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Abstract

Stackelberg equilibrium is a solution concept prescribing for
a player an optimal strategy to commit to, assuming the op-
ponent knows this commitment and plays the best response.
Although this solution concept is a cornerstone of many se-
curity applications, the existing works typically do not con-
sider situations where the players can observe and react to
the actions of the opponent during the course of the game.
We extend the existing algorithmic work to extensive-form
games and introduce novel algorithm for computing Stackel-
berg equilibria that exploits the compact sequence-form rep-
resentation of strategies. Our algorithm reduces the size of the
linear programs from exponential in the baseline approach to
linear in the size of the game tree. Experimental evaluation
on randomly generated games and a security-inspired search
game demonstrates significant improvement in the scalability
compared to the baseline approach.

Introduction
Solving games and computing game-theoretic solutions is
one of the key topics of artificial intelligence. The best
known solution concepts in game theory is Nash equilibrium
that prescribes optimal strategy profile (one strategy for each
player) such that no player can gain anything by unilaterally
changing their strategy. However, a line of research that an-
alyzes two-player games where the first player (termed the
leader) is able to commit to a publicly known strategy before
the other player (termed the follower) moves has received
a significant focus in recent years. This solution concept is
known as Stackelberg (or leader-follower) equilibrium (von
Stackelberg 1934; Leitmann 1978; von Stengel and Zamir
2004) and it is a cornerstone of many security applications
of game theory. The examples include airport security (Pita
et al. 2008), assigning Air Marshals to flights (Tsai et al.
2009), or protecting the coast (Shieh et al. 2012).

Most of the existing applications of Stackelberg equilibria
(SE) typically focus on single-step normal-form or Bayesian
games where the players do not learn anything during the
course of the game – the players are not able to observe
the actions performed by the opponent and cannot react to
this information. Such an assumption can be too strong in
practice, since conditioning the strategies of the players by
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the current development in the game can be desirable (e.g.,
security procedures based on a suspicious behavior). Game
theory provides representation for modeling finite sequential
interactions between the players known as extensive-form
games (EFGs). This model is sufficiently generic to repre-
sent uncertainty in observation (i.e., players are not able to
perfectly observe the current state of the game), or stochastic
environment.

The problem of computing SE in EFGs has been studied
from the computational perspective and it was shown that
computing SE in extensive-form games with imperfect in-
formation and stochastic events is NP-hard (Letchford and
Conitzer 2010). However, a tailored algorithm for comput-
ing an exact SE in EFGs is currently missing. A baseline ap-
proach is thus to transform an EFG to a single step normal-
form game and use one of the existing approaches based
on computing multiple linear programs (LPs) (Conitzer and
Sandholm 2006), or formulating the problem as a mixed-
integer linear program (MILP) (Paruchuri et al. 2008). This
transformation is, however, exponential and we show that
the scalability of the baseline approach is very limited.

This paper aims to address this issue and provides the first
specific algorithm for computing SE in two player EFGs.
Our approach exploits the compact representation of strate-
gies known as the sequence form (Koller, Megiddo, and von
Stengel 1996; von Stengel 1996). We generalize two exist-
ing algorithms for computing SE in single-step games and
introduce two variants of our novel algorithm: (1) based on
solving multiple LPs, and (2) based on reformulating the
problem as a MILP. Moreover, the size of our MILP is linear
in the size of the game, and it contains only binary integer
variables; hence, it provides an upper bound on the com-
putational complexity of the problem of computing SE and
shows that it is an NP-complete problem (Karp 1971).

We first give necessary technical background on EFGs,
Nash and Stackelberg solution concepts, following by the
description of the existing algorithms for computing each
of these concepts. Next, we describe our novel algorithm
that exploits the sequence form for computing SE in EFGs.
Finally, we experimentally demonstrate the scalability of
our algorithm on randomly generated games and a security-
inspired search game. The results show that our MILP al-
gorithm is significantly faster and can solve games several
magnitudes larger compared to the baseline approach.
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Technical Background
Extensive-form games (EFGs) model sequential interactions
between the players and can be visually represented as game
trees. Nodes in the game tree represent the states of the
game; each state of the game corresponds to a sequence of
moves executed by all players in the game. Each node is as-
signed to a player that acts in the game state associated with
this node. An edge from a node corresponds to an action that
can be performed by the player who acts in this node. EFGs
model limited observations of the players by grouping cer-
tain nodes into information sets; a player cannot distinguish
between nodes that belong to the same information set. The
model also represents uncertainty about the environment and
stochastic events by using a special Nature player.

