 2k + 1 because Mechanism M1
selects agent xk as the median agent in each case. The opti-
mal location is x1+cwhereas Mechanism M1 equiprobably
outputs fM1(x) = xk − b or fM1(x) = xk + b. The cost
of the optimal location is SCopt(x) = nc + b whereas the
cost of Mechanism M1 is SCM1(x) = nc + (1/2)(n − 1)b
+(1/2)(n − 1)b = nc + (n − 1)b. The approximation ra-
tio then becomes nc+(n−1)b

nc+b = 1 bc ·
n−2

n+(b/c) . As the number
of agents grows to infinity, the approximation ratio of the
mechanism on this instance approaches 1 + b/c. This com-
pletes the proof.

We also consider the maximum cost and prove the approx-
imation ratio of Mechanism M1 as well as a lower bound on
the approximation ratio of any truthful-in-expectation mech-
anism. The results are summarized in Table 1.

4 Deterministic Mechanisms
We now turn our attention to deterministic mechanisms.
Here, we provide an overview of our results; see the full
version for a more detailed exposition. First, consider the
following very simple mechanism.

Mechanism M2. Given any instance x = 〈x1, ..., xn〉,
locate the facility always on the left peak of agent 1, i.e.
f(x) = x1 − b.

We note here that the mechanism f(x) = xn + b has
exactly the same properties as Mechanism M2 and they are
identical up to symmetric profiles. The analysis for the latter
mechanism would be exactly the same. For that reason, we
will consider them to be the same mechanism.

It is not difficult to see that Mechanism M2 is strate-
gyproof. Mechanisms like Mechanism M2 that output the
peaks of agents are known as k-th order statistics. In fact,
Mechanism M2 is the only strategyproof k-th order statis-
tic mechanism for double-peaked preferences, unlike the
single-peaked preference case, where every k-th order statis-
tic mechanism is (group) strategyproof. Note that Mecha-
nism M2 is anonymous and position invariant. In fact, we
obtain the following characterization for two agents.

Theorem 3. When n = 2, the only strategyproof mechanism
that satisfies position invariance and anonymity is Mecha-
nism M2.

The approximation guarantees of Mechanism M2 for the
social cost and the maximum cost are summarized in Ta-
ble 1. What stands out is the non-constant approximation
ratio of the mechanism for the social cost. We believe that
the inability to guarantee constant ratios is a broader charac-
teristic of strategyproof deterministic mechanisms and not
just Mechanism M2. Unfortunately, we were not able to
prove that; what we were able to prove however is that no
anonymous and position invariant mechanism can do better
than Mechanism M1. Given the fact that those properties are
usually possessed by mechanisms with good approximation
guarantees, we can conjecture that no deterministic mecha-
nism outperforms Mechanism M1. To prove the afformen-
tioned bound, we make use of Theorem 3 in a creative way.
First, we prove the following lemma.

Lemma 2. Let Mn be a strategyproof, anonymous and po-
sition invariant mechanism for n agents. Then, for any loca-
tion profile x = 〈x1 = . . . = xn/2, xn/2+1 = . . . = xn〉, it
holds that Mn(x) = x1 − b.

Proof. Let M2 be the following mechanism for two agents:
On input location profile 〈x̂1, x̂2〉, output Mn(x), where
x = 〈x1 = · · · = xn/2, xn/2+1 = . . . = xn〉, and x1 = x̂1
and xn/2+1 = x̂2. First, we claim that M2 is strategyproof,
anonymous and position invariant. If that is true, then by
Theorem 3, M2 is Mechanism M2 and the lemma follows.

First let x̂ = 〈x̂1, x̂2〉, x̂′ = 〈x̂′1, x̂′2〉 be any two position
equivalent location profiles. Observe that the corresponding
n-agent profiles x and x′ obtained by placing n/2 agents on
x̂1 and x̂′1 and n/2 agents on x̂2 and x̂′2 respectively are also
position equivalent. Since Mn is position invariant, it must
hold that Mn(x) = Mn(x′) and hence by construction of
M2, M2(x̂) = M2(x̂′). Since x̂ and x̂′ where arbitrary,
Mechanism M2 is position invariant.

Similarly, let x̂ = 〈x̂1, x̂2〉, x̂′ = 〈x̂′1, x̂′2〉 be any two
location profiles, such that x̂′ is obtained by x̂ by a permuta-
tion of the agents. The outcome ofMn on the corresponding
n-agent location profiles (since the number of agents placed
on x̂1 and x̂2 is the same) is the same and by construction
of M2, M2(x̂) = M2(x̂′) and since the profiles where arbi-
trary, the mechanism is anonymous.

