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Abstract

Auction theory traditionally assumes that bidders’ val-
uation distributions are known to the auctioneer, such
as in the celebrated, revenue-optimal Myerson auc-
tion (Myerson 1981). However, this theory does not de-
scribe how the auctioneer comes to possess this infor-
mation. Recently work (Cole and Roughgarden 2014)
showed that an approximation based on a finite sample
of independent draws from each bidder’s distribution
is sufficient to produce a near-optimal auction. In this
work, we consider the problem of learning bidders’ val-
uation distributions from much weaker forms of obser-
vations. Specifically, we consider a setting where there
is a repeated, sealed-bid auction with n bidders, but all
we observe for each round is who won, but not how
much they bid or paid. We can also participate (i.e., sub-
mit a bid) ourselves, and observe when we win. From
this information, our goal is to (approximately) recover
the inherently recoverable part of the underlying bid dis-
tributions. We also consider extensions where different
subsets of bidders participate in each round, and where
bidders’ valuations have a common-value component
added to their independent private values.

1 Introduction

Imagine that you get a call from your supervisor, who asks
you to find out how much various companies are bidding
for banner advertisements on a competitor’s web site. She
wants you to recover the distribution of the bids for each
one of the advertisers. Your boss might have many reasons
why she wants this information: to compare their bids there
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and on your web site; to use as market research for opening
a new web site which would be attractive to some of those
advertisers; or simply to estimate the projected revenue.

This would be a trivial task if your competitor was willing
to give you this information, but this is unlikely to happen.
Industrial espionage is illegal, and definitely not within your
expertise as a computer scientist. So, you approach this task
from the basics and consider what you might observe. At
best, you might be able to observe the outcome for a partic-
ular auction, namely the winner, but definitely not the price,
and certainly not the bids of all participants. There is, how-
ever, a way to observe more detailed information: you can
participate in a sequence of auctions and see whether or not
you win! If you lose with a bid b, you know that the winner
(and perhaps other bidders) bid more than b; if you win with
bid b, you know every other bidder bid less than b. In general,
we assume you will also observe the winner of the auction
explicitly (e.g., you can visit the webpage and view the ban-
ner ad of the auction in question). Is this a strong enough set
of tools to recover the distributions over independent but not
necessarily identical bid distributions?

If only your boss had instead given you the task of es-
timating the winning bid distribution in that auction, you
would be able to accomplish this easily. By inserting ran-
dom bids, and observing their probability of winning, you
would be able to recover the distribution of the winning bid.
However, this was not the task you were assigned: your boss
wants the distribution of each bidder’s bids, not just those
where they win the auction.

As a first attempt, your esteemed colleague suggests a
trivial (and completely incorrect) approach (which you do
not even consider). As before, you can submit random bids,
and observe for each advertiser, how many times he wins in
auctions with your random bid. This will estimate the dis-
tribution over bids he makes in auctions he wins. However,
when we condition on a bidder ¢ winning, we should expect
to see a sample which is skewed towards higher bids. To see
that the distribution over winning bids is a poor estimation
for the distribution over bids for each bidder, consider the
following example. Suppose you can even observe the bid of
the winner. There are n advertisers, each bidding uniformly
in [0, 1]. The distribution of the winning bid of a given adver-

tiser would have an expectation of 2, whereas the expec-

tation of his bid is %; indeed, the distribution over winning



bids would be a poor approximation to his true bid distri-
bution, namely, uniform in [0, 1]. Additional complications
arise with this approach when advertisers are asymmetric,
which is certainly the case in practice.

At this point, you decide to take a more formal approach,
since the simplest possible technique fails miserably. This
leads you to the following abstraction. There are n bidders,
where bidder ¢ has bid distribution D;. The n bidders partic-
ipate in a sequence of auctions. In each auction, each bidder
draws an independent bid b; ~ D; and submits it.! We have
the power to submit a bid by, which is independent of the
bids b;, to the auction. After each auction we observe the
identity of the winner (but nothing else about the bids). Our

goal is to construct a distribution D; for each advertiser
which is close to D; in total variation. Our main result in
this work is to solve this problem efficiently. Namely, we
derive a polynomial time algorithm (with polynomial sam-

ple complexity) that recovers an approximation D; of each
of the distributions D;, down to some price p.,, below which
there is at most -y probability of any bidder winning.?