Formally, a two-player EFG is defined as a tuple G =
(N,H,Z,A, ρ, u, C, I): N = {1, 2} is a set of two players;
we use i to refer to one of the two players (either 1 or 2),
and−i to refer to the opponent of i.H denotes a finite set of
nodes in the game tree. Each node corresponds to a unique
history of actions taken by all players and Nature from the
root of the game; hence, we use the terms history and node
interchangeably. We denote byZ ⊆ H the set of all terminal
nodes of the game. A denotes the set of all actions and we
overload the notation and use A(h) ⊆ A to represent the set
of actions available to the player acting in node h ∈ H . We
specify ha = h′ ∈ H to be node h′ reached from node h by
performing action a ∈ A(h). For each terminal node z ∈ Z
we define a utility function for each player i (ui : Z → R).

The function ρ : H → N ∪ {c} assigns each node to
a player who takes an action in the node, where c means
that the Nature player selects an action in the node based on
a fixed probability distribution known to all players. We use
function C : H → [0, 1] to denote the probability of reaching
node h due to Nature (i.e., assuming that both players play
all required actions to reach node h). The value of C(h) is
defined to be the product of the probabilities assigned to all
actions taken by the Nature player in history h.

Imperfect observation of player i is modeled via infor-
mation sets Ii that form a partition over the nodes assigned
to player i {h ∈ H : ρ(h) = i}. Every information set
contains at least one node and each node belongs to exactly
one information set. Nodes in an information set of a player
are not distinguishable to the player. All nodes h in a sin-
gle information set Ii ∈ Ii have the same set of possible
actions A(h); hence, an action a from A(h) uniquely identi-
fies information set Ii and there cannot exist any other node
h′ ∈ H that does not belong to information set Ii and for
which a is allowed to be played (i.e., a ∈ A(h′)). We over-
load the notation and use A(Ii) to denote the set of actions
defined for each node h in this information set. We assume
perfect recall, which means that players perfectly remem-
ber their own actions and all information gained during the
course of the game. As a consequence, all nodes in any in-
formation set Ii have the same history of actions for player i.

Strategies and Solution Concepts in EFGs
Solving a game implies finding a strategy profile (i.e., one
strategy for each player) that satisfies conditions given by

a specific solution concept. Pure strategies (denoted as Πi)
correspond to assignments of exactly one action for each in-
formation set. A mixed strategy is a probability distribution
over the set of all pure strategies of a player. We denote by
∆i the set of all mixed strategies of player i. For any pair of
strategies δ ∈ ∆ = (∆1,∆2) we use ui(δ) = ui(δi, δ−i) for
the expected outcome of the game for player i when players
follow strategies δ. A best response of player i to the oppo-
nent’s strategy δ−i is a strategy δBRi = BRi(δ−i), for which
ui(δ

BR
i , δ−i) ≥ ui(δ′i, δ−i) for all strategies δ′i ∈ ∆i.

Nash equilibrium (NE) is the best known solution concept
in game theory and it describes the behavior of agents under
certain assumptions about their rationality. In a Nash equi-
librium, every player plays a best response to the strategies
of the other players. Formally, a strategy profile δ = (δ1, δ2)
is a NE if and only if for each player i it holds that δi is a
best response to δ−i (i.e., ∀i ∈ N δi = BRi(δ−i)).

