
Computing Nash Equilibrium in
Interdependent Defense Games

Hau Chan and Luis E. Ortiz
Department of Computer Science, Stony Brook University

{hauchan,leortiz}@cs.stonybrook.edu

Abstract

Roughly speaking, Interdependent Defense (IDD) games,
previously proposed, model the situation where an attacker
wants to cause as much damage as possible to a network
by attacking one of the sites in the network. Each site must
make an investment decision regarding security to protect it-
self against a direct or indirect attack, the latter due to poten-
tial transfer-risk from an unprotected neighboring site. The
work introducing IDD games discusses potential applications
to model the essence of real-world scenarios such as the 2006
transatlantic aircraft plot. In this paper, our focus is the study
of the problem of computing a Nash Equilibrium (NE) in
IDD games. We show that an efficient algorithm to determine
whether some attacker’s strategy can be a part of a NE in an
instance of IDD games is unlikely to exist. Yet, we provide
a dynamic programming algorithm to compute an approxi-
mate NE when the graph/network structure of the game is
a directed tree with a single source, and show that it is an
FPTAS. We also introduce an improved heuristic to compute
an approximate NE on arbitrary graph structures. Our exper-
iments show that our heuristic is more efficient, and provides
better approximations, than best-response-gradient dynamics
for the case of Internet games, a class of games introduced
and studied in the original work on IDD games.

Introduction
In this paper, we provide further computational results to
Interdependent Defense (IDD) games, a model introduced
by Chan, Ceyko, and Ortiz (2012). Roughly speaking, IDD
games model the interaction among strategic agents, repre-
sented by sites embedded in a network, and an attacker. The
sites have the objective to protect themselves from the at-
tacker by making individual, voluntary investment decisions
regarding their own security. The attacker aims to cause as
much damage as possible. A key aspect is that the cost-
effectiveness of each site’s decision, as well as the attacker’s
own strategy, depend on both the risk of a successful direct
attack initiated at a site and the potential one-hop transfer of
the risk from one site to another through the network.

We now present a rough summary of IDD games. We
delay a formal definition until the respective section. We
refer the reader to (Chan, Ceyko, and Ortiz 2012) for a

Copyright c� 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

more thorough motivation, account of their design deci-
sions and derivation, related work and description of a few
example applications of IDD games, including models for
airline-baggage security. (Other applications include com-
puter security, vaccination, and house/apartment fire protec-
tion. There is a recent survey by Laszka, Felegyhazi, and
Buttyan, 2014, to highlight other aspects of IDS games.)
IDD games build on the work of economists and risk-
analysis experts (Heal and Kunreuther 2005) on interdepen-
dent security (IDS) games. Hence, they can, in principle, ap-
ply to any setting in which IDS games do. A major distinc-
tion here is that the “bad event” is modeled as a result of
some deliberate strategic attack by an attacker. The attacker
determines which site to attack, given the potential one-hop
attack risk transfer, to maximize the network’s overall dam-
age from attacks to sites on the system.

The adaptation of IDS games via the introduction of a
strategic attacker, which explicitly induces risk via a deliber-
ate attack, partly motivate the creation of IDD games (Chan,
Ceyko, and Ortiz 2012). By explicitly modeling the attacker
as a strategic agent, IDD games move away from the previ-
ously standard in security-type models in which the attack
was considered as a non-strategic random event (e.g., John-
son et al., 2010).

As Chan, Ceyko, and Ortiz (2012) state, there are three
main components of IDD games:

1. There is a notion of, and the means for, attack transfer and
transfer risks.
In IDD games, there is a notion of indirect risk, because
a site can, with some probability, “transfer” a deliberate
attack only once to another neighboring site in the net-
work graph. As a result, sites must make investment deci-
sions based not only on the potential of a deliberate direct
attack, but also on the potential indirect risk from neigh-
boring sites. As a side note, if the neighboring sites invest
in protection against a direct attack, then it is not possi-
ble for the attack to transfer. Hence, one can alternatively
view the transfer probabilities as implicitly inducing a di-
rected graph over the network of sites.

2. There is an attacker who aims to cause the most damage.
Moreover, the attacker determines which site to attack
based on the amount of damage it can cause to a site
directly, or to the site’s neighbors indirectly, less the at-

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence

842

tacker’s cost to attack the site and the probability of and
expected gains from a successful attack to that site.

3. There are sites that can be viewed as targets of an attack,
each of which wants to protect itself from the attack.
A site’s investment decision is based on whether the site’s
neighbors invest in security and whether the attacker will
attack the site or its neighbors, less the site’s investment
cost and its potential loss from a successful attack on the
site.

Our Contribution
The objective of this paper is to study the problem of com-
puting Nash equilibrium (NE) in IDD games. Here is a list
summarizing our contributions.
• We show that verifying whether some attacker’s strategy

can be a part of a NE in an instance of IDD games is un-
likely to have an efficient algorithm. We do this by show-
ing a related problem is NP-complete. As a consequence,
we may not be able to find a NE if this is the only strat-
egy left (all other strategies are eliminated because they
cannot be part of a NE).
This is surprising because there is a polynomial-time al-
gorithm to compute all NEs in IDD games when ↵ = 1

(Chan, Ceyko, and Ortiz 2012). (We define ↵ in the next
section.) However, that algorithm is unlikely to generalize
to compute NEs for different ↵ values.

• We study the question of computing an approximate NE.
We show that there is an FPTAS to compute an approxi-
mate NE when the graph of the sites is a directed tree.
This is surprising because it is not possible to use the dy-
namic programming algorithms of Kearns, Littman, and
Singh (2001) and Elkind, Goldberg, and Goldberg (2006)
to compute an ✏-MSNE in IDD games efficiently, mostly
because of the more compact representation of IDD
games (i.e., linear in the number of edges in the network).
Moreover, finding ✏-MSNE in general degree-3 graphical
games is PPAD-hard (Elkind, Goldberg, and Goldberg
2006). Our ↵-IDD games have more than 3 degrees. In
fact, because the attacker is connected to all the nodes in
the network, as a graphical game with normal-form rep-
resentation of the local payoff matrices, the graph of the
IDD games is completely connected (i.e., the attacker’s
mixed strategy imposes a global constraint). But the local
payoff functions in our case are compactly representable
in parametric form. Still, we provide an FPTAS to com-
pute ✏-MSNE in interesting subclasses of IDD games.

