
A Stackelberg Game Approach for Incentivizing Participation
in Online Educational Forums with Heterogeneous Student Population

Rohith D. Vallam and Priyanka Bhatt and Debmalya Mandal and Y. Narahari
Department of Computer Science and Automation,
Indian Institute of Science, Bengaluru, 560012, India

{rohithdv, priyanka.bhatt, hari}@csa.iisc.ernet.in, debmalya.mandal@gmail.com

Abstract
Increased interest in web-based education has spurred the pro-
liferation of online learning environments. However, these
platforms suffer from high dropout rates due to lack of sus-
tained motivation among the students taking the course. In an
effort to address this problem, we propose an incentive-based,
instructor-driven approach to orchestrate the interactions in
online educational forums (OEFs). Our approach takes into
account the heterogeneity in skills among the students as well
as the limited budget available to the instructor. We first an-
alytically model OEFs in a non-strategic setting using ideas
from lumpable continuous time Markov chains and compute
expected aggregate transient net-rewards for the instructor and
the students. We next consider a strategic setting where we
use the rewards computed above to set up a mixed-integer lin-
ear program which views an OEF as a single-leader-multiple-
followers Stackelberg game and recommends an optimal plan
to the instructor for maximizing student participation. Our
experimental results reveal several interesting phenomena in-
cluding a striking non-monotonicity in the level of participa-
tion of students vis-a-vis the instructor’s arrival rate.

Introduction
With the explosive growth of the Internet, the area of
education has undergone a massive transformation in
terms of how students and instructors interact in a class-
room. Online learning environments now constitute a very
important part of any academic course. Further, online ed-
ucation has attracted the interest of the research community
due to the immense popularity of the massive open online
courses (MOOCs) offered by platforms like Coursera, edX,
Udacity, etc. As of January 17, 2014, Coursera students
voiced themselves in 590,000 discussion threads in the ed-
ucation forums for a total of 343,014,912 minutes of learn-
ing across 571 courses (Coursera 2014). However, empiri-
cal studies have repeatedly shown that the dropout rates in
the online courses are very high (Fowler 2013) mainly due
to a lack of sustained motivation among the enrolled stu-
dents. An important, but often under-utilized component of
an online classroom is the online educational forum (OEF)
where students and instructors discuss various administra-
tive and technical aspects of the course (Andresen 2009;
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OEF Details

Course Class Forum

Term Strength (Piazza)

Duration

Jan 21
2012 72 to

May 1
Mar 1

2014 38 to
May 1

Figure 1: Impact of incentives on participation of students in
OEFs recorded in a real-world experiment.

Mazzolini and Maddison 2003). The objective of our work
is to propose an instructor-driven approach to orchestrate the
activities of OEFs by designing optimal incentives to en-
hance student-instructor participation in these OEFs.

Incentive design plays an important role in encouraging
participation among students in these educational forums.
As part of a case study, we analysed the data collected from
two online educational forums which were part of the Game
Theory (E1 254) in the Department of Computer Science
and Automation, Indian Institute of Science, for two different
terms. The primary difference between these two terms was
that there were no incentives offered to students participating
in the Spring 2012 term while in the Spring 2014 term, stu-
dents were offered incentives (a certain percentage of marks
based on the reward points accumulated by the student) to
participate actively to open-ended (or discussion type) ques-
tions posted on the Piazza forum associated with the course.
We observed an increased participation of students in the
incentive-based course than when there were no incentives
offered (See Figure 1) which is an indication of importance
of appropriate incentives in driving up the participation lev-
els in the course.

Modelling incentives for improving the participation lev-
els has also recently been studied by (Ghosh and Kleinberg
2013) where they formulate an incentive-based approach to
modulate the activities of the online educational forums and
recommend optimal behaviour for the instructor needed to
drive up the participation from the student population. We
pursue this direction further and non-trivially extend their
instructor-driven approach to a more realistic setting of het-
erogeneous students and a budget-limited instructor. On-
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line learning environments attract participation from stu-
dents with heterogeneous skill levels and it is our belief that
any approach to improve levels in participation should ac-
count for this heterogeneity which is not considered by ex-
isting models. We incentivize students on a per question ba-
sis to keep up the momentum of participation in the class.
Students are provided suitable incentives to post answers to
the specific open-ended/discussion-style questions that are
posted on the forum by the instructor. These incentives
maybe in the form of some book vouchers, food coupons or
some extra grade points, as considered appropriate by the
instructor. The instructor is limited by a budget and has to
make judicious use of them such that it results in higher par-
ticipation levels from different types of students.