In the Stackelberg setting, the first player commits to a
certain strategy δ1 that is observed by the second player
that plays a pure best response π2 to this strategy (π2 =
BR2(δ1)). Two strategies (δ1, π2) are in a Stackelberg equi-
librium (SE) if π2 = BR2(δ1) and the expected utility of
the leader is maximal (i.e., ∀δ′1 ∈ ∆1,∀π′2 ∈ Π2 such that
π′2 = BR2(δ′1) it holds u1(δ1, π2) ≥ u1(δ′1, π

′
2)). In case

player 2 has multiple possible best response strategies, we
assume the ties are broken in favor of player 1. This as-
sumption is common in the literature and the equilibrium
is called Strong Stackelberg Equilibrium (SSE) (Leitmann
1978; Conitzer and Sandholm 2006; Paruchuri et al. 2008;
Yin et al. 2010).

Sequence-Form and Computing NE in EFGs
Strategies in EFGs with perfect recall can be compactly rep-
resented by using the notion of sequences (Koller, Megiddo,
and von Stengel 1996; von Stengel 1996). A sequence σi is
an ordered list of actions taken by a single player i in history
h. The number of actions (i.e., the length of sequence σi) is
denoted as |σi|, the empty sequence (i.e., a sequence with
no actions) is denoted as ∅. The set of all possible sequences
for player i is denoted by Σi. A sequence σi ∈ Σi can be
extended by a single action a taken by player i, denoted by
σia = σ′i. In games with perfect recall, all nodes in an infor-
mation set Ii share the same sequence of actions for player
i and we use seqi(Ii) to denote this sequence. We overload
the notation and use seqi(h) to denote the sequence of ac-
tions of player i leading to node h. Since action a uniquely
identifies information set Ii and all nodes in an information
set share the same history, each sequence uniquely identifies
an information set. We use the function infi(σ′i) to denote
the information set in which the last action of the sequence
σ′i is taken. For an empty sequence, function infi(∅) denotes
the information set of the root node. A mixed strategy of a
player can now be represented as a probability distribution
over the sequences and it is called a realization plan (de-
noted ri : Σi → R). A realization plan for a sequence σi
is the probability that player i will play this sequence of ac-
tions under the assumption that the opponent plays in a way
which allows the actions specified in σi to be played.

806



When the strategies are represented as realization plans,
we can compute a Nash equilibrium of a two-player general-
sum extensive-form game using a linear complimentary pro-
gram (LCP) of a polynomial size in the size of the game tree
using the sequence form (Koller, Megiddo, and von Stengel
1996; von Stengel 1996). To describe the program we need
to define payoff function gi : Σ→ R that extends the utility
function to all nodes in the game tree. The payoff function
gi represents the expected utility of all nodes reachable by
sequentially executing the actions specified in a pair of se-
quences σ:

gi(σi, σ−i) =
∑

h∈Z : ∀j∈N σj=seqj(h)

ui(h) · C(h) (1)

The value of the payoff function is defined to be 0 if no leaf
is reachable by sequentially executing all of the actions in
the sequences σ – i.e., either all actions from the pair of se-
quences σ are executed and an inner node h ∈ H \ Z is
reached, or there is no further action that can be executed
from a node that is reached during the execution of the se-
quences. We say that a pair of sequences σ is compatible if
there exists a node h ∈ H such that sequence σi of every
player i equals to seqi(h). Now, the equilibrium realization
plans can be computed using the following feasibility LCP
(e.g., see (Shoham and Leyton-Brown 2009) p. 135):

vinfi(σi) = sσi +
∑

I′i∈Ii:seqi(I
′
i)=σi

vI′i +
∑

σ−i∈Σ−i

gi(σi, σ−i) · r−i(σ−i)

∀i ∈ N ∀σi ∈ Σi
(2)

ri(∅) = 1 ∀i ∈ N (3)

ri(σi) =
∑

a∈A(Ii)

ri(σia) ∀i ∈ N ∀Ii ∈ Ii, σi = seqi(Ii) (4)

0 = ri(σi) · sσi ∀i ∈ N ∀σi ∈ Σi (5)
0 ≤ ri(σi) ; 0 ≤ sσi ∀i ∈ N ∀σi ∈ Σi (6)

Constraints (2) ensure that the expected value vIi in each
information set of player i equals to the value of the best
response in this information set for player i against the strat-
egy of the opponent −i (i.e., for each action applicable in
information set Ii, vIi is greater than sum of all expected
values of information sets and leafs reachable after playing
an action in this information set). Note that in our formu-
lation we represent the inequality as an equality with slack
variables sσi ; there is one positive slack variable for each
sequence of each player σi. We use this representation as
it would be convenient for our novel algorithms to operate
with these constraints by using the slack variables.