• We introduce a heuristic, based on smoothed best-
response dynamics (Fudenberg and Levine 1999), to com-
pute an approximate NE in IDD games with arbitrary net-
work structures.

• We perform experiments using our heuristic on Internet
games, as introduced by Chan, Ceyko, and Ortiz (2012),
and compare our results against that from best-response-
gradient dynamics (BRGD), the heuristic used by Chan,
Ceyko, and Ortiz (2012). The experiments show that our
heuristic computes approximate NEs considerably faster
and produces better/tighter approximations.

The BRGD is already a reasonably efficient approach to
compute (small) ✏-MSNEs, up to about ✏ = 0.001 (Chan,
Ceyko, and Ortiz 2012). (Although, it was often incom-
plete for such small ✏ values.) Given the general simplicity
and effectiveness of BRGD, there is no reason, a priori, to
expect to find a significantly better heuristic for most in-
stances of the IDD games (i.e., Internet games) that Chan,
Ceyko, and Ortiz (2012) evaluated. Yet, here, we do in-
troduce a simple heuristic that is considerably faster and
provides ✏-MSNEs with a smaller ✏ than BRGD for the
same class of IDD games.

On the Complexity of Computing NE
To put our contribution in context, we now provide recent
progress on computing a NE in general games. Nash (1950)
showed that every finite, normal-form game has at least
one NE (Fudenberg and Tirole 1991). Chen, Deng, and
Teng (2009) first showed that computing exact one NE,
or even an approximate one of quality better than an in-
verse polynomial of the approximation parameter, is PPAD-
complete. The PPAD-completeness holds even for 2-player
games and graphical games with graphs of maximum de-
gree 3 and constant pathwidth (Daskalakis, Goldberg, and
Papadimitriou 2006; Elkind, Goldberg, and Goldberg 2006).
Kearns, Littman, and Singh (2001) and Elkind, Goldberg,
and Goldberg (2006) provide quasi-polynomial-time algo-
rithms to compute approximate NE on trees. However, we
cannot directly or naively apply those algorithms to our set-
ting. The graph structure of IDD games is not a tree because
the attacker is connected to every site.

Interdependent Defense Games
We will closely follow the notations and definitions by Chan,
Ceyko, and Ortiz (2012) to define a (directed) graphical-
games version of IDD games. Let [n] ⌘ {1, . . . , n} denote
the set of sites. For each site i 2 [n], let a

i

= 1 and a
i

=

0 denote the invest and no-invest individual action/pure-
strategy of player i, respectively. For each player i, the cost
of investing in security is C

i

, while the potential loss due
to a successful attack on site i is L

i

. For the attacker, let
b 2 {0, 1}n denote the joint-attack vector, such that b

i

= 1

denotes the decision to attack site i. The cost of an attack on
site i is C0

i

. We denote by a ⌘ (a1, . . . , an) 2 {0, 1}n the
joint-action/joint-pure-strategy of the n sites, a�i

the joint-
action of n� 1 sites except i, and a

I

the joint-action of sites
in the set I ✓ [n].

From the sites’ perspective, an attack can occur directly
or indirectly through other neighboring sites. The parame-
ter p̂

i

captures the conditional probability that a direct at-
tack on i is successful. The parameter q̂

ij

captures the con-
ditional probability that an attack, initiated at site i but trans-
ferred (undetected) to site j where the attack is finally suc-
cessful. An implicit, simplifying assumption, carried over
from the original IDS model (Kunreuther and Heal 2003;
Heal and Kunreuther 2005), is that there is at most one trans-
fer between sites. This condition is not as restrictive as it first
appears. One way, albeit naive, to model multiple transfers
would be to set the corresponding q

ij

to a non-zero value.

843

Indeed, as an implication of the transfer probabilities
q̂
ij

’s, there is a directed (game) graph G = ([n], E) such
that E = {(i, j)|q̂

ij

> 0}. We denote the parents and chil-
dren of i in the graph as Pa(i) and Ch(i), respectively.

Given the graph structure and the risk-related parameters,
we define the safety and (indirect) risk functions of a site. It
is not hard to see that the safety of site i from site j depends
whether j invests and whether the attacker attacks j. More-
over, the safety of i from j is e

ij

(a
j

, b
j

) ⌘ a
j

+(1�a
j

)(1�
b
j

q̂
ji

) = (1 � q̂
ji

)

b

j

(1�a

j

) . The overall safety function
is s

i

(aPa(i),bPa(i)) ⌘
Q

j2Pa(i) eij(aj , bj). The overall risk
function is simply r

i

(aPa(i),bPa(i)) ⌘ 1� s
i

(aPa(i),bPa(i)).
Of course, the sites can fully protect themselves from a

direct attack if they invest. However, they can only partially
protect themselves from the (indirect) risk. The parameter
↵
i

2 [0, 1] denotes the probability that a transfer of a poten-
tial attack will go unblocked by i’s security even if i invests.

Given the above, we define the cost function of site i

M
i

(a
i

,aPa(i), bi,bPa(i)) ⌘ a
i

[C
i

+ ↵
i

r
i

(aPa(i),bPa(i))Li

]

+ (1� a
i

)[b
i

p̂
i

+ (1� b
i

p̂
i

)r
i

(aPa(i),bPa(i))]Li

.

The above cost function states that if site/player i plays a
i

=

1, site i will have to pay for the cost of investment but may
still incur a potential loss from indirect risk. If site i plays
a
i

= 0, site i may incur the potential loss from a direct
attack or the (full) potential loss from an indirect attack.

The attacker in IDD games maximizes the cost of
the sites, without consideration for the sites’ cost of
investment, minus the cost to attack the sites. For-
mally, the utility function of the attacker is U(a,b) ⌘P

n

i=1 Mi

(a
i

,aPa(i), bi,bPa(i))� a
i

C
i

� b
i

C0
i

.
As in Chan, Ceyko, and Ortiz (2012), here, we only con-

sider IDD games under the following conditions: (1) there is
at most one attack (i.e.,

P
n

i=1 bi 1); (2) for a given site,
the cost of investment is always less than the expected po-
tentially loss (i.e., 0 < C

i

< p̂
i

L
i

for all i 2 [n]); and (3)
for a given site, the site’s cost of an attack is always less than
the maximum utility that can be obtained by attacking that
site (i.e., 0 < C0

i

< p̂
i

L
i

+

P
j2Ch(i) q̂ij↵j

L
j

for 8i 2 [n]).
Pure-strategy Nash equilibrium (PSNE) is one solution

concept in non-cooperative game theory. Roughly speaking,
a pure-strategy (a

⇤,b⇤
) of an IDD game is a PSNE if (1)

each site i’s pure-strategy a⇤
i

minimizes the site’s cost func-
tion M

i

given the pure-strategies a

⇤
�i

and b

⇤ of the other
sites and the attacker’s, respectively; and (2) the attacker’s
pure-strategy b

⇤ maximizes its utility function U
i

given
the pure strategies of all the sites a

⇤. Unfortunately, Chan,
Ceyko, and Ortiz (2012) showed that no PSNE exists under
the conditions given above. As a result, we focus on mixed
strategies.