Following your astonishing success in recovering the bid
distributions of the advertisers, your boss has a follow-up
task for you. Not all items for sale, or users to which these
ads are being shown, are created equal, and the advertisers
receive various attributes describing the user (item for sale)
before they submit their bid. Those attributes may include
geographic location, language, operating system, browser,
as well as highly sensitive data that might be collected
though cookies. Your boss asks you to recover how the ad-
vertisers bid as a function of those vectors.

For this more challenging task, we can still help, under the
assumption that we have access to these attributes for the
observed auctions, under some assumptions. We start with
the assumption that each bidder uses a linear function of the
attributes for his bid. Namely, let x be the attribute vector of
the user, then each advertiser has a weight vector w; and his
bid is = - w;. For this case we are able to recover efficiently
an approximation w; of the weight vectors w;.

A related task is to assume that the value (or bid) of an
advertiser has a common shared component plus a private
value which is stochastic. Namely, given a user with at-
tributes x, the shared value is x - w, where the w is the same
to all advertisers, and each advertiser draws a private value
v; ~ D;. The bid of advertiser ¢ is x - w + v; The goal is to
recover both the shared weights w as well as the individual

"We remark that if the repeated auction is incentive-compatible
the bid and valuation of the advertiser would be the same (and we
use them interchangeably). If this is not the case, then D; should
be viewed as the distribution of bidder ¢’s bids.

2If the winning bid is never (or very rarely) below some price
p, then we will not be able to learn approximations to the distri-
butions D; below p. For example, if bidder 1’s distribution D; has
support only on [%, 1] and bidder 2’s distribution D5 has support
only on [0, %), then since the winning bid is always at least %, we
will never be able to learn anything about D3 other than the fact
that its support lies in [0, %) Thus, our goal will be to learn a good
approximation to each D; only above a price p- such that there is
at least a y probability of the winning bid being below p- .
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distributions. We do this by “reduction” to the case of no at-
tributes, by first recovering an approximation w for w, and
then using it to compute the common value for each user x.

One last extension we can handle focuses on who partic-
ipates in the auction. So far, we assumed that in each auc-
tion, all the advertisers participate. However, this assump-
tion is not really needed. Our approach is flexible enough,
such that if we received for each auction the participants,
this will be enough to recover the bidding distributions for
each bidder who shows up often enough. Note that if there
are n advertisers and each time a random subset shows up,
we are unlikely to see the same subset show up twice; we
can learn about bidder ¢’s distribution over bids even when
she is never competing in the same context, assuming her
bid distribution does not depend on who else is bidding.

Related Work

Problems of reconstructing distributional information from
limited or censored observations have been studied in
both the medical statistics literature and the manufactur-
ing/operations research literature. In medical statistics, a ba-
sic setting where this problem arises is estimating survival
rates (the likelihood of death within ¢ years of some medical
procedure), when patients are continually dropping out of
the study, independently of their time of death. The seminal
work in this area is the Kaplan-Meier product-limit estima-
tor (Kaplan and Meier 1958), analyzed in the limit in the
original paper and then for finite sample sizes (Foldes and
Rejto 1981), see also its use for a control problem (Ganchev
et al. 2010). In the manufacturing literature, this prob-
lem arises when a device, composed of multiple compo-
nents, breaks down when the first of its components breaks
down. From the statistics of when devices break down and
which components failed, the goal is to reconstruct the dis-
tributions of individual component lifetimes (Nadas 1970;
Meilijson 1981). The methods developed (and assumptions
made, and types of results shown) in each literature are dif-
ferent. In our work, we will build on the approach taken by
the Kaplan-Meier estimator (described in more detail in Sec-
tion 3), as it is more flexible and better suited to the types of
guarantees we wish to achieve, extending it and using it as a
subroutine for the kinds of weak observations we work with.