Contributions and Outline
Our work requires us to first define an interaction model in
an OEF which reasonably captures the activities of the stu-
dents and instructor. Once this is addressed, there is a need to
understand transient behaviour of the instructor and students
in the time-limited online course. One of the complexities is
to handle the ‘continuous’ nature of arrivals of the instructor
and students to the OEF. Taking into consideration these fac-
tors, we model the OEF as a continuous-time Markov chain
(CTMC). A CTMC is a natural candidate to describe the in-
teraction model as it enables us to record the activities of
all the students and instructor in a simple and elegant man-
ner by appropriately modelling the state space of the CTMC.
Further, it allows the state transitions to happen at any epoch
of time. Using techniques from lumpability of CTMCs, we
compute the transient behaviour of the instructor and the stu-
dents in the modelled OEF.

Next, we use these computations in a more realistic game-
theoretic setting where we adopt a Stackelberg game ap-
proach to model the interactions of the OEF. Stackelberg
game models (for example: (An et al. 2011)) have been
the natural approaches in many well-known practical appli-
cations primarily in the context of security (for example:
for deploying surveillance resources (Jain et al. 2010) by
the Los Angeles International Airport (LAX) police) and
more recently, in traffic patrolling for the Singapore road
network (Brown et al. 2014). We believe that our problem,
though it is set in a different domain of education, fits nat-
urally into a Stackelberg framework where the players of
the game compete on a resource ( i.e., participation time on
the OEF) and the welfare maximizing leader (i.e., instruc-
tor) is in a position to exploit the first-mover advantage to
trigger increased participation from the followers (i.e., stu-
dent population) by designing suitable incentive schemes.
Further, our detailed experiments with the proposed Stack-
elberg model demonstrate that our approach validates sev-
eral empirically/theoretically observed phenomena and also,
offers utility-maximizing recommendations to the instructor
as well as the different types of students on several important
parameters (like arrival rate, instructor bias) of the model.

In the rest of the paper, due to space constraints, we some-
times omit providing details in the interest of clarity. These
omitted details are given in (Vallam et al. 2014).

1: Instructor chooses an arrival rate to the forum and announces this to the class.
2: Students (of different types) observe the instructor announcement and decide their

corresponding rate of arrival.
3: Instructor and the student record the next arrival time based on their corresponding

chosen arrival rates.
4: while Course has not ended do
5: if you are the instructor then
6: if there is time available for next arrival then
7: Engage in other activities not related to the forum.
8: else
9: Close current (open-ended) question on the forum.
10: Reward points to students who have answered this question.
11: Post the next discussion-style question.
12: Record the next time for arrival to the forum.
13: end if
14: end if
15: if you are a student then
16: if there is time available for next arrival then
17: Engage in any other activities not related to the forum.
18: else
19: Post a valid answer to the current open question in the OEF.
20: Record the next time for arrival to the forum.
21: end if
22: end if
23: end while

Figure 2: An instructor-driven interaction model in an OEF

Problem Setting
We consider n students and an instructor participating in an
hybrid or online classroom which has an associated discus-
sion forum (termed in this paper as online educational fo-
rum (OEF)). In the rest of the paper, we focus on modelling
the instructor-student interactions on the OEF. To achieve the
right focus, we do not consider any other aspect of the online
classroom like lectures, written assignments, exams, etc. We
assume that the arrivals of the n students and the instructor
to the OEF are independent Poisson processes with rate λi
for student i (∀i ∈ {1, . . . , n}) and rate µ for the instructor.