Let x
i

denote player i’s mixed strategy: the probability
that site i invests. Let y denote the attacker’s mixed strategy,
in which each component y

i

denotes the probability that the
attacker attacks site i. We denote by y0 the probability of
’no attack’, so that

P
n

i=0 yi = 1. In this setting, players take
expectations with respect to everybody’s mixed strategy to
evaluate their expected costs or utilities and take an optimal
action. In particular, the sites evaluate the expect value of

their individual cost functions and the attacker evaluates the
expected value of the utility function. With a slight abuse
of notation, the (expected) overall safety function of site i
becomes s

i

(xPa(i),yPa(i)) ⌘ 1 �
P

j2Pa(i) yj(1 � x
j

)q̂
ji

,
and as before r

i

(xPa(i),yPa(i)) ⌘ 1 � s
i

(xPa(i),yPa(i)). The
expected cost of site i becomes
M

i

(x
i

,xPa(i), yi,yPa(i)) ⌘ x
i

[C
i

+ ↵
i

r
i

(xPa(i),yPa(i))Li

]

+ (1� x
i

)[p̂
i

y
i

+ r
i

(xPa(i),yPa(i))]Li

.

Similarly, the expected utility of the attacker becomes
U(x,y) ⌘

P
n

i=1 Mi

(x
i

,xPa(i), yi,yPa(i)) � x
i

C
i

� y
i

C0
i

.
A simple rewriting of U provides a more natural interpre-
tation. The expected utility of the attacker from attacking i
depends on how much it can get from an attack to i directly
or from the potential transfer to the children of i, minus the
cost to attack i: U(x,y) ⌘

P
n

i=1 yiUi

(x), where U
i

(x) ⌘

(1� x
i

)

0

@p̂
i

L
i

+

X

j2Ch(i)

(x
j

↵
j

+ (1� x
j

))q̂
ij

L
j

1

A� C0
i

.

To conclude the description of the IDD games, we provide
the general definition of a NE in terms of the best-response
functions. Let R

i

⌘ C

i

L

i

and ŝ
i

(xPa(i), yi,yPa(i)) ⌘ y
i

p̂
i

+

(1�↵
i

)r
i

(xPa(i),yPa(i)) The best-response correspondence
of site i is BR

i

(xPa(i), yi,yPa(i)) ⌘
8
<

:

{1}, if ŝ
i

(xPa(i), yi,yPa(i)) > R
i

,
{0}, if ŝ

i

(xPa(i), yi,yPa(i)) < R
i

,
{0, 1}, if ŝ

i

(xPa(i), yi,yPa(i)) = R
i

.

The best-response correspondence for the attacker is
BR0(x) ⌘ argmax

y

U(x,y).
Definition A mixed-strategy (x

⇤, y⇤) is a mixed-strategy
Nash equilibrium (MSNE) of an IDD game if (1) for all i 2
[n], x⇤

i

2 BR
i

(x

⇤
Pa(i), y

⇤
i

, y⇤Pa(i)) and (2) y⇤ 2 BR0(x). If
(x

⇤, y⇤) corresponds to a (deterministic) joint-pure-strategy,
then we refer to the MSNE simply as a PSNE.

On the Complexity of Computing an MSNE
Given that there is no PSNE in any IDD games (Chan,
Ceyko, and Ortiz 2012), we shift our focus to computing
an MSNE. Chan, Ceyko, and Ortiz (2012) provides an algo-
rithm to compute all MSNEs in an instance of IDD games
where ↵

i

= 1 for all sites i. The interpretation is that invest-
ment cannot protect the sites from indirect risk. However,
there is no result for the harder case of general ↵

i

.
Here, we consider the computational complexity of com-

puting an MSNE in general ↵-IDD games. A closer look at
the model reveals something interesting about IDD games:
we can view computing an MSNE in IDD games as a two-
part process. Given an attacker’s strategy, we need to de-
termine the MSNE of the underlying game of the sites,
or sites-game for short. The sites-game could have many
MSNEs and each MSNE could yield a different utility for
the attacker (and the sites). Naively, the attacker can ver-
ify whether each of the MSNEs is in the attacker’s best re-
sponse. Clearly, doing so depends on whether we can ef-
ficiently compute all MSNEs in the sites-game, which of

844

course depends on the given attacker’s strategy. For exam-
ple, if

P
n

i=1 yi = 0, then the sites-game would have ’none
invest’ as the only outcome, because of condition (2) above.

Our goal here is to show that there is an instance of IDD
games, and an attacker’s strategy in that instance, such that
should we fix that attacker’s strategy, we cannot compute all
of the MSNEs efficiently in the underlying sites-game, un-
less P = NP . The implication is that the existence of an ef-
ficient algorithm to compute an MSNE of IDD games based
on the iterative process just described, of checking whether
each attacker’s strategy can be part of an MSNE, would be
unlikely.

To formally prove that we cannot always compute all of
the MSNEs in an instance of the sites-games, as induced
by an IDD game and an attacker’s strategy, efficiently, we
consider the pure-Nash-extension problem (Kearns and Or-
tiz 2004) for binary-action n-player games, which is NP-
complete. The problem takes a description of the game and a
partial assignment a 2 {0, 1, ⇤}n as input. We want to deter-
mine whether there is a complete assignment ¯a 2 {0, 1, ⇤}n
consistent with a. Note that proving that computing an
MSNE in IDD games is PPAD-complete would be more ap-
propriate, since there is always an MSNE, but we will leave
this for future work.

Theorem 1 Consider a variant of IDD games in whichP
n

i=1 Ri

/p̂
i

 1. There is an attacker’s strategy y such
that if we fix y, then the pure-Nash extension problem for
the induced n-player sites-game is NP-complete.