The area of prior-free mechanism design has aimed to un-
derstand what mechanisms achieve strong guarantees with
limited (or no) information about the priors of bidders, par-
ticularly in the area of revenue maximization. There is a
large variety truthful mechanisms that guarantee a constant
approximation (see, cf, (Hartline and Karlin 2007)). A dif-
ferent direction is adversarial online setting which mini-
mize the regret with respect to the best single price (see
(Kleinberg and Leighton 2003)), or minimizing the regret
for the reserve price of a second price auction (Cesa-Bianchi,
Gentile, and Mansour 2013). In (Cesa-Bianchi, Gentile, and
Mansour 2013) it was assumed that bidders have an iden-
tical bid distribution and the algorithm observes the actual
sell price after each auction, and based on this the bidding
distribution is approximated.

A recent line of work tries to bridge between the Bayesian
setting and the adversarial one, by assuming we observe



a limited number of samples. For a regular distribution,
as single sample bidders’ distributions is sufficient to get
a 1/2-approximation to the optimal revenue (Dhangwatno-
tai, Roughgarden, and Yan 2010), which follows from an
extension of the (Bulow and Klemperer 1994) result that
shows the revenue from a second-price auction with n + 1
(i.i.d) bidders is higher than the revenue from running a
revenue-optimal auction with n bidders. Recent work of
Cole and Roughgarden (Cole and Roughgarden 2014) an-
alyzes the number of samples necessary to construct a 1 — e-
approximately revenue optimal mechanism for asymmet-
ric bidders: they show it is necessary and sufficient to take
poly (1,n) samples from each bidder’s distribution to con-
struct an 1 — e-revenue-optimal auction for bid distributions
that are strongly regular. We stress that in this work we make
no such assumptions, only that the distributions are continu-
ous.

Chawla et al. (Chawla, Hartline, and Nekipelov 2014) de-
sign mechanisms which are approximately revenue-optimal
and also allow for good inference: from a sample of bids
made in Bayes-Nash equilibrium, they would like to recon-
struct the distribution over values from which bidders are
drawn. This learning technique relies heavily on a sample
being drawn unconditionally from the symmetric bid distri-
bution, rather than only seeing the winner’s identity from
asymmetric bid distributions, as we consider in this work.

We stress that in all the “revenue maximization” literature
has a fundamentally different objective than the one in this
paper. Namely, our goal is to reconstruct the bidders’ bid dis-
tributions, rather than focusing of the revenue directly. Our
work differs from previous work in this space in that it as-
sumes very limited observational information. Rather than
assuming all n bids as an observation from a single run of
the auction, or even observing only the price, we see only the
identity of highest bidder. We do not need to make any reg-
ularity assumption on the bid distribution, our methodology
handles any continuous bid distribution.?

2 Model and Preliminaries

We assume there are n bidders, and each ¢ € [n] has some
unknown valuation distribution D; over the interval [0, 1].
Each sample ¢ € [m] refers to a fresh draw v! ~ D; for each
i. The label of sample ¢ will be denoted y* = argmax;v!,
the identity of the highest bidder. Our goal is to estimate Fj,
the cumulative distribution for D;, for each bidder ¢, up to €
additive error for all values in a given range. In Section 4 we
examine extensions and modifications to this basic model.
We consider the problem of finding (sample and computa-

tionally) efficient algorithms for constructing an estimate F;
of [}, the cumulative distribution function, such that for all
bidders ¢ and price levels p, F;(p) € {F;(p) £ €¢}. However,
as discussed above, this goal is too ambitious in two ways.
First, if the labels contain no information about the value of
bids, the best we could hope to learn is the relative probabil-
ity each person might win, which is insufficient to uniquely
identify the CDFs, even without sampling error. We address

3Note that we measure the distance between two distributions
using the total variation distance, which is essentially “additive”.
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this issue by allowing, at each time ¢, our learning algorithm
to insert a fake bidder 0 (or reserve) of value v = r'; the
label at time ¢ will be y* = argmax,v! (y* = 0 will refer
to a sample where the reserve was not met, or the fake bid-
der won the auction). The other issue, also described above,
is that there will be values below which we simply cannot
estimate the D; since bids below that value do not win. In
particular, if bids below price p never win, then any two cu-
mulatives F;, F! that agree above p will be statistically indis-
tinguishable. Thus, we will consider a slightly weaker goal.