Constraints (3-4) ensure that the realization plans of both
players satisfy the network-flow constraints: the probability
of reaching information set Ii using sequence σi = seqi(Ii)
must be equal to the sum of probabilities of sequences ex-
tended by actions a defined in Ii (a ∈ A(Ii)).

Finally, there are complementary slackness conditions
(constraints (5)) stating that a sequence σi is either never
played (i.e., ri(σi) = 0) or slack variable sσi = 0, which en-
sures that sequence σi is part of the best response for player i
ensured by the constraint (2).

Existing Algorithms for Computing SSE

We now focus on the Stackelberg setting and fix the roles
of the two players. Player 1 is the leader that commits to a
strategy. Player 2 is the follower that plays the best response
to the strategy of the leader. The baseline algorithm for com-
puting SSE in single-step normal-form games (NFGs), intro-
duced by (Conitzer and Sandholm 2006), is based on solv-
ing multiple linear programs – for every pure strategy of
the follower π2 ∈ Π2 we can compute a mixed strategy for
the leader δπ2

1 such that (1) playing π2 is the best response
of the follower against δπ2

1 (i.e., BR2(δπ2
1 ) = π2) and (2)

δπ2
1 is such that it maximizes expected utility of the leader.

Such a mixed strategy δπ2
1 can be found using linear pro-

gram; hence, the baseline algorithm calculates |Π2| linear
programs, and for each pure strategy of the leader the al-
gorithm computes δπ2

1 and the expected utility of the leader
u1(δπ2

1 , π2). Finally the algorithm selects such strategy pro-
file (δ

π∗2
1 , π∗2) for which the expected utility u1 is maximal.

Often, certain pure strategies of the follower can never be
best responses (e.g., strictly dominated strategies), in which
case the LPs for these pure strategies are not feasible.

Follow-up works primarily focused on the Bayesian set-
ting, where the leader is playing against one of pos-
sible followers with different preferences. Although the
work (Conitzer and Sandholm 2006) showed that finding
SSE in Bayesian games is NP-hard, new algorithms were
able to scale to real-world scenarios. First successful al-
gorithm was based on mixed-integer linear programming
(MILP) introduced in (Paruchuri et al. 2008). The main ad-
vantage of the MILP formulation is in avoiding the expo-
nential Harsanyi transformation of a Bayesian game into a
normal-form game. New algorithms that followed were in-
spired by column/constraint generation techniques that re-
strict the number of linear programs to be solved in multiple
LPs approach exploiting hierarchical consideration of the
types of the follower (Jain, Tambe, and Kiekintveld 2011),
and more tight calculation of bounds by using convex hull
relaxation and Bender’s decomposition in (Yin and Tambe
2012). Large volume of works focused on more specific
game models including security games (Kiekintveld et al.
2009; Tambe 2011), or patrolling games (Basilico, Gatti, and
Amigoni 2009; Vorobeychik, An, and Tambe 2012).

Described baseline algorithms could be, in principle, ap-
plied also for solving EFGs – we can transform any EFG into
a NFG using the concept of pure and mixed strategies. How-
ever, since the number of pure strategies is exponential, the
baseline algorithm would have to solve exponentially many
LPs (one LP for each pure strategy of the follower). More-
over, to ensure that the currently fixed strategy of the fol-
lower is the best response, each LP would be of an exponen-
tial size (exponentially many constraints, one constraint for
each pure strategy of the follower). Therefore, the scalability
of such approach is very limited.