Proof (Sketch) First, we construct a graph structure and set
the parameters to define the IDD game based on an NP-
complete problem. Next, we show that if y exists, then the
induced sites-game solves the NP-complete problem. Fi-
nally, we show that such a y exists.

We take an instance of Monotone 1-in-3 SAT (Garey and
Johnson 1979) with a set of clauses C and a set of vari-
ables V . We consider a bipartite graph structure between the
clauses and the variables. We connect the variables to their
corresponding clauses via direct edges (from the variables
to the clauses). There is exactly one player for each variable,
and we set the player’s parameters such that the player is in-
different between invest and no-invest (i.e., R

v

= y
v

p̂
v

for
all variable players v 2 V). For each clause, we introduce
two clause players, denoted by a and b. For clause play-
ers a and b, we set R

a

> 0, R
b

> 0, p̂
a

> 0, p̂
b

> 0,
↵
a

> 0, ↵
b

> 0, and some transfer probability q such that
R

a

> (1 � ↵
a

)R
v

q̂ and R
b

> (1 � ↵
b

)2R
v

q̂. Given a
y, we have that 2R

v

q̂

p̂

v

> 1
(1�↵

a

) (
C

a

L

a

� y
a

p̂
a

) > R

v

q̂

p̂

v

and
3R

v

q̂

p̂

v

> 1
(1�↵

b

) (
C

b

L

b

�y
b

p̂
b

) > 2R
v

q̂

p̂

v

. Clause player a invests
if at least two of its variable players do not invest and clause
player b invests if at least three, or all three, of its variable
players do not invest. Finally, we give partial pure-strategy
assignments to the clause players in which a invests and b
does not to guarantee that exactly one invests. It is not hard
to see that the solution to the Monotone 1-in-3 SAT is also
an MSNE of the resulting sites-game and vice versa.

The existence of such a y follows immediately from the
constraint

P
i2C[V

R
i

/p̂
i

 1. For v 2 V , y
v

=

R

v

p̂

v

. For

each clause player a (and b), y
a

< R

a

p̂

a

⇣
y
b

< R

b

p̂

b

⌘
. ut

Worst case, we need to consider the y just described, should
other strategies fail to be a part of any MSNE. Another chal-
lenge is that even if we can compute all exact MSNEs, there
could be exponentially many of them to check. In the next
section, we look for efficient algorithms to compute an ap-
proximate MSNE in various graph structures.

FPTAS for ✏-MSNEs in Tree-like IDD Games
In this section, we compute ✏-MSNEs in a subclass of IDD
games. In particular, we study different graph structures
among the sites. We note that the attacker is connected to
all of the sites even if we do not point it out explicitly.
Definition A mixed-strategy (x

⇤,y⇤
) is an ✏-MSNE of an

IDD game if (1) for all i 2 [n], M
i

(x⇤
i

,x⇤
Pa(i), y

⇤
i

,y⇤
Pa(i))

min

x

i

M
i

(x
i

,x⇤
Pa(i), y

⇤
i

,y⇤
Pa(i)) + ✏, and (2) U(x

⇤,y⇤
) �

max

y

U(x

⇤,y)� ✏.
An exact MSNE ⌘ 0-MSNE. Moreover, we assume that all
the cost and utility functions are individually normalized to
[0, 1] and ✏ 2 [0, 1]; otherwise ✏ is not well-defined.

We will start off simple by considering a directed
line/chain (DL) graph structure. We show that there is a fully
polynomial-time approximation scheme (FPTAS) to com-
pute an ✏-MSNE in DL-IDD games. Then we generalize the
result to directed trees (DT). Despite the simplicity of the
graphs, one can envision very important real-world applica-
tions such as protection of supply chains and other hierar-
chical structures (e.g. see Agiwal and Mohtadi, 2008).

Directed Lines/Chains
Let directed line G = ([n], E) where E = {(i, i +

1)|q̂
i,i+1 > 0, i = 1, ..., n � 1}. The line starts at site 1 and

ends at site n. The risk functions for i = 1, 2, ..., n become
r
i

(x
i�1, yi�1) ⌘ y

i�1(1� x
i�1)q̂i�1i and r1 ⌘ 0.

Since the domain of the variables (i.e., mixed strategies)
is [0, 1], a direct optimization method to compute an MSNE
would require solving a highly non-linear optimization prob-
lem: cubic objective function for the attacker with quartic
constraints for the sites. An alternative is to discretize the
continuous space of the x

i

’s and y
i

’s.
Let X ⌘ X (�

x

) ⌘ {0, ⌧
x

, 2⌧
x

, . . . , (�
x

� 1)⌧
x

, 1} and
Y ⌘ Y(�

y

) ⌘ {0, ⌧
y

, 2⌧
y

, . . . , (�
y

� 1)⌧
y

, 1} be the
respective discretization of the interval [0, 1] where ⌧

x

⌘
b 1
�

x

c and ⌧
y

⌘ b 1
�

y

c are the respective discretization
lengths, and �

x

and �

y

are the respective discretization
sizes. The discretization defines the domains of x

i

and y
i

to be X and Y , respectively. Moreover, |X | = d�
x

e and
|Y| = d�

y

e. Of course, there is an extra constraint for the
y
i

’s in Y:
P

n

i=1 yi 1 for y 2 Yn. We will determine the
values of �

x

and �

y

to guarantee an ✏-MSNE later in the
section, but for now, assume they are given. A simple brute-
force algorithm to compute an ✏-MSNE is to check all pos-
sible discrete combinations and would take, O

⇣
(

1
�

x

1
�

y

)

n

⌘

time, to run in the worst case.
However, looking at the objective function of the

attacker more carefully reveals something interesting:

845

the problem is equivalent to computing (x

⇤,y⇤
) 2

argmax(x,y)2Xn⇥Yn U(x,y) such that x

⇤ 2 Xn satis-
fies the ✏-best-response constraints and y

⇤ 2 Yn satisfiesP
n

i=1 y
⇤
i

 1. Note that at a solution (x

⇤,y⇤
), the attacker

has no incentive to deviate to another (discrete) strategy be-
cause it cannot obtain anything more than ✏ higher, given
x

⇤. In fact, we can show that (x⇤,y⇤
) is an ✏-MSNE. All

we need to do now is to find a way to compute a value in
the set argmax(x,y)2Xn⇥Yn U(x,y). Moreover, the utility
function of the attacker for each site is “local” in the sense
that the maximization depends on the immediate children.
Hence, max(x,y)2Xn⇥Yn U(x,y)

=max

x,y

P
n�1
i=1 y

i

U
i

(x) + y
n

U
n

(x
n

)

=max

y

max

x1,x2 y1U1(x1, x2) + max

x3 y2U2(x2, x3)+

. . .+max

x

n

y
n�1Un�1(xn�1, xn

) + y
n

U
n

(x
n

) .