We begin by proposing an instructor-driven approach to
structure the activities in the OEFs (see Figure 2). Hence-
forth, we will assume the activities of the OEF follows as
outlined in Figure 2. We capture the heterogeneity among
students by allowing L types of students in our OEF. Let Al
be the set of all students of type l (∀l ∈ {1, . . . , L}). Also,
let nl be the number of students of type l. On arrival to the
forum, a student of type l answers the currently open ques-
tion (if any) and hence, incurs a cost (αl). We assume that
the cost of answering a question will be same for all students
of a given type. The instructor has a budget B per question
and has to decide a suitable allocation of the budget among
the different students belonging to the L types. Let ml de-
note the maximum number of answers per question that can
be given to Al students i.e., B =

∑
1≤l≤Lml.

A CTMC Model for OEFs
We nowmodel the activities of the OEF (as described in Fig-
ure 2) as a CTMCX(t) = (S, Q), where S is the set of states
of the stochastic processX(t) andQ is the generator matrix.
We define each state x ∈ S as: x = (x1, . . . , xn), where
xi corresponds to the number of answers received from the
ith student for the current question. If X(t) is in state
x : (x1, .., xi, .., xn) and student i gives an answer on the fo-
rum then X(t) transitions to state y : (x1, .., xi + 1, .., xn).
When the instructor arrives at the forum, the current question
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is closed and a new question is started, thus transitioning to
state (0, . . . , 0). At any point of time, there is a single ac-
tive question on the OEF as given in Figure 2. We assume
the course is of finite duration (T ) and the instructor and the
students are arriving to the forum at finite rates. This allows
us to obtain a reasonably large upper boundM on the num-
ber of answers that a student can post on the forum for each
question transforming our infinite state CTMC to a finite state
CTMC where the ‘last’ state will be (M, ..,M). Figure 3(a)
illustrates the CTMC for two students. Thus, the generator
matrix of the CTMC can be defined as below.

Q(x, y) =



λj if
∑
i

|xi − yi| = 1 and ∃j : yj − xj = 1

µ if y = (0, . . . , 0) 6= x

ω if x = y

0 otherwise

where x, y ∈ S, and ω =
∑

y′∈S\{x}

−Q(x, y
′
)

Lumpability of the OEF CTMC
An important point to note is that the rewards and costs in-
curred for each student in a particular state are independent
of the other students and dependent only on their own arrival
rates and the instructor’s arrival rate. This is possible be-
cause only open-ended questions are being posted by the in-
structor and thus, even if an open-ended question has already
been answered by a few students, still a new student can find
it beneficial to give a new answer and potentially earn a good
reward. Hence, instead of analyzing the CTMC, which keeps
track of arrivals of all students (of all types), we show that
we can analyze n independent student-specific CTMCs (with
M+1 states each) so that each of the student-specific CTMC
keeps track of arrivals from only that particular student. This
is possible by applying the lumping process on the original
CTMC which we describe next.

We first define a partition Si on the state space S of
X(t) w.r.t. a student i in the OEF as Si = {Sai |a ∈
{0, 1, . . . ,M}} where each block Sai of the partition Si is
defined as Sai = {(xi, x−i) ∈ S|xi = a}. Figure 3 de-
picts the lumping process in more detail through an example.
We now state and prove a result about the lumpability of the
proposed CTMC into smaller, student-specific CTMCs. For
ease of notation, note that all the notations with an overline
refer quantities corresponding to the lumped CTMC.

Theorem 1. (i)X(t) = (S, Q) is lumpable w.r.t. partition Si =
{Sai |a ∈ {0, 1, . . . ,M}}.

(ii) The quotient (lumped) Markov chain Xi(t) = (Si, Qi)

that we get on lumping the CTMC X(t) w.r.t. partition Si (i ∈
{1, 2, . . . , n}) is given as :

Qi(S
a
i , S

b
i ) =


λi b = a+ 1,

µ b = 0 6= a,

ω b = a,

0 o/w.

where, ω = −
∑

c∈D\{a}

Qi(S
a
i , S

c
i ), D = {0, 1, . . . ,M}.