In the next section we therefore introduce a new algorithm
that builds on the existing algorithms for computing SSE,
however, that directly exploits the compact representation
of strategies using the sequence form.
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Sequence-Form for SSE in EFGs
We first describe the modification of the baseline algorithm
for computing Strong Stackelberg Equilibrium (SSE) based
on solving multiple LPs. We introduce a novel LP that for
a fixed pure strategy of the follower π2 computes a mixed
strategy δ1 satisfying 2 conditions required for the SSE: (1)
π2 is the best response to δ1 and (2) δ1 is such that the ex-
pected utility for the leader is maximal. Afterwards we ex-
tend this LP and formulate a MILP for computing SSE in
EFGs. For each algorithm, we first describe the key ideas
leading to the formulation, following by the complete listing
of all the constraints of the mathematical programs.

Multiple Sequence-Form LPs for SSE
Our algorithm exploits the compact sequence form and rep-
resents the strategy of both players as realization plans. First,
the realization plan of the leader r1 needs to satisfy the
network-flow constraints (3-4). Next, let us denote ΣBR2 se-
quences of the follower that correspond to the pure realiza-
tion plan of the follower (i.e., the sequences that are played
with probability 1 in the fixed pure realization plan of the
follower π2). The algorithm needs to ensure that the realiza-
tion plan of the leader is such that the sequences in ΣBR2 are
the best response to r1. To do this, the algorithm exploits the
constraint (2); there will be one such constraint for each se-
quence of the follower σ2 ∈ Σ2. To ensure that sequences
from ΣBR2 form the best response, we strictly set slack vari-
ables sσ2

to be equal to zero for sequences in ΣBR2 . Such
tightening of the slack variables causes the expected utility
value for a certain information set to be equal to the expected
utility gained by playing actions corresponding to sequences
in ΣBR2 . More precisely, consider a sequence σ2 ∈ ΣBR2 ,
where the last action of the sequence, a, is applicable in
information set I = inf2(σ2) (i.e., ∃σ′2 ∈ ΣBR2 such that
σ2 = σ′2a). Now, if a slack variable sσ2 is forced to be zero,
then it holds

vI =
∑

I′2∈I2:seq2(I′2)=σ2

vI′2 +
∑
σ1∈Σ1

g2(σ2, σ1) · r1(σ1) (7)

For any other action applicable in I (i.e., ∀b ∈ A(I) a 6= b)
the constraints for sequences σ′2b have a positive slack vari-
able. Therefore, the realization plan of the leader r1 must
be such that the expected value of the right side in this con-
straint gained by actions b must be less or equal to vI be-
cause the expected value of the right side of the constraint
can be only increased with a positive slack variable. This
restriction, however, corresponds to the fact that action a is
best to be played in information set I . Since this holds for
all sequences in ΣBR2 and these sequences correspond to a
pure realization plan for the follower, the instantiations of
constraints (2) restrict the strategy of the leader r1 such that
ΣBR2 is the best response of the follower.

Finally, we need to specify the objective function. Since
we have variables representing the realization plan of the
leader r1 and fixed set of sequences of the opponent ΣBR2 ,
we can simply calculate an expected utility for the leader
using function g1 only for the sequences in ΣBR2 . We thus
arrive to the final formulation of the linear program for com-
puting the desired realization plan for the leader:

max
r1,vI ,sσ

∑
σ1∈Σ1

∑
σ2∈ΣBR2

r1(σ1)g1(σ1, σ2) (8)

vinf2(σ2) = sσ2 +
∑

I′∈I2:seq2(I′)=σ2

vI′ +
∑
σ1∈Σ1

r1(σ1)g2(σ1, σ2)

∀σ2 ∈ Σ2

(9)

r1(∅) = 1 (10)
0 ≤ r1(σ1) ∀σ1 ∈ Σ1 (11)

r1(σ1) =
∑

a∈A(I1)

r1(σ1a) ∀I1 ∈ I1, σ1 = seq1(I1) (12)

0 ≤ sσ2 ∀σ2 ∈ Σ2 (13)

0 = sσ2 ∀σ2 ∈ ΣBR2 (14)

Note that the sequences in ΣBR2 must form a complete
pure realization plan of the follower; hence, the set must
be non-empty (empty sequence is always in ΣBR2 ) and ev-
ery sequence in ΣBR2 must also have a continuation se-
quence in ΣBR2 if possible. Formally, if there is a sequence
σ2 ∈ ΣBR2 and there exists an information set I ∈ I2

such that seq2(I) = σ2 then there must exist exactly one
sequence σ′2 ∈ ΣBR2 such that inf2(σ′2) = I . This con-
dition ensures that for every information set reachable un-
der the assumption the follower is playing realization plan
corresponding to ΣBR2 , there is at least one slack variable
forced to be zero. Violating this condition causes the LP to
return incorrect results since values vI could be arbitrarily
increased using slack variables without restricting the real-
ization plan of the leader.