This is despite y being globally constrained! More impor-
tantly, because of the line structure, to compute an ✏-best-
response for a site i, we only need to know y

i

, y
i�1, and

x
i�1 which we can compute systematically during the max-

imization using the principle of dynamic programming.
Indeed, we design a simple dynamic-programming algo-

rithm to compute an ✏-MSNE that is provably an FPTAS.
Let B[i][x][y] = yU

i

(x, x
i+1) be the utility of the attacker

that can be obtained from site i when y 2 Y and x 2 X .
Note that B[i][x][y] is a function of x

i+1. Throughout the
algorithm, we will make sure that

P
n

i

y
i

 1. Because site
1 is the root and it does not have any parent, to compute its ✏-
best-response, we only need y1. Therefore the base case will
start off with site 1. The base case starts with computing the
possible utility values for each combination of x1 2 X and
y1 2 Y . For those combinations that are not ✏-best response,
we assign the value �1 so that it will not be considered.
This utility, of course, will be a function of x2 (the chil-
dren of 1). In the inductive ith step, for each combination
of x

i

2 X and y
i

2 Y , we take the maximum utility of
the (i � 1)th site condition on the value x

i

and subject to
the condition that

P
i

j=1 yj 1, while satisfying the ✏-best
response of site i. The pseudocode appears in the supple-
mentary material.

The key to show that the dynamic-programming algo-
rithm produces an ✏-MSNE for the DL-IDD games is the
discretization sizes. The question is, how small can we make
�

x

and �

y

and still guarantee an ✏-MSNE in the discretized
space? A more general result about sparse discretization for
graphical games (Ortiz 2014) provides the answer.
Corollary 1 Given an n-player IDD game, let k ⌘
max

i2[n] |Pa(i)| + 1. Setting �

x

=

⌃
4k
✏

⌥
= O(

k

✏

) and
�

y

=

⌃
2nk
✏

⌥
= O(

nk

✏

) is sufficient to obtain an ✏-MSNE.

Proposition 1 There is a dynamic-programming algorithm
that computes an ✏-MSNE in DL-IDD games in time
O
�
n(�

x

�

y

)

2
�
= O

⇣
n

3

✏

4

⌘
, where the discretization lengths

are set to �

x

=

⌃
8
✏

⌥
= O(

1
✏

) and �

y

=

⌃
4n
✏

⌥
= O(

n

✏

).

Corollary 2 There is a fully polynomial time approximation
scheme (FPTAS) to compute an ✏-MSNE in DL-IDD games.

Directed Stars
Let the source node corresponds to player n, and the remain-
ing n�1 sink nodes correspond to players’ 1, . . . , n�1. The
directed star (DS) is equivalent to a directed tree with a sin-
gle root at n with n� 1 leaves and no internal nodes.
Corollary 3 There is an FPTAS to compute an ✏-MSNE in
DS-IDD games.
The key idea is to realize that given a strategy (x

n

, y
n

) of the
root n, the leaves’ decisions are independent of each other.
However, there is a sum less than or equal to one constraint
for the attacker (i.e.,

P
n

i=1 yi 1). Notice that, in this sit-
uation, this is very similar to the DL case earlier; the dif-
ference is that the nodes are not implicitly ordered given
(x

n

, y
n

). If we impose an ordering on the nodes, we can
run a very similar version of the dynamic programming al-
gorithm used for the DL. Indeed, for each possible combi-
nation of (x

n

, y
n

), we can run such dynamic programming
algorithm on the (same) ordering of the nodes and obtain a
(best) value for each (x

n

, y
n

). Clearly, the best (x⇤
n

, y⇤
n

) that
obtains the maximum value among all other (x

n

, y
n

)’s is the
best possible strategy for the attacker. This guarantees that
the attacker would not deviate to a different strategy. More-
over, the dynamic programming algorithm would produce
solutions that ensure the leave players are best-responding.
More formally, we define the following mathematical ex-
pressions for the dynamic programming algorithm. This will
give us an FPTAS for DS-IDD games.

Upstream pass: Collection of conditional ✏-MSNE com-
putation. First, we impose an ordering on the leaves,
that is, we order the leaves in increasing order. Let
M

i

(x
i

, y
i

, x
n

, y
n

) ⌘ M
i

(x
i

, y
i

, x
n

, y
n

) � x
i

C
i

� y
i

C0
i

be the attacker’s utility for attacking i. For each leaf i =

1, . . . , n � 1, we compute the set of individual conditional
tables (in this order),

T
i,n

(x
n

, y
n

, v
i

, x
i

, y
i

, v
i�1) ⌘

M
i

(x
i

, y
i

, x
n

, y
n

)+

log ([v
i

= y
i

+ v
i�1]) +

log

� ⇥
x
i

2 BR✏

x

i

(y
i

, x
n

, y
n

)

⇤�
+

T
i�1,n(xn

, y
n

, v
i�1)

T
i,n

(x
n

, y
n

, v
i

) ⌘ max

(x
i

,y

i

,v

i�1)
T

i,n

(x
n

, y
n

, v
i

, x
i

, y
i

, v
i�1)

W
i,n

(x
n

, y
n

, v
i

) ⌘ arg max

(x
i

,y

i

,v

i�1)
T

i,n

(x
n

, y
n

, v
i

, x
i

, y
i

, v
i�1)

where T0,n(xn

, y
n

, s0) = 0 for all (x
n

, y
n

, s
i0). Each T

i,n

specifies the maximum possible utility an attacker can get by
attacking all the leaves up to i given that the attacker will at-
tack the root n with probability y

n

, the root n to invest with
probability x

n

, and the allowable remaining probability of
an attack v

i

. The first and the second log-terms are to ensure
that the overall probability of attack does not exceed the al-
lowable limit and player i is playing best-respond strategies,
respectively. This is similar to the DL case. Computing each

846

“table of sets” T ’s and W ’s, given above, all take O(�

2
x

�

4
y

)

each. For n, the root of the tree, we compute
R0(s0, xn

, y
n

, s
n

) ⌘M
n

(x
n

, y
n

)+

log ([s0 = s
n

+ y
n

])+

log ([x
n

2 BR✏

n

(y
n

)])+

R
n

(x
n

, y
n

, s
n

)

R0(s0) ⌘ max

(x
n

,y

n

,s

n

)
R0(s0, xn

, y
n

, s
n

)

W0(s0) ⌘ arg max

(x
n

,y

n

,s

n

)
R0(s0, xn

, y
n

, s
n

)

Clearly, computing R0 and W0 takes O(�

x

�

3
y

). As men-
tioned earlier, for each combination of (x

n

, y
n

), we are go-
ing to compute the best value an attacker can obtain. The
computation of R0 does exactly this.