Figure 3: (a) Light-gray and dark-gray regions depict two
partitions that can be defined on the CTMC. Each light-gray
region contains states where the number of arrivals of stu-
dent 1 is the same. Each dark-gray region contains the states
where the number of arrivals of student 2 is the same. (b)
Lumped-Student1 CTMC: Each light-gray state indicates the
aggregation of all states in the Figure 3(a) which are enclosed
by light-gray region. For example, state 1 denotes the set
of states {(1, 0), (1, 1), . . . , (1,M)} from Figure 3(a). (c)
Lumped-Student2 CTMC: Each dark-gray state indicates the
aggregation of all the states in the Figure 3(a) which are en-
closed by dark-gray region. For example, state 2 denotes the
set of states {(0, 2), (1, 2), . . . , (M, 2)} from Figure 3(a). (d)
This is the legend for all the diagrams.

Proof. (Sketch) (i) X(t) is lumpable w.r.t Si if for any two blocks
S
a
i , S

b
i ∈ Si and for every v, y ∈ S

a
i we have q(v, S

b
i ) = q(y, S

b
i )

i.e. the rate of transition from each state in block Sai to block Sbi
should be equal. By definition, Sai = {(xi, x−i) ∈ S|xi = a} and
S
b
i = {(xi, x−i) ∈ S|xi = b}. Now states v, y ∈ Sai , hence these

maybe represented as: v = (a, v−i) and y = (a, y−i) respectively.
Also we represent a state z ∈ S

b
i as: z = (b, z−i). Let D =

{0, 1, . . . ,M} and S−i = {(x−i)|(xi, x−i) ∈ S}. Now we need
to prove that ∀Sai , S

b
i ∈ Si and for any v, y ∈ S

a
i ,

q(v, S
b
i ) = q(y, S

b
i ) ⇒

∑
z∈Sbi

Q(v, z) =
∑
z∈Sbi

Q(y, z)

⇒
∑

z−i∈S−i

Q((a, v−i), (b, z−i))

︸ ︷︷ ︸
LHS

=
∑

z−i∈S−i

Q((a, y−i), (b, z−i))

︸ ︷︷ ︸
RHS

(1)

• Case (1) b 6= a
• Case (1a) b = a+ 1. It can be shown that LHS = λi = RHS.
• Again, it can be shown LHS = RHS = 0 for scenarios:

Case (1b) b > a+ 1, Case (1c) b < a, b 6= 0
• Case (1d) b = 0, b 6= a. It can be shown that LHS =µ =RHS.
• Case (2) b = a. Using this and simplifying Equation (1), we get

LHS = −
∑

(zi∈D\{a})

∑
(z−i∈S−i)

Q((a, v−i), (zi, z−i))

RHS = −
∑

(zi∈D\{a})

∑
(z−i∈S−i)

Q((a, y−i), (zi, z−i))
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Now, from Case (1) we have, ∀c 6= a,∑
z−i∈S−i

Q((a, v−i), (c, z−i)) =
∑

z−i∈S−i

Q((a, y−i), (c, z−i)),

⇒
∑

(zi∈D\{a})

∑
z−i∈S−i

Q((a, v−i), (zi, z−i)) =

∑
(zi∈D\{a})

∑
z−i∈S−i

Q((a, y−i), (zi, z−i)). ∴ LHS = RHS

(ii) The generator matrix for the lumped CTMCXi(t) = (Si, Qi)

can be got by Qi(S
a
i , S

b
i ) = q(x, S

b
i ) =

∑
z∈Sbi

Q(x, z) for any

S
a
i , S

b
i ∈ Si, where x ∈ S

a
i . These quantities have been computed

in Cases (1) and (2) above.

We now have n lumped-CTMCs Xi(t) = (Si, Qi), 1 ≤
i ≤ n (See Figure 3(b) and Figure 3(c)) with finite state space
Si = {x|x ∈ {0, 1, . . . ,M}}. Each block Sxi ∈ Si has
been represented as a state x of the lumped-CTMC Xi(t)
i.e. a state x of the lumped-CTMCXi(t) is representative of
the block Sxi which contains all the states in S in which the
student i arrives x number of times. Each state x ∈ Si thus
simply means how many answers have been received from
student i. For notational ease, we sometimes denote Sai as a.
Also, let πti denote the transient state probability vector for
the lumped CTMC Xi(t). Transient state probability πti(x)
is the probability ofXi(t) being in the state x at a time instant
t. We need to solve the following differential equations for
the transient probability vectors of Xi(t):
dπti(0)