We will guarantee our estimates F;(p) € F;(p) & € for all p
where P[someone winning with a bid at most p] > . Then,
our goal is to minimize m, the number of samples necessary,
to do so, and we hope to have m € poly(n, %, %), with high
probability of success over the draw of the sample. One fi-
nal (and necessary) assumption we will make is that each D;
has no point masses, and our algorithm will be polynomial

in the maximum slope L of the F;’s.

A brief primer on the Kaplan-Meier estimator

Our work is closely related in spirit to that of the Kaplan-
Meier estimator, KM, for survival time; in this section, we
describe the techniques used for constructing the KM (Kaplan
and Meier 1958). This will give some intuition for the esti-
mator we present in Section 3. We translate their results into
the terminology we use for auction setting, from the survival
rate literature. Suppose each sample ¢ is of the following
form. Each bidder i draws their bid b! ~ D; independently
of each other bid. The label y* = (max; b}, argmax,b!) con-
sists of the winning bid and the identity of the winner. From
this, we would like to reconstruct an estimate ﬁz of F;. Given
m samples, relabel them so that the winning bids are in in-
creasing order, e.g. b} < b7 < b . Here is some intu-
ition behind the KM: F;(z) = Plb; < x] = P[b; < «a|b; <
y] - P[b; < y] for y > x. Repeatedly applying this, we can
see that, forx < y; <y < -+ <Yy,

Fi(z)
r—1

=Pb; < albi < 1] Pl < gr] [ Pli < walbi < i1
=1

(D

Now, we can employ the observation in Equation 1, with es-
timates of such conditional probabilities. Since other play-
ers’ bids are independent, we can estimate the conditional
probabilities as follows:
ﬂ
t
f

Thus, combining Equations 1 and 2, we have the Kaplan-

Meier estimator:
t—1 T[4 won sample t]
t

Our estimator uses a similar Bayes-rule product expansion
as KM, though it differs in several important ways. First,

if « won sample ¢
if ¢ lost sample ¢

2

P o <ol b <0 ] &

KM(z) =

I1

bt
t.bJZx



and most importantly, we do not see the winning bid ex-
plicitly; instead, we will just have lower or upper bounds on
the highest non-reserve bid (namely, the reserve bid when
someone wins or we win, respectively). Secondly, KM gener-
ally has no control issue; in our setting, we are choosing one
of the values which will censor our observation. We need
to pick appropriate reserves to get a good estimator (pick-
ing reserves that are too high will censor too many obser-
vations, only giving us uninformative upper bounds on bids,
and reserves that are too low will never win, giving us unin-
formative lower bounds on bids). Our estimator searches the
space [0, 1] for appropriate price points to use as reserves to
balance these concerns.

3 Learning bidders’ valuation distributions

In this section, we assume we have the power to insert a
reserve price, and observe who won. Using this, we would
like to reconstruct the CDFs of each bidder ¢ up to some
error, down to some price p; where 7 has probability no more
than ~ of winning at or below p;, up to additive accuracy e.
Our basic plan of attack is as follows. We start by estimating
the probability ¢ wins with a bid in some range [a,a + ],
by setting reserve prices at a and a + §, and measuring the
difference in empirical probability that ¢+ wins with the two
reserves. We then estimate the probability that no bidder bids
above a + ¢ (by setting a reserve of a + § and observing
the empirical probability that no one wins). These together
will be enough to estimate the probability that ¢ wins with a
bid in that range, conditioned on no one bidding above the
range. We then show, for a small enough range, this is a good
estimate for the probability ¢ bids in the range, conditioned
on no one bidding above the range. Then, we chain these
estimates together to form Kaplan, our estimator.