Finally, for strategyproofness, start with a location profile
x̂′ = 〈x̂′1, x̂′2〉 and let x′ = 〈x′1 = · · · = x′n/2, x

′
n/2+1 =

. . . = x′n〉 be the corresponding n-agent location profile.
Let y = Mn(x′) and let cost(x′, y) be the cost of agents
x′1, . . . , x

′
n/2 on x′. For any x1, let 〈x1, x′2 = . . . =

x′n/2, x
′
n/2+1 = . . . = x′n〉 be the resulting location pro-

file. By strategyproofness of Mn, agent x′1 can not decrease
her cost by misreporting x1 on profile x′ and hence her cost
on the new profile is at least cost(x′, y). Next, consider the
location profile 〈x1 = x2, x

′
3 = . . . = x′n/2, x

′
n/2+1 =

. . . = x′n〉 and observe that by the same argument, the cost
of agent x′2 is not smaller on the new profile when compared
to 〈x1, x′2 = . . . = x′n/2, x

′
n/2+1 = . . . = x′n〉 and hence
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Table 1: Summary of our results. The lower bounds for de-
terministic mechanisms hold for anonymous and position
invariant strategyproof mechanisms. For (∗), an additional
lower bound of 2 holds under no conditions. Fields indi-
cated by (-) are not proven yet. For the maximum cost,
the approximation ratios are actually max{1 + 2b/c, 3} and
max{1 + b/c, 2} respectively. The results for single-peaked
preferences are also noted for comparison.

Double-peaked Single-peaked
Ratio Lower Ratio Lower

Social cost
Deterministic Θ(n) 1 + b

c 1 1

Randomized 1 + b
c - 1 1

Maximum cost
Deterministic∗ 1 + 2b

c 1 + 2b
c 2 2

Randomized 1 + b
c 3/2 3/2 3/2

her cost is at least cost(x′, y). Continuing like this, we ob-
tain the profile 〈x1 = . . . = xn/2, x

′
n/2+1 = . . . = x′n〉 and

by the same argument, the cost of agent x′n/2 on this pro-
file is at least cost(x′, y). The location profile 〈x1 = . . . =
xn/2, x

′
n/2+1 = . . . = x′n〉 corresponds to the 2-agent lo-

cation profile x̂ = 〈x̂1, x̂′2〉 and by construction of M2,
cost(x̂′1,M

2(x̂′)) ≤ cost(x̂′1,M
2(x̂)) and since the choice

of x1 (and hence the choice of x̂1) was arbitrary, Mechanism
M2 is strategyproof.

Theorem 4. Any strategyproof mechanism that satisfies po-
sition invariance and anonymity achieves an approximation
ratio of at least 1 + b

c for the social cost.

Proof. Let Mn be a strategyproof, anonymous and position
invariant mechanism and consider any location profile x =
〈x1 = . . . = xn/2, xn/2 + 1 = . . . = xn with xn/2+1 =
x1 + 2b. By Lemma 2, Mn(x) = x1 − b and the social cost
of Mn is nc + (n/2)2b while the social cost of the optimal
allocation is only nc. The lower bound follows.

Note that the theorem requires the number of agents to be
even; we would like to prove a similar bound when n is odd.
We conclude the section with our impossibility result about
group strategyproof mechanisms. Recall that for the single-
peaked preference case, k-th order statistic mechanisms are
group strategyproof. This is not the case for double-peaked
preferences.

Theorem 5. There exists no deterministic, anonymous, po-
sition invariant and group strategyproof mechanism.

5 Generalizations and conclusion
As argued in the introduction, double-peaked preferences
are often a very realistic model for facility location and our
results initiate the discussion on such settings and shed some
light on the capabilities and limitations of strategyproof

Table 2: The results for the case when peaks are not required
to be symmetric.

Non-symmetric
Ratio Lower

Social cost
Deterministic Θ(n) 1 + b1+b2

c

Randomized Θ(n) -
Maximum cost
Deterministic Θ(n) 1 + b1+b2

c

Randomized Θ(n) 3/2

mechanisms. We conclude with a discussion about an exten-
sion to the main model and some potential future directions.

Non-symmetric peaks
Although the symmetric case is arguably the best analogue
of the single-peaked preference setting, it could certainly
make sense to consider a more general model, where the
cost functions do not have the same slope in every inter-
val and hence the peaks are not equidistant from the loca-
tion of an agent. Let b1 and b2 be the distances from the
left and the right peaks respectively. Clearly, all our lower
bounds still hold, although one could potentially prove even
stronger bounds by taking advantage of the more general
setting. The main observation is that Mechanism M1 is no
longer truthful-in-expectation, because its truthfulness de-
pends heavily on the peaks being equidistant. On the other
hand, mechanism M2 is still strategyproof and the approxi-
mation ratio bounds extend naturally. A summary of the re-
sults for the non-symmetric setting is depicted in Table 2.

Future work
Starting from randomized mechanisms, we would like to ob-
tain lower bounds that are functions of b and c, to see how
well Mechanism M1 fares in the general setting. For de-
terministic mechanisms, we would like to get a result that
would clear up the picture. Characterizing strategyproof,
anonymous and position invariant mechanisms would be
ideal, but proving a lower bound that depends on n on the
ratio of such mechanisms (for the social cost) would also be
quite helpful. The techniques used in our characterization for
two agents and our lower bounds (available at the full ver-
sion) seem to convey promising intuition for achieving such
a task. Finally, it would be interesting to see if we can come
up with a “good” randomized truthful-in-expectation mech-
anism for the extended model, when peaks are not assumed
to be symmetric.
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