dt
= −λiπti(0)+

M∑
y=1

µπ
t
i(y);

dπti(M)

dt
= −µπti(M)+λiπ

t
i(M−1)

dπti(x)

dt
= −(λi + µ)π

t
i(x) + λiπ

t
i(x− 1), ∀x : 0 < x < M

The initial state distribution π0
i for the CTMC Xi(t) is

π0
i (0) = 1 and π0

i (x) = 0∀x ∈ Si \ {0} as, initially, no
answer would be posted by any student. The proof of the
following result uses the principle of mathematical induction
and due to space constraints, we only state the result here and
provide the details in (Vallam et al. 2014).

Lemma 1. Given the initial distribution π0
i forXi(t) as π0

i (0) =
1 and π0

i (x) = 0 ∀x ∈ {1, 2, . . . ,M}. The solution to the above
differential equations is given by:

π
t
i(0) =

µ

Ki
+
λi

Ki
e
−Kit

π
t
i(x) =

−( λi
Ki

)x µ

Ki
−
x−1∑
y=1

λxi t
yµ

y!Kx−y+1
i

+
λi
x+1tx

x!Ki

 e
−Kit

+

(
λi

Ki

)x µ

Ki
∀x : 0 < x < M

π
t
i(M) = 1−

M−1∑
x=0

π
t
i(x), whereKi = (λi + µ)

An additional factor which determines the quantity of re-
wards being given is that if the instructor may like to discount
reward per answer if she is coming too often to the forum. So,
we introduce δ ∈ (0, 1) as the willingness of the instructor
to reward the students and δh(µ) gives the discounting fac-
tor applied by the instructor for rewardable answer, where

h(µ) is an increasing function of µ. A reasonable assump-
tion would be h(µ) = logµ. The reward rl,i(x) received
by a student i of Al when the instructor visits the forum and
finds Xi(t) (the lumped CTMC corresponding to student i)
in a state x is defined as:

rl,i(x) =

{
xδlog µ if x ≤ ml,

mlδ
log µ o/w.

(2)

The net-reward to a student i of Al in a state x will be
R
l,i

(x) = rl,i(x) − αlx. The expected net-reward at time t
to student i of Al using the lumped-CTMC Xi(t) will thus
be given by R

l,i

t =
∑
x∈Si

(
R
l,i

(x)
)
πti(x) where πti(x)

is the transient probability being in state x at time t. Let rI,i
denote the reward accrued to the instructor due to answers
posted from student i. If the instructor arrives on the forum
whenXi(t) is in state x, the reward she receives will be given
by: rI,i(x) = xδlog µ. Let cost per arrival of the instructor be
denoted by β. Then the net-reward to the instructor will be:
R
I,i

(x) = rI,i(x) − β. The expected transient net-reward
to the instructor if she arrives on the forum at time t, due
to arrival of student i of Al using the lumped-CTMC Xi(t)

will thus be given by RI,it =
∑
x∈Si

(
R
I,i

(x)
)
πti(x). The

expected transient aggregate net-rewards over time T for the
student i ofAl and the instructor w.r.t. the CTMCXi(t) will
be Rl,iT =

∫ T
t=0

R
l,i

t dt and R
I,i

T =
∫ T
t=0

R
I,i

t dt. respectively.
Let us define RIT as the total aggregate reward over time T
that the instructor receives from all the n lumped-CTMCs
Xi(t) i ∈ {1, 2, . . . , n}. The instructor values each answer
on the forum arriving from all students but can unequally
value the contributions from different students. We use ci to
give the bias of the instructor towards answers from student
i such that

∑n
i=1 ci = 1 and 0 ≤ ci ≤ 1 ∀i ∈ {1, . . . , n}.