More specifically, to make this work we select a parti-
tion of [0, 1] into a collection of intervals. This partition
should have the following property. Within each interval
[x,y], there should be probability at most 3 of any person
bidding in [z,y], conditioned on no one bidding above y.
This won’t be possible for the lowest interval, but will be
true for the other intervals. Then, the algorithm estimates
the probability ¢ will win in [z, y] conditioned on all bidders
bidding at most y. This then (1 — 8) (multiplicatively) ap-
proximates the probability ¢ bids in [z, y] (conditioned on all
bidders bidding less than y). Then, the algorithm combines
these estimates in a way such that the approximation factors
do not blow up to reconstruct the CDF.

Theorem 1. With probability at least 1 —§, Kaplan outputs
F;, an estimate of F;, with sample complexity

878 L 1 L
n°L ln% (lng —|—1n1n2—,y>

m=0 41066

and, for all p where P[3 js.t. j wins with a bid < p| > ~, if
each CDF is L-Lipschitz, the error is at most:

Fi(p) — e < Fi(p) < Fi(p) + e
Kaplan calls several other functions, which we will now
informally describe, and state several lemmas describing
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Algorithm Kaplan: Estimates the CDF of i from
samples with reserves

Data: ¢, y, d, L, where L is the Lipschitz constant of
th(iFis
Result: F;
F(0)=0,Fi(1) =1, k = 2Ln
1 Let F;(0) 5_ 0,F;(1)=1,k= MQ—&— 1,
/ €
o' = 3k(1ogk+1)’ﬁ = o> @ = /96, p = 53/96,
8In6/8 .
= 40(2’\/2(%)2 9
2 Letty,..., 4 = Intervals(B,v,T);
3fort =2tk —1do
4 L Letry o, = IWin(i, b, by 41,T);
sfort =2tk —1do
6 L Let F;(¢,) = HT,th(l — Tl )

7 Define 132(:5) = maxy, <y E(ZT);

their guarantees (the proofs can be found in the full ver-
sion of this paper). IWin estimates the probability ¢ wins in
the region [¢,, £, 1], conditioned on all bids being at most
l-41. Intervals partitions [0, 1] into small enough inter-
vals such that, conditioned on all bids being in or below that
interval, the probability of any bidder bidding within the in-
terval is small ({5 is close to p,, so we need not get a good
estimation in in [0, /5], and by definition ¢; = 0).

We now present the lemmas which make up the crux of
the proof of Theorem 1. Lemma 2 bounds the number of
samples IWin uses and bounds the error of its estimate.
Lemma 3 does similarly for Intervals. Lemma 4 states
that, if a region [¢,, £, ;1] is small enough, the probability
that ¢ bids in [{;,¢;1] (conditioned on all bids being at
most ¢, 1) is well-approximated by the probability that ¢
wins with a bid in [, ¢, ;1] (conditioned on all bids be-
ing at most ¢, 1). In combination, these three imply a guar-
antee on the sample complexity and accuracy of estimating
P[i wins in [¢,, £, 1]| max; b; < £,1], which is the key in-
gredient of the Kaplan estimator.

Algorithm IWin: Est.
P[¢ wins in [¢,, {7 41]| max; bj < £r44]

Data: i, KT, lbry1, T

Result: py ,
1 Let S, be a sample with reserve ¢, of size T’
2 Let Sy_,, be a sample with reserve £ of size T';
3 Let Scong be a sample with reserve £ 1 of size T';
4 Output pzT s =

ZtESeT 1[4 wins on sample t] 72‘65574_1 1[4 wins on sample t] .