By exploiting the sequence-form representation we
avoided the exponential number of constraints. Instead of
having one constraint for each possible strategy (to ensure
that currently selected is the best response), we have a single
constraint for each sequence of the follower. The presented
LP is thus of a linear size to the size of the game tree. How-
ever, the algorithm would still need to solve exponentially
many of such LPs (one for each pure realization plan of the
follower) to compute SSE. To further improve the algorithm,
we can exploit the reformulation using mixed-integer linear
programming (MILP).

Sequence-Form MILP for Computing SSE
Similarly to work in Bayesian games (Paruchuri et al. 2008),
we can reformulate the problem of solving Stackelberg equi-
librium as a MILP. Since the best response of the follower
is only in pure strategies, we can represent the strategy of
the follower as a pure realization plan with binary variables
r2 : Σ2 → {0, 1}. The realization plans are restricted as
usual and the network-flow constraints (3-4) apply. We again
use the same idea of enforcing certain slack variables sσ2 to
be equal to zero for the sequences used in the realization plan
of the follower. However, since the realization plan of the
follower is not fixed but it is represented with variables r2,
we need to force slack variables sσ2

= 0 whenever r2(σ2)
equals to 1. Since r2 are binary variables, we can use the
following constraint to ensure this:

0 ≤ sσ2
≤ (1− r2(σ2)) ·M (15)
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where M is a large constant. Now, using the constraint (9)
we restrict variables r1 and r2 such that r2 = BR2(r1).

Finally, we need to modify the objective function, since
the strategy of the follower is no longer fixed. The main idea
is to use a new variable p that semantically corresponds to
the probability distribution over leafs in the game tree con-
sidered the strategy of both players. Such a probability cor-
responds to a multiplication of variables r1 and r2. However,
since the r2 are binary variables we do not need to use mul-
tiplication. Consider a leaf z ∈ Z and assume sequences σ1

and σ2 lead to this leaf for the leader and the follower re-
spectively (i.e., by executing the actions in these sequences,
leaf z is reached). Then, the value p(z) is either equal to
r1(σ1) (when the follower plays σ2 with probability 1), or it
is equal to 0 otherwise (the follower is not playing σ2). We
can ensure this behavior with a set of linear constraints (see
below, constraints (21-23)). Putting all together, we arrive to
the formulation of the problem of computing SSE for EFGs
as a MILP (note, that the presented MILP has linear size to
the size of the game tree, with only |Σ2| binary variables):

max
p,r,v,s

∑
z∈Z

p(z)u1(z)C(z) (16)

vinf2(σ2) = sσ2 +
∑

I′∈I2:seq2(I′)=σ2

vI′ +
∑
σ1∈Σ1

r1(σ1)g2(σ1, σ2)

∀σ2 ∈ Σ2

(17)

ri(∅) = 1 ∀i ∈ N (18)

ri(σi) =
∑

a∈Ai(Ii)

ri(σia) ∀i ∈ N ∀Ii ∈ Ii, σi = seqi(Ii)

(19)

0 ≤ sσ2 ≤ (1− r2(σ2)) ·M ∀σ2 ∈ Σ2 (20)
0 ≤ p(z) ≤ r2(seq2(z)) ∀z ∈ Z (21)
0 ≤ p(z) ≤ r1(seq1(z)) ∀z ∈ Z (22)

1 =
∑
z∈Z

p(z) (23)

r2(σ2) ∈ {0, 1} ∀σ2 ∈ Σ2 (24)
0 ≤ r1(σ1) ≤ 1 ∀σ1 ∈ Σ1 (25)

Experiments
We now turn to the experimental evaluation to demonstrate
the scalability of our algorithm. We evaluate both variants
of our algorithm – first variant with multiple LPs (denoted
MULTILP), and the second variant with MILP – against the
baseline approaches based on the transformation of EFGs
into the normal form, denoted as EXPMULTILP (Conitzer
and Sandholm 2006) and DOBBS (Paruchuri et al. 2008).