Downstream pass: assignment phase. The assignment
phase is essentially the backtracking phrase in the dynamic
programming algorithm where we follow the “back point-
ers” to find the mixed-strategies for the players and the at-
tacker. For the “downstream” or assignment pass, we are go-
ing to start with the root and find s⇤0 2 arg max

s0
R0(s0).

Because of the discretization result of Corollary 1, there
always exists an ✏-NE, and thus, there is a s⇤0 such that
R0(s

⇤
0) < �1. We set the mixed-strategy of the root to

be some (x⇤
n

, y⇤
n

, s⇤
n

) 2 W0(s
⇤
0). Starting from the opposite

order of upstream pass (i.e., n� 1, ..., 1), we set the mixed-
strategies of the leaves according to v⇤

n�1 s⇤
n

, and for
i = n� 1, . . . , 1,

(x⇤
i

, y⇤
i

, s⇤
i

, v⇤
i�1) 2W

i

(x⇤
n

, y⇤
n

, v⇤
i

) .

By construction (i.e., the properties of dynamic program-
ming and the discretization), the resulting (x⇤, y⇤

) is an ✏-
MSNE of the DS-IDD game.

We now generalize the last result even further to arbitrary
DT-IDD games, yielding one of our main technical results.
Theorem 2 There is an FPTAS to compute an ✏-MSNE in
DT-IDD games.
Proof Let n denote a site/node in the directed tree with a
single source (i.e., the root of the tree). Let (i1, . . . , ik

n

)

be a sequence ordering the set of children of n, Ch(n) ⌘
{i1, . . . , ik

n

}, where k
n

⌘ |Ch(n)|. The following condi-
tions express the dynamic programming corresponding to
the “upstream pass” of the algorithm. For all n, except the
root of the directed tree, we (recursively) define

R
n

(x
n

, y
n

, s
n

) ⌘T
i

k

n

,n

(x
n

, y
n

, s
n

)

such that, for all j = 1, . . . , k
n

, we define
T
i

j

,n

(x
n

, y
n

, v
i

j

) ⌘ max

(x
i

j

,y

i

j

,s

i

j

,v

i

j�1)
M

i

j

(x
i

j

, y
i

j

, x
n

, y
n

)

+ log

� ⇥
v
i

j

= s
i

j

+ y
i

j

+ v
i

j�1

⇤�

+ log

⇣ h
x
i

j

2 BR✏

x

i

j

(y
i

j

, x
n

, y
n

)

i⌘

+R
i

j

(x
i

j

, y
i

j

, s
i

j

)

+ T
i

j�1,n(xn

, y
n

, v
i

j�1) ,

W
i

j

,n

(x
n

, y
n

, v
i

j

) is the arg max of the same optimiza-
tion (i.e., the set of “witnesses” containing the values of
(x

i

j

, y
i

j

, s
i

j

, v
i

j

�1) that achieve the maximum values of
the optimization given each (x

n

, y
n

, v
i

j

)), and, to sim-
plify the presentation, we use the boundary conditions (1)
T
i0,n(xn

, y
n

, s
i0) = 0 for all (x

n

, y
n

, s
i0); and (2) if i

j

is a leaf of the tree, then R
i

j

(x
i

j

, y
i

j

, s
i

j

) = 0 for all
(x

i

j

, y
i

j

, s
i

j

). If n is the root of the tree, we compute

R0(s0) ⌘ max

(x
n

,y

n

,s

n

)
M

n

(x
n

, y
n

)

+ log ([s0 = s
n

+ y
n

])

+ log ([x
n

2 BR✏

n

(y
n

)])

+R
n

(x
n

, y
n

, s
n

) , and
W0(s0) is the arg max of the same optimization (i.e., the
set of “witnesses” containing the values of (x

n

, y
n

, s
n

) that
achieve the maximum values of the optimization given each
s0 in the discretized grid of probability values in [0, 1]).

For the “downstream” or assignment pass, first find s⇤0 2
arg max

s0
R0(s0). Note that such s⇤0 with R0(s

⇤
0) < �1

because of the properties of the discretization and the ex-
istence of MSNE. Set the values of the root node, denoted
by n, to some (x⇤

n

, y⇤
n

, s⇤
n

) 2W0(s
⇤
0). Then (recursively) set

the values of the children of n, in the reversed order in which
the the dynamic program computes the maximizations: set
v⇤
i

k

n

 s⇤
n

, and for j = k
n

, . . . , 1.

(x⇤
i

j

, y⇤
i

j

, s⇤
i

j

, v⇤
i

j�1
) 2W

i

j

(x⇤
n

, y⇤
n

, v⇤
i

j

) .

We repeat the same assignment process for all of the nodes
in the tree. Recall that there will always be at least one wit-
ness value during the assignment phase because of the prop-
erties of the discretization and the existence of MSNE. By
construction (i.e., the properties of dynamic programming
and the discretization), the resulting (x⇤, y⇤

) is an ✏-MSNE
of the DT-IDD game. This completes the proof. ut

The running time would be O(|E|�2
x

�

4
y

).
Note that our results are nontrivial within the context of

the state-of-the-art in computational game theory. We are
working a graph structure where there is one node (the at-
tacker) connecting to all the nodes of the tree (the sites).
Naively applying the traditional well-known dynamic pro-
gramming algorithms by Kearns, Littman, and Singh (2001)
and Elkind, Goldberg, and Goldberg (2006) to our problem
would not give us any FPTAS. In fact, their game represen-
tation size is exponential in the number of neighbors instead
of our linear representation size.