D ie Seond [0 wins on sample ¢] ’

Lemma 2. Suppose, for a fixed interval [;,0;11],
P[i wins in [0, £, 11]] > ~. Then, with probability at least
1—30, TWin (i, £+, €+y1,T) outputs Pi. ¢, ., such that

(1—w)P[é wins in [£;,£r11]] max bj <lrpq]—a < pi}hgﬂrl



< (14 wPliwinsin [l;,0-11]|maxb; <y 1] + «
j

and uses 3T samples, for the values of T, ¢’ as in Kaplan.

Algorithm Intervals: Partitions bid space to est.
fi

Data: 5,v,T,n, L

Result: 0 =/ < ... </l =1
1 Let ), = 1,c:k,p;c =1;
while p; >~/2do // Do binary search
for the bottom of the next interval

(5]

3 Let EAb =0;

4 | while Inside(fy, £, T) > £ do // The
interval is too large

5 t O = Letle;

6 gcfl = 2;7;

7 c=c—1;

8 Let S; be a sample of size 1" with reserve /._1;

o | p = Ztesl H[ng;ins on sample t] :

10 Return 0, /.., ..., lx;

Lemma 3. Letr T as in Kaplan. Then,
Intervals(B,7v,T,L,n) returns 0 = {1 < -+ < f =1
such that

48Ln
Lok< 5"

2. Foreach T € [2,k], Plmax; b; € [(;,{r41]| max; b; <
lra] < 1%

3. P[man bj S [51,62]] <%

with probability at least 1 — 3klog(k)d’, when bidders’

CDF’s are L-Lipschitz, using at most 3kT log k samples.

With the guarantee of Lemma 3, we know that the par-
tition of [0, 1] returned by Intervals is “fine enough”.
Now, Lemma 4 shows that, when the partition fine enough,
the conditional probability 7 wins with a bid in each inter-
val is a good estimate for the conditional probability ¢ bids
within that interval.

Lemma 4. Suppose that, for bidder i and some 0 < £, <
g'r—&-l S L
Plmaxb; € [(r,-11]| maxb; < {lriq] < B.
J#i J#i

Then,

Pli wins in [0, (1] max; bj < £r41]

1>
- ]P)[Z bids in [éT, £T+1]| max; bj < €T+1]

>1-p

Finally, we observe that F; can be written as the product
of conditional probabilities.

Observation 5. Consider some set of points 0 < 1 < ... <
L, = 1. F;(¢;) can be rewritten as the following product:

Fi(lr—1) = [J (0 =Pbi € [tr 1, ][b; < £1])

T/ >t
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We relegate the formal proof of Theorem 1 to the full ver-
sion for reasons of space. We give some intuition for the
proof here. With probability 1 — §, Intervals returns a
good partition, and, for each interval, of which there are at
most k' — 1, by Lemma 3, TWin is as accurate as described
by Lemma 2) (which follows from a union bound). Thus, for
the remainder of the proof we assume the partition returned
by Intervals is good and each call to IWin is accurate.
Then, by Lemma 4, the probability that a bidder wins with a
bid in an interval is a close approximation to the probability
she bids in that interval ( both events are conditioned on all
bids being at most the upper bound of the interval). These
estimates multiplied together also give good estimates.

Subsets

The argument above extends directly to a more general sce-
nario in which not all bidders necessarily show up each time,
and instead there is some distribution over 2[¥! over which
bidders show up each time the auction is run. As mentioned
above, this is quite natural in settings where bidders are com-
panies that may or may not need the auctioned resource at
any given time, or keyword auctions where there is a dis-
tribution over keywords, and companies only participate in
the auction of keywords that are relevant to them. To han-
dle this case, we simply apply Algorithm Kaplan to just
the subset of time steps in which bidder 7 showed up when

learning ﬁi. We use the fact here that even though the dis-
tribution over subsets of bidders that show up need not be a
product distribution (e.g., certain bidders may tend to show
up together), the maximum bid value of the other bidders
who show up with bidder ¢ is a random variable that is in-
dependent of bidder ¢’s bid. Thus all the above arguments
extend directly. The sample complexity bound of Theorem
1 is now a sample complexity on observations of bidder ¢
(and so requires roughly a 1/q blowup in total sample com-
plexity to learn the distribution for a bidder that shows up
only a g fraction of the time).