As all students belonging to the same type are assumed to
be similar, so the instructor will value their arrivals equally
ci = cj(= cl) ∀i, j ∈ Al. So, we get the total net-reward
received by the instructor from the arrival of all the students
on the OEF i.e., RIT =

∑
1≤i≤n ciR

I,i

T . We now provide
results which connect important computational quantities in
the original and the lumped CTMCs.
Lemma 2. (a) πti(x) =

∑
x∈Sxi

πt(x)

Proof. (Sketch) (a) The CTMC X(t) being considered has a finite
state space S and the arrival rates of the students and the instructor
on the CTMC are already known. Due to finiteness, we can assume
there exists a finite number q̂ < ∞ which bounds the rate entries
in the rate matrices Q and Qi (∀i ∈ {1, 2, . . . , n}). The initial
state distributions π0 and π0

i for the CTMCs X(t) and Xi(t) re-
spectively are defined as π0(0, 0, . . . , 0) = 1, π0(y) = 0∀y ∈
S \ {(0, 0, . . . , 0)}, π0

i (0) = 1, and π0
i (x) = 0∀x ∈ Si \ {0}.

Note that π0
i (x) =

∑
y∈x π

0(y)∀x ∈ Si . We thus have

π
t
i(x) =

∞∑
k=0

e
−q̂t (q̂t)k

k!
π
k
i (x) =

∞∑
k=0

e
−q̂t (q̂t)k

k!

∑
y∈Sxi

π
k
(y)

=
∑
y∈Sxi

∞∑
k=0

e
−q̂t (q̂t)k

k!
π
k
(y) =

∑
y∈Sxi

π
t
(y)
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The above results follow from invoking results from lumpability of
CTMCs (Sumita and Rieders 1989; Buchholz 1994). Please refer
to (Vallam et al. 2014) for detailed explanation of the results.

Lemma 3. (a) Rl,it = R
l,i
t (b) RIt =

∑
1≤i≤n ciR

I,i
t

Theorem 2. The expected transient aggregate net-rewards over
time T received by the students and the instructor is the same when
calculated using the original CTMCX(t) or the n lumped CTMCs
Xi(t) i ∈ {1, 2, . . . , n}. i.e.,
(a) Rl,iT = R

l,i
T (b) RIT = R

I
T .

OEF as a Stackelberg Game
We consider a strategic setting where the instructor’s goal
is to maximize students’ participation in the OEF which re-
sults in a better understanding of the subject for the students.
The students typically will have commitments towards other
courses and hence, their objective will be to maximize the
rewards they get from answering questions in the OEF while
minimizing their cost. We model the strategic interactions
in an OEF as a Stackelberg game where the players are n
students enrolled for the course and the instructor offering
the online course. The instructor acts as a leader who de-
cides her strategy (rate of arrival) first and the students are
the followers who, after observing the instructor’s strategy,
will finalize their own strategies (rates of arrival) in order
to maximize their utilities. We assume the strategy space of
the players is finite. The key idea behind the formulation of
the Stackelberg game is to link the expected net-rewards of
the CTMC (when the strategies are known to the model) to
the strategic scenario where the players are optimizing their
corresponding utility functions. We make this intuition clear
in the following subsections by defining the utility functions
of the students and instructor and formulating a bi-level op-
timization problem which yields the optimal instructor and
students’ strategies. We denote the finite strategy set of the
instructor and the students by Gins (of size v) and Gst (of
size w) respectively. Let Gins = {∆a|a ∈ {1, .., v},∆a ∈
[0, q̂]}. Let Gst = {Λb|b ∈ {1, .., w},Λb ∈ [0, q̂]}. Let
φ = (φ1, · · · , φv) be any arbitrary mixed strategy for the in-
structor and correspondingly, let ψi = (ψi1, · · · , ψiw) be any
arbitrary mixed strategy for student i. For example, the value
φa is the proportion of times that pure strategy ∆a is used by
the instructor while the value ψib represents the proportion
of times in which pure strategy Λb is used by student i. Let
Ω(Gins) andΩ(Gst) be the probability simplices for instruc-
tor and students respectively.

Student Optimization Problem
We define expected net-rewardmatrixDT,l,i for each student
i of type l where each entry of the matrix (DT,l,i

a,b ) denotes
the expected transient aggregate net-reward received by stu-
dent i of Al when she chooses pure strategy Λb and instruc-
tor chooses the pure strategy ∆a. Now, suppose the instruc-
tor fixes a (pure/mixed) strategy φ and the student i fixes a
(pure/mixed) strategy ψi. The expected transient aggregate
utility U l,iT to a student i of Al is U l,iT =

v∑
a=1

w∑
b=1

DT,l,i
a,b φaψ

i
b

where DT,l,i
a,b = R

l,i

T (See Thm. 2).