A Heuristic to Compute ✏-MSNEs
In this section, we introduce a heuristic to compute ✏-
MSNEs on arbitrary graphs. Chan, Ceyko, and Ortiz (2012)
showed that best-response-gradient dynamics (BRGD) (Fu-
denberg and Levine 1998; Nisan et al. 2007; Shoham and
Leyton-Brown 2009) can efficiently solve Internet games
(IGs), as introduced by Chan, Ceyko, and Ortiz (2012) 1,

1An IG is an instance of IDD games where the underlying graph
structure corresponds to the topology of the Autonomous Systems
in the Internet, as measured by from DIMES (Shavitt and Shir
2005). The graph has 26,424 nodes and 100,402 directed edges.

847

Student Version of MATLAB

Figure 1: (a) BRGD vs. our heuristic running time; (b) Attacker’s attack and sites’ investment distribution on ✏-MSNE

and can output ✏-MSNEs up to ✏ = 0.001. 2 Here, we evalu-
ate our heuristic using IGs randomly generated according to
Table 1 of Chan, Ceyko, and Ortiz (2012).

First we look at the attacker’s behavior at an ✏-MSNE.
We generate a few IG instances and run BRGD until it con-
verges to an ✏-MSNE for ✏ 2 {0.001, 0.002, . . . , 0.009}.
We observe that in a 0.001-MSNE, (1) there is a positive,
almost-deterministic correlation between the probability of
an attack and the utility the attacker obtained from attack-
ing the sites and (2) the attacker always target the sites with
the highest potential utility (i.e., the maximum utility the at-
tacker can get by attacking the sites with probability 1). This
observation is consistent with other IGs and holds across the
different ✏-MSNEs for various ✏ values. Figure 2 shows ev-
idence of this behavior. Indeed, the main take away is that
the attacker tends to favor (or target) sites with highest ex-
pected utility. As observed, the attack seems to have some
distributional form.

In what follows, we assume that the attacker performs
smoothed-best-response based on the addition of an entropic
penalty/smoothing term to the attacker’s utility (Fudenberg
and Levine 1999) leading to a Gibbs-Boltzmann distribu-
tion, with penalty parameter c > 0, as mixed strategy:
y
i

/ exp(U
i

(x
i

,xCh(i)))/c) . The interpretation of c is that
it controls the precision of the attacker and make the util-
ity more distinct. We observe that, as we decrease c, we can
obtain a smaller ✏-MSNE.

This form for the attacker’s mixed strategy y has sev-
eral attractive properties: (1) sites with high utility will have
higher probability of an attack and (2) the respective ex-
pected utility and the probability of an attack are positively
correlated (higher probability of attack implies higher ex-
pected utility gain). We observe these characteristics in our
experiments (Figure 2).

Based on the previous discussion, we propose the follow-
ing heuristic to compute ✏-MSNEs. The heuristic starts by
initializing all of the sites investment level x

i

to 0. It then
updates the probability of attack for each site and increments

2Roughly speaking, BRGD begins by initializing xi and yi

in [0, 1] for all sites i such that
Pn

i=1 yi 1. At each round,
BRGD update xi xi � 10 ⇤ (Mi(1, yi,xPa(i),yPa(i)) �
Mi(0, yi,xPa(i),yPa(i)) and yi yi + 10 ⇤ (Ui(x) � U(x,y)),
where the Mi’s and U functions are normalized to [0, 1].

Figure 2: Internet Game: Attack Distribution

the investment level of the site by a small amount (currently
0.001) for sites that do not satisfy the following condition:
R

i

� y
i

p̂
i

+(1�↵
i

)

P
j2Pa(i) yj(1�x

j

)q̂
ji

. The algorithm
terminates either when all of the sites satisfy the condition
or when it reaches the maximum number of iterations. (See
the supplementary material for details.)

The condition just stated above for site i is the threshold
for i to not invest. A nice property of this is that given the
attacker’s Gibbs-Boltzmann distribution, for any site i, given
the strategies of others, the attack decreases monotonically
with x

i

. As a result, no site has an incentive to increase its
investment to violate the constraint above. Consequently, to
justify the use of the condition in our heuristic in IGs, we
observe that in all of the IGs we generated, the percentage
of the sites at the 0.001-MSNE we obtained that satisfies
the above condition is � 98%. The quality of an ✏-MSNE
obtained by our heuristic depends on the percentage of the
sites that satisfy the condition at an ✏-MSNE. Note that if a
high percentage of the sites do not satisfy the condition at
the ✏-MSNE, we can reverse the heuristic by initializing all
of the sites investment level x

i

to 1 and lower the x
i

’s until
all sites satisfy the opposite constraint.

Evaluation of Heuristic on Internet Games
To evaluate our heuristic, we randomly generated ten IGs
and compare the results to those obtained using BRGD.

Evaluating Our Proposed Heuristic The first question
we address is, what is the relation between the constant c and
the actual approximation quality ✏ achieved in practice? Ta-
ble 1 shows the impact c has on ✏, for the smallest ✏-MSNE

848

Figure 3: Internet Games: BRGD Improvement

we can obtain for an instance of the IGs (others are simi-
lar). Take-home message: ✏ deceases with c. For the remain-
ing of this section, we will fix c = 0.001 when comparing
to BRGD as BRGD cannot find ✏-MSNE beyond 0.0009-
MSNE within 10,000 iterations (1 sec. per iteration).

c smallest ✏
0.05 0.06
0.01 0.008
0.005 0.004
0.001 0.0009

0.0005 0.0006
0.0001 0.0004

Table 1: Selection of the constant c for our heuristic

Comparing Running Time of BRGD and Our Proposed
Heuristic Next we study the time that the ten IG instances
took to converge to an ✏-MSNE using BRGD and our heuris-
tic. We consider the running time in terms of the number
of iterations the algorithm takes to achieve a particular ✏-
MSNE. Each iteration is roughly 1 sec. for both BRGD and
our heuristic. Figure 1(a) shows that the running time of
our heuristic is considerably faster than BRGD. The rate
at which the number of iterations increases as ✏ decreases
seems extreme for our heuristic—it is almost constant!—
relative to that for BRGD. Not only is our heuristic faster
than BRGD but it can also find better ✏-MSNE with smaller
✏.