4 Extensions and Other Models

So far we have been in the usual model of independent pri-
vate values. That is, on each run of the auction, bidder 7’s
value is v; ~ D;, drawn independently from the other v;.
We now consider models motivated by settings where we
have different items being auctioned on each round, such as
different cameras or cars, and these items have observable
properties, or features, that affect their value to each bidder.

In the first (easier) model we consider, each bidder 7 has
its own private weight vector w; € R? (which we don’t see),
and each item is a feature vector z € R% (which we do see).
The value for bidder 7 on item x is w; - x, and the winner is
the highest bidder argmax;w; - =. There is a distribution P
over items, but no additional private randomness. Our goal,
from submitting bids and observing the identity of the win-
ner, is to learn estimates w; that approximate the true w; in
the sense that for random x ~ P, with probability > 1 — e,
the w; correctly predict the winner and how much the winner
values the item x up to *e.



In the second model we consider, there is a single com-
mon vector w, but we reintroduce the distributions D;. In
particular, the value of bidder ¢ on item x is w - x + v; where
v; ~ D;. The “w - £” portion can be viewed as a common
value due to the intrinsic worth of the object, and if w = 0
then this reduces to the setting studied in previous sections.
our goal is to learn both the common vector w and each D;.

The common generalization of the above two models,
with different unknown vectors w; and unknown distribu-
tions D; appears to be quite a bit more difficult (in part
because the expected value of a draw from D; conditioned
on bidder ¢ winning depends on the vector z). We leave as
an open problem to resolve learnability (positively or neg-
atively) in such a model. We assume that ||z|]s < 1 and
|lwill2 < 1, and as before, all valuations are in [0, 1].

Private value vectors without private randomness

Here we present an algorithm for the setting where each bid-
der ¢ has its own private vector w; € R?, and its value for an
item z € R% is w; - . There is a distribution P over items,
and our goal, from submitting bids and observing the iden-
tity of the winner, is to accurately predict the winner and the
winning bid. Specifically, we prove the following:

Theorem 6. With probability > 1 — §, the algorithm below
using sample size

O (612 [dn?log(1/e) + log(1/5)]>

produces w; such that on a 1 — e probability mass of x ~
P, " = argmax;w; - T = argmax;w; - T (i.e., a correct
prediction of the winner), and furthermore

[ Wi - & — wys - x| <.

Proof. Our algorithm is simple. We will participate in
m auctions using bids chosen uniformly at random from

{0,€,2¢,...,1}. We observe the winners, then solve for a
consistent set of w; using linear programming. Specifically,
fort =1,...,m, if bidder ¢; wins item x; for which we bid

b;, then we have linear inequalities:

W;, + Ty (V5 #it)

> ’lI)j - Tt
> by

t

ﬁ}it - Tt
Similarly, if we win the item, we have:

(V)

Let P* denote the distribution over pairs (x,b) induced
by drawing x from P and b uniformly at random from
{0,€,2¢,...,1} and consider a (k + 1)-valued target func-
tion f* that given a pair (x,b) outputs an integer in
{0,1,...,n} indicating the winner (with O indicating that
our bid b wins). By design, the vectors w1, ..., w, solved
for above yield the correct answer (the correct highest bid-
der) on all m pairs (z,b) in our training sample. We ar-
gue below that m is sufficiently large so that by a standard
sample complexity analysis, with probability at least 1 — 4,
the true error rate of the vectors w; under P* is at most
€2/(1+¢). This in particular implies that for at leasta (1—¢)

by > U~)j - Tt
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probability mass of items = under P, the vectors w; predict
the correct winner for all % bids b € {0,¢,2¢,...,1} (by
Markov’s inequality). This implies that for this (1 — €) prob-
ability mass of items z, not only do the w; correctly predict
the winning bidder but they also correctly predict the win-
ning bid value up to +e¢ as desired.