Proposition 1. Students i, j belonging to the same typeAl receive
equal transient aggregate utility if they choose the same policy i.e.
if ψi = ψj(= ψl) for students i, j ∈ Al then U l,iT = U l,jT .

We now formulate the optimization problem for student i
of Al when the instructor has fixed a strategy φ.

ψ
i∗

= argmax
ψi

v∑
a=1

w∑
b=1

D
T,l,i
a,b φaψ

i
b, s.t. ψ

i ∈ Ω(G
st

)

Note that ψi∗ is the optimal rate of arrival of student i of
Al in response to instructor strategy φ. We note that stu-
dents belonging to the same type can have different opti-
mal strategies in response to the same instructor strategy as
the optimization problem can have multiple solutions. Due
to symmetry (with respect to cost αl) among students be-
longing to the same type, we assume that students belonging
to the same type will choose the same optimal strategy i.e.
ψi∗ = ψj∗ = ψl∗ ∀i, j ∈ Al. Hence, instead of solving the
student optimization problem for each student i, j belonging
to a particular typeAl, we can just solve the student optimiza-
tion problem for a single representativeAl student (now rep-
resented as l) and her optimal policy ψl∗ would be followed
by each student i ofAl. Thus the optimization problem to be
solved by each representative student l (1 ≤ l ≤ L) will be :

ψ
l∗

= argmax
ψl

v∑
a=1

w∑
b=1

D
T,l
a,bφaψ

l
b, s.t.

w∑
b=1

ψ
l
b = 1, ψ

l
b ≥ 0

where,DT,la,b = D
T,l,i
a,b for any i ∈ Al.

Instructor Optimization Problem

We define aggregate transient utility U IT to the instructor
when she has fixed her strategy as φ and the n students have
fixed their policies as ψi (1 ≤ i ≤ n). We define net-reward
matrix BT,I,i for the instructor corresponding to each stu-
dent i where the entry BT,I,ia,b denotes the aggregate utility
(over time T ) received by the instructor w.r.t. student i’s
arrivals, if student i chooses Λb and instructor the strategy
∆a. The expected transient aggregate utility of the instructor
is given by U IT =

∑v
a=1

∑w
b=1

∑n
i=1B

T,I,i
a,b φaψ

i
b where,

BT,I,ia,b = ciR
I,i

T (See Theorem 2).

Proposition 2. The net-reward matrices BT,I,i, BT,I,j for the
instructor w.r.t. students i, j belonging to Al have the following
property: BT,I,i = BT,I,j(= BT,I,l).

The instructor is the leader, so she chooses her policy φ
first and then each student (follower) observes the strategy
chosen by the instructor and then decides the policy ψi:

φ
∗

= argmax
φ

v∑
a=1

w∑
b=1

n∑
i=1

B
T,I,i
a,b φa[ψ

i∗
(φ)]b s.t. φ ∈ Ω(G

ins
)

ψi∗(φ) is an optimal strategy of student i when φ is the in-
structor policy. Let pl be proportion of type l students in the
class. We know that there are nl students belonging to Al.
We know thatψi∗(φ) = ψj∗(φ) = ψl∗(φ) ∀i, j ∈ Al. Using
Proposition 2 and the student optimization problem,
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Figure 4: Variation of the optimal participation rates (λ∗) of each student belonging to the different types (characterized by four different α’s)
with change in the instructor’s arrival rate (µ) and the maximum number of rewards (m) given to that type. TheX−Z and Y −Z projections
of Figures 4c and 4d are given as insets to aid the understanding of the graphs.

φ
∗

= argmax
φ

v∑
a=1

w∑
b=1

L∑
l=1

p
l
B
T,I,l
a,b φaψ

l∗
b

s.t., ψ
l∗

= argmax
ψl

v∑
a=1

w∑
b=1

D
T,l
a,bφaψ

l
b, φ ∈ Ω(G

ins
), ψ

l ∈ Ω(G
st

)

MILP Formulation
The mixed integer quadratic program (MIQP) formulated
above can be converted to a mixed integer linear program
(MILP) by following the well-known approach (See Propo-
sition 2 in (Paruchuri et al. 2008)) where they solve a
Bayesian Stackelberg game by reducing to an MILP.