As an application, we could run our heuristic until it
reaches an ✏-MSNE or converges. Then use the output of
our ✏-MSNE to initialize BRGD. Figure 3 shows the relative
improvement over our heuristic on some IGs. It improves
our 0.001/0.0009-MSNE to 0.0006-MSNE.

Attacker and Sites’ Equilibrium Behavior We study
whether the same equilibrium behavior by the attacker and
sites that Chan, Ceyko, and Ortiz (2012) present in their Fig-
ure 3 continues as we lower ✏. The following results are a
direct output of our heuristic. Figure 1(b) shows the attack
distribution (left) and the investment distribution (right) at ✏-
MSNEs, for different ✏ values, on an IG instance. Our results
are consistent with those of Chan, Ceyko, and Ortiz (2012),
and persist for lower ✏ values. We see that as ✏ decreases,
the attacker targets more sites while lowering the probabil-
ity of the direct attack, and more sites move from not invest
to partially invest.

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9
ε−MSNE (× 10−3)

Av
er

ag
e

In
D

eg
re

e

Internet Games: Average InDegree of Targeted Sites

Student Version of MATLAB

0.5

1

1.5

2

0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9
ε−MSNE (× 10−3)

Av
er

ag
e

O
ut

De
gr

ee

Internet Games: Average OutDegree of Targeted Sites

Student Version of MATLAB

Figure 4: Internet Games: average indegree (top) and aver-
age outdegree (bottom) of the targeted sites over ✏-MSNE

Network Structure of an Attack Next, we present ex-
perimental results on the average indegree and outdegree of
the targeted sites at ✏-MSNEs to understand the “network
structure of the attack” as in Chan, Ceyko, and Ortiz (2012).
Figure 4 shows exactly this. To summarize our experimen-
tal results, we can clearly observe that as ✏ decreases both
the average indegree and outdegree increase. The results for
lower ✏ values indicate the average indegree and outdegree
are stabilizing and converging as ✏ decreases. This is also
consistent with the observations made by Chan, Ceyko, and
Ortiz (2012). This consistency also adds evidence to the ef-
fectiveness of our proposed heuristic for very low ✏ values.

Conclusion and Open Problem

We study the problem of computing an ✏-MSNE in IDD
games. We show that determining whether an attacker’s
strategy can be a part of a MSNE is unlikely to have an effi-
cient algorithm. However, there is an FPTAS to compute an
✏-MSNE when the underlying game-graph is a directed tree.
For general IDD games, we construct a heuristic that com-
putes ✏-MSNEs in IGs effectively and efficiently. An open
problem is to show that computing an MSNE in IDD games
is PPAD-hard. Generalizing the FPTAS for DT to directed
acyclic graphs of bounded-width of some kind is also open.

Acknowledgements

This material is based upon work supported by an NSF
Graduate Research Fellowship (first author) and an NSF
CAREER Award IIS-1054541 (second author).

849

References
Agiwal, S., and Mohtadi, H. 2008. Risk mitigating strategies
in the food supply chain. American Agricultural Economics
Assocation (Annual Meeting).
Chan, H.; Ceyko, M.; and Ortiz, L. E. 2012. Interdependent
defense games: Modeling interdependent security under de-
liberate attacks. In de Freitas, N., and Murphy, K. P., eds.,
UAI, 152–162. AUAI Press.
Chen, X.; Deng, X.; and Teng, S.-H. 2009. Settling the com-
plexity of computing two-player Nash equilibria. J. ACM
56(3):14:1–14:57.
Daskalakis, C.; Goldberg, P. W.; and Papadimitriou, C. H.
2006. The complexity of computing a Nash equilibrium. In
Proceedings of the Thirty-eighth Annual ACM Symposium
on Theory of Computing, STOC ’06, 71–78. New York, NY,
USA: ACM.
Elkind, E.; Goldberg, L. A.; and Goldberg, P. 2006. Nash
equilibria in graphical games on trees revisited. In Proceed-
ings of the 7th ACM Conference on Electronic Commerce,
EC ’06, 100–109. New York, NY, USA: ACM.
Fudenberg, D., and Levine, D. K. 1998. The Theory of
Learning in Games, volume 1 of MIT Press Books. The
MIT Press.
Fudenberg, D., and Levine, D. 1999. The Theory of Learn-
ing in Games. MIT Press.
Fudenberg, D., and Tirole, J. 1991. Game Theory. The MIT
Press.
Garey, M., and Johnson, D. 1979. Computers and In-
tractability: A Guide to the Theory of NP-completeness.
Freeman.
Heal, G., and Kunreuther, H. 2005. IDS models of airline
security. Journal of Conflict Resolution 49(2):201–217.
Johnson, B.; Grossklags, J.; Christin, N.; and Chuang, J.
2010. Uncertainty in interdependent security games. In
Proceedings of the First International Conference on Deci-
sion and Game Theory for Security, GameSec’10, 234–244.
Berlin, Heidelberg: Springer-Verlag.
Kearns, M., and Ortiz, L. E. 2004. Algorithms for interde-
pendent security games. In In Advances in Neural Informa-
tion Processing Systems. MIT Press.
Kearns, M. J.; Littman, M. L.; and Singh, S. P. 2001. Graph-
ical models for game theory. In UAI ’01: Proceedings of
the 17th Conference in Uncertainty in Artificial Intelligence,
253–260. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc.
Kunreuther, H., and Heal, G. 2003. Interdependent security.
Journal of Risk and Uncertainty 26(2-3):231–249.
Laszka, A.; Felegyhazi, M.; and Buttyan, L. 2014. A survey
of interdependent information security games. ACM Com-
put. Surv. 47(2):23:1–23:38.
Nash, J. F. 1950. Equilibrium points in n-person games.
In Proceedings of the National Academy of Sciences of the
United States of America, volume 36, 48–49.
Nisan, N.; Roughgarden, T.; Éva Tardos; and Vazirani, V. V.,

eds. 2007. Algorithmic Game Theory. Cambridge Univer-
sity Press.
Ortiz, L. E. 2014. On sparse discretization for graphical
games. arXiv:1411.3320 [cs.AI].
Shavitt, Y., and Shir, E. 2005. DIMES: Let the Internet
measure itself. ACM SIGCOMM Computer Communication
Review 35(5):71–74.
Shoham, Y., and Leyton-Brown, K. 2009. Multiagent Sys-
tems: Algorithmic, Game-Theoretic, and Logical Founda-
tions. Cambridge, UK: Cambridge University Press.

850