Finally, we argue the bound on m. Any given set of n
vectors w1, . .., Wy, induces a (n + 1)-way partition of the
(d + 1)-dimensional space of pairs (x,b) based on which
of {0,...,n} will be the winner (with O indicating that b
wins). Each element of the partition is a convex region de-
fined by halfspaces, and in particular there are only O(n?)
hyperplane boundaries, one for each pair of regions. There-
fore, the total number of ways of partitioning m data-points

is at most O(m(d+1)”2). The result then follows by standard
VC upper bounds for desired error rate €2 /(1 + ¢). O

Common value vectors with private randomness

We now consider the case that there is just a single common
vector w, but we reintroduce the distributions D;. In particu-
lar, there is some distribution P over z € R?, and the value
of bidder ¢ for item x is w - ¢ + v; where v; ~ D;. As before,
we assume ||z||s < 1 and ||w;|l2 < 1, and all valuations are
in [0, 1]. The goal of the algorithm is to learn both the com-
mon vector w and each D;. We now show how we can solve
this problem by first learning a good approximation w to w
which then allows us to reduce to the problem of Section 3.
In particular, given parameter ¢’, we learn « such that
Pr (jw-z—w-z|<)>1-¢.
z~P

Once we learn such a 1, we can reduce to the case of Section
3 as follows: every time the algorithm of Section 3 queries
with some reserve bid b, we submit instead the bid b + w -
z. The outcome of this query now matches the setting of
independent private values, but where (due to the slight error
in w) after the v; are each drawn from D;, there is some
small random fluctuation that is added (and an € fraction
of the time, there is a large fluctuation). But since we can
make ¢ as polynomially small as we want, this becomes a
vanishing term in the independent private values analysis.
Thus, it suffices to learn a good approximation w to w, which
we do as follows.

Theorem 7. With probability > 1 — 0, the algorithm below
using running time and sample size polynomial in d, n, 1/¢,
and log(1/6), produces W such that

Prilo-z—w- -z <]>1-¢.

z~P
Proof. Let D,q, denote the distribution over
max|vy, ..., v,]. By performing an additive offset, specif-
ically, by adding a new feature z that is always equal to
1 and setting the corresponding weight w, to be the mean
value of D, 4., Wwe may assume without loss of generality
from now on that D,,,, has mean value 0.*

4 Adding such an z and wy has the effect of modifying each v;
t0 v; — E[Umaz]. The resulting distributions over w - x 4 v; are all
the same as before, but now D, has a zero mean value.



Now, consider the following distribution over labeled ex-
amples (z,y). We draw x at random from P. To produce
the label y, we bid a uniform random value in [0, 1] and set
y = 1 if we lose and y = 0 if we win (we ignore the identity
of the winner when we lose). The key point here is that if the
highest bidder for some item z bid a value b € [0, 1], then
with probability b we lose and set y = 1 and with probabil-
ity 1 — b we win and set y = 0. So, E[y] = b. Moreover,
since b = w - & + Umqq, Where vy,q, 18 picked from Dy, 4,
which has mean value of 0, we have E[b|z] = w - x. So,

So, we have examples x with labels in {0,1} such that
E[y|z] = w - x. This implies that w - x is the predictor of
minimum squared loss over this distribution on labeled ex-
amples (in fact, it minimizes mean squared error for every
point z). Moreover, any real-valued predictor h(x) = @ - x
that satisfies the condition that E(, ,)[(w -  — y)?] <

E (2. [(w - — y)?] + ¢* must satisfy the condition:

Pr (jw-z—w-z|<€e)>1-¢.
z~P

Y)

This is because a predictor that fails this condition incurs
an additional squared loss of €’? on at least an €’ probability
mass of the points. Finally, since all losses are bounded (we
know all values w - x are bounded since we have assumed
all valuations are in [0, 1], so we can restrict to w such that
w-x are all bounded), standard confidence bounds imply that
minimizing mean squared error over a sufficiently (polyno-
mially) large sample will achieve the desired near-optimal
squared loss over the underlying distribution. 0
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