Numerical Experiments
We solve the MILP using ILOG-CPLEX (ILOG 2014)
software and study the changing dynamics of the student-
instructor interactions in an online classroom by varying the
different parameters of the model. We first study the vari-
ation in the optimal student participation rate (λ∗) of the
heterogeneous student population with µ (instructor arrival
rate) andm (budget of instructor) for different student types
in Figure 4(a)-(d). Let α denote the cost per arrival to the
OEF (and answering an open question if any) of a student.
Figure 4(a) represents scenario for an excellent student (i.e.,
α = 0.3). If we fixm, we can observe that λ∗ keeps increas-
ing with changing µ. This means that these type of students
are quite self motivated and keep posting on the OEF in spite
of µ being very high. This is akin to the phenomenon of
super-posters (Huang et al. 2014) when there are some stu-
dents who always aggressively post on the OEF. Figure 4(b)
represents scenario for good student (i.e., α = 0.6). We can
observe a similar behaviour but for low rewards, we can see a
dip in the participation rates. Figure 4(c)-(d) denote scenar-
ios for weak students (α ∈ {0.8, 0.9}). However, we observe
non-monotonic participation patterns for students with high
cost per arrival (α = 0.8, 0.9) in Figures 4(c) and 4(d) as
λ∗ initially increases with increasing µ and then, with any
further increase in µ, λ∗ starts falling. This trend has been
noted theoretically (in the homogeneous setting) in literature
(Ghosh and Kleinberg 2013).

Now, assume there are only two student types in the class:
Type 1 (excellent students) and Type 2 (weak students). We
fix these parameters: α1, α2, m1 (budget allocated per

question to answers from Type 1 students), m2 (budget for
Type 2 students) where each parameter takes values: α1 ∈
{0.01, 0.1, 0.2}, α2 ∈ {0.8, 0.9, 0.99},m1,m2 ∈ {2, 6, 10}
resulting in 81 (i.e., 3×3×3×3) configurations. We first set
the instructor bias as a low value (c1 = (0.01/n1)) for a Type
1 student and as a high value (c2 = (0.99/n2)) for a Type 2
student where n1 and n2 are number of students of Type 1
and 2 respectively. We run the experiment for each configu-
ration separately. As we are dealing with output from multi-
ple experiments, we generate a scatter plot depicting optimal
participation rates for a Type 1 student (Figure 5 (a)). We
change the instructor behaviour to have high bias towards a
Type 1 student and very low bias towards a Type 2 student
fixing c1 = (0.99/n1) and c2 = (0.01/n2) and run the ex-
periments similarly for the 81 parameter configurations as
given above. The optimal arrival rates of a Type 1 student
in this scenario is given in Figure 5(b). In Figures 5(a)-(b),
each point is identified by a number between 1 and 81 and
denotes the optimal rate for Type 1 student obtained for the
corresponding experimental configuration.

We observe that, if the instructor’s bias towards Student 1
is low then there are configurations when Type 1 student will
not participate even for medium and high rewards (for ex-
ample: configs 45, 56 in Figure 5(a) have optimal rate as 0)
whereas if the instructor’s bias towards Type 1 students is
high, then these students start participating enthusiastically
with high rates for medium and high rewards and increase
their participation levels even for the lower rewards (for ex-
ample: configs 45, 56 in Figure 5(a) have optimal rate 10
while config 09 improved from rate 0 in Figure 5(a) to rate
4 in Figure 5(b)). A similar observation can be made for the
other type of students. Due to redundancy, we do not show
the corresponding graph here. Thus, our model is able to in-
corporate the effect of instructor bias in deciding the optimal
participation level for the different types of students.

As part of our future work, we intend to capture the ef-
fect of student’s effort for answering a question in the OEF.
Further, other ways for modelling OEFs ( for example: using
Markov decision processes) could be considered. Empirical
validations of these results hold promise as well.
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Figure 5: Effect of Instructor bias on the optimal partici-
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