The main factor determining the complexity of the game
is the size of the strategy space of the follower, since it plays
a crucial part in the algorithms – one LP is solved for each
pure realization plan of the follower in MULTILP, and the
number of binary variables depends on the number of se-
quences of the follower in MILP. We analyze the scalability
of the algorithms in two different settings: (1) a security-
inspired search game (inspired by (Bosansky et al. 2013))
with a very large strategy space of the leader, while the strat-
egy space of the follower is very small, and (2) randomly

generated extensive-form games. While the first scenario al-
lows us to scale to large game trees, the strategy space is
more balanced in the second scenario and we analyze the
scalability with respect to the increasing number of realiza-
tion plans of the follower.

Experiment Settings
We use a domain-independent implementation of all algo-
rithms and IBM CPLEX 12.5 for solving LPs and MILPs.

Search Game The search game is played on a directed
graph (see Figure 1). The follower aims to reach one of the
destination nodes (D1 – D3) from starting node (E), while
the leader aims to encounter the follower with one of the two
units operating in the shaded areas of the graph (P1 and P2).
The follower receives different reward for reaching differ-
ent destination node (the reward is randomly selected from
interval [1, 2]). The leader receives positive reward 1 for cap-
turing the follower. The follower leaves tracks in the visited
nodes that can be discovered if the leader visits the node later
in the game, but the follower can decide to erase the tracks
in the current node (it takes one turn of the game).

Randomly Generated Games We use randomly gener-
ated games, where in each state of the game the number of
available actions is randomly generated up to a given pa-
rameter {2, . . . ,maxA}. Each action leads to a state where
the opponent is to move and also generates an observation
for the opponent. Observation is a number from a limited
set {1, . . . ,maxO} and determines partitioning of the nodes
into the information sets – for player i, the nodes h with the
same history of moves seqi(h) and the observations gener-
ated by the actions of the opponent −i belong to the same
information set. We generate the games of differing sizes by
varying parameters maxA = {3, 4, 5}, maxO = {2, 3, 4},
and depth of the game (up to 5 actions for each player). The
utility values for players in leafs are assigned randomly from
interval [−5, 5]. Finally, we are also interested in the effects
of the correlation between the utility values on the perfor-
mance of the algorithms (i.e., the utility values are gener-
ated to have a certain correlation factor; correlation −1 cor-
responds to zero-sum games, 1 to identical utility functions).

Results
Search Game The results on the search game (see the table
in Figure 1) show that our algorithm outperforms the base-
line approaches by several orders of magnitude. We scale
the game by increasing the number of steps in the game. All
algorithms were able to find the solution for 5 steps – it took
EXPMULTILP more than 2 hours to compute the solution,
while our MILP solved the game in slightly over 11 min-
utes. Making another step was possible only for our MILP
that solved the largest instance in 6.3 hours. The size of this
instance was 8.6×105 nodes with 470 pure realization plans
of the follower. This results demonstrate the ability of using
our MILP algorithm in sequential security scenarios where
a large strategy space of the leader, caused by deploying and
scheduling multiple resources, is more common.

Randomly Generated Games The results on random
games confirm the dominance of our algorithm (see Fig-
ure 2). The left graph compares computation times of our
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Algs \ Steps 4 5 6
EXPMULTILP 89 7,764 -
DOBBS 122 3,067 -
MULTILP 41 2,485 -
MILP 19 676 22,847

Figure 1: (Left) Graph for the search game, where the leader
operates two units in the shaded areas, while the follower
is planning to cross the area unobserved. (Right) Computa-
tion times (in seconds) for the search game with increasing
number of steps in the game.

variants with the baseline approaches. Reported values are
means out of 20 games, the standard error was always very
small compared to the mean value and the differences be-
tween the algorithms (not visible in the graph). The results
show that even a slight increase in the number of realization
plans causes the baseline approaches to perform extremely
slowly (note the logarithmic y-scale). Even relatively small
games with 4000 realization plans of the follower take EXP-
MULTILP more than 80 minutes to solve, while our MILP
solves such games in 225 miliseconds.

Therefore we further scaled the games comparing only
our variants (the right graph in Figure 2, note that both scales
are logarithmic). The depicted results are means of at least
100 different games, the standard error was again marginal.
The results show that MILP is on average at least a magni-
tude faster compared to the MULTILP variant. The largest
instances MILP was able to solve contained more than 107

realization plans of the follower taking up to 2 days to solve.
The reported results are for the correlation factor set to

−0.5. When the correlation factor is decreased, it is more
difficult for the leader to maximize the utility, which is
strongly (but not absolutely) negatively correlated to the util-
ity of the follower. With the correlation set to−0.8 the com-
putation time of our MILP increases to 410ms for 4000 re-
alization plans. On the other hand, increasing the correlation
factor makes the games easier to solve (games with the cor-
relation set to −0.2 are solved in 193ms by our MILP).

Discussion
The experimental evaluation shows that our novel algorithm
dramatically outperforms the baseline approaches based on
the transformation of EFGs into the normal form. This ad-
vantage is not surprising, however, the experiments show
that our MILP algorithm is able to scale to moderately large
sequential games with up to 105 nodes, or more than 106

pure realization plans of the follower, which can be suffi-
cient for some real-world scenarios.

The comparison between the two variants of our algo-
rithm is strongly in favor of the MILP variant. The bottle-
neck of the MULTILP variant is the evaluation of each LP
for every pure realization plan of the follower, since the
algorithm currently does not use any pruning techniques,
or any iterative methods (e.g., branch-and-price or col-
umn/constraint generation methods). Using such techniques
is, however, the key behind the success of the state-of-the-
art algorithms for solving Bayesian Stackelberg games (Jain,
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Figure 2: Comparison of the scalability of the exponential
baseline approaches and the variants of our algorithm.

Tambe, and Kiekintveld 2011; Yin and Tambe 2012). Un-
fortunately, exploiting the same principles in EFGs is not
straightforward due to a substantially different reason for the
exponential number of the strategies of the follower.

The main challenge stems from computing an upper
bound on the Stackelberg value for a partially instantiated
strategy of the follower (the lower bound is provided by
solving a LP for any complete strategy of the follower). Re-
call that described LPs do not work if the strategy of the
follower is not a complete realization plan. In the Bayesian
setting, a partially instantiated strategy of the follower corre-
sponds to fixing the strategy for certain types of the follower.
This provides a reasonable upper bound, since the remaining
unfixed follower types can alter the value only with respect
of their probability of appearing. The situation is different
in EFGs. Partially fixing the strategy of the follower only
restricts the achievable leafs in the game tree, but without
further assumptions on the utility structure it does not re-
strict the possible Stackelberg value for the leader in gen-
eral. A naı̈ve upper bound, the best response of the leader,
provides a very optimistic upper bound that does not im-
prove the computation times of MULTILP enhanced with a
branch-and-bound technique.

Conclusion
This paper presents a novel algorithm for computing Strong
Stackelberg equilibria in extensive-form games (EFGs) by
exploiting the compact sequence-form representation of
strategies. We provide two formulations of our algorithm:
one based on solving multiple linear programs (LPs), and
one based on mixed-integer linear program. Our novel algo-
rithm dramatically outperforms existing approaches based
on the exponential transformation of EFGs into the normal
form and allow us to solve significantly larger games.

Our work opens two important lines of research. First
of all, the presented algorithm can be a basis for creating
domain-dependent algorithms to solve large games, for ex-
ample in the security domain. Second, our variant based on
solving multiple LPs can be further improved by using it-
erative and decomposition techniques. To allow this, a new
(or domain-specific) algorithm for computing a tight upper
bound on the Stackelberg value in EFGs based on a partially
instantiated strategy of the follower must be designed.
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