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Abstract

We propose a novel representation for coalitional games
with externalities, called Partition Decision Trees. This
representation is based on rooted directed trees, where
non-leaf nodes are labelled with agents’ names, leaf
nodes are labelled with payoff vectors, and edges indi-
cate membership of agents in coalitions. We show that
this representation is fully expressive, and for certain
classes of games significantly more concise than an ex-
tensive representation. Most importantly, Partition De-
cision Trees are the first formalism in the literature un-
der which most of the direct extensions of the Shapley
value to games with externalities can be computed in
polynomial time.

Introduction
Many models of coalitional games considered in the com-
puter science literature assume that when a coalition of
agents forms, it does not impact other coalitions in the sys-
tem (Chalkiadakis et al. 2011). This assumption does not
hold in many important settings. For example, oligopolis-
tic markets are a common economic setting in which coali-
tions have a non-negligible influence on one other. This in-
fluence, called externalities, is also commonplace in task-
based multi-agent systems with overlapping agent prefer-
ences. If a coalition achieves a desired goal, then this goal
may become unachievable by other coalitions (Rahwan et al.
2012; Yokoo et al. 2005; Bachrach and Rosenschein 2008).

Coalitional games with externalities raise considerable
game-theoretic and computational challenges. Despite many
efforts, there is currently no consensus in the literature on
how to extend key game-theoretic solution concepts to this
more complex setting. The concept that has attracted the
most attention is the Shapley value—the unique payoff di-
vision scheme for coalitional games without externalities
that satisfies certain intuitive axioms (Shapley 1953). Un-
fortunately, extending the Shapley value to games with ex-
ternalities is non-trivial, since the original axioms are too
weak to guarantee uniqueness. Among a number of propos-
als,1 six extensions are especially appealing: the externality-
free value (Do and Norde 2007; de Clippel and Serrano
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1See Skibski et al. (2013) for a recent overview.

2008), the McQuillin value (McQuillin 2009; Skibski 2011),
the Bolger value (Bolger 1989), Macho-Stadler et al. value
(Macho-Stadler et al. 2007), the Hu-Yang value (Hu and
Yang 2010), and the Myerson value (Myerson 1977). Un-
like other extensions, these preserve the spirit of the original
Shapley axiomatization, and will be the focus of this paper.

The standard formalism for coalitional games with exter-
nalities, called Partition Function Games (Thrall and Lucas
1963), is computationally challenging. It requires the con-
sideration of all partitions of agents, i.e., coalition struc-
tures, into coalitions and the specification of the values of
all coalitions for every coalition structure in which they are
embedded, the complexity of which is ω(n

1
2n) and O(nn)

(where n is the number of agents) (Sandholm et al. 1999).
Given that the Partition Function Games model has pro-

hibitive time and space requirements, alternative representa-
tions of games with externalities were developed in the com-
puter science literature (Michalak et al. 2009; 2010a; 2010b;
Ichimura et al. 2011). These representations aim to balance
expressiveness, compactness, and computational tractabil-
ity. Unfortunately, the formalisms designed to facilitate effi-
cient computation of the Shapley value extensions to games
with externalities (see Related Work for more details), fa-
cilitate polynomial algorithms only for the externality-free
value and the McQuillin value. In other words, no represen-
tation that allows for efficient computation of the remaining
extensions has been discovered so far.

In this paper, we address this issue. We propose a
novel representation for coalitional games with externalities,
called Partition Decision Trees. This representation is based
on rooted directed trees, in which non-leaf nodes are labelled
with agents’ names, leaf nodes are labelled with payoff vec-
tors, and edges indicate membership of agents in coalitions.
We show that this representation is fully expressive, i.e., it
can represent any game with externalities. It can also be
significantly more concise than the extensive representation.
Most importantly, our representation is the first concise for-
malism in the literature that facilitates polynomial computa-
tion of almost all the aforementioned extensions of the Shap-
ley value. In particular, the externality-free, the McQuillin,
the Macho-Stadler et al. and the Myerson values can all be
computed in time O(n × |T |), whereas the Hu-Yang value
can be computed in time O(n3 × |T |), where |T | is the size
of the representation.
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Preliminaries
Let N = {a, b, c, . . .} be a finite set of agents. A game v̂ in
characteristic function form (without externalities) is a func-
tion that assigns a real-valued payoff to every non-empty
subset (coalition) of agents: v̂ : 2N → R, with v̂(∅) = 0.

In games with externalities, the value of a coalition may
depend on how other agents have organized themselves into
coalitions. A partition ofN is a set of disjoint coalitions that
collectively cover N . A coalition S that is part of a partition
P is called an embedded coalition in P , and is denoted by
(S, P ). The set of all partitions and the set of all embedded
coalitions are denoted by P(N) and EC(N), respectively.
A game v in partition function form (with externalities) is a
function that assigns a real-valued payoff to every embedded
coalition: v : EC(N)→ R, where v(∅, P ) = 0 for all P .

A value of a game is a vector that distributes the payoff
of the grand coalition, i.e., v(N) or v(N, {N, ∅}), among
the agents. While, in principle, any distribution is admissi-
ble, we seek those that meet certain desirable criteria (or ax-
ioms). In particular, let us consider the following axioms:2

• Efficiency—the entire available payoff is distributed
among agents:

∑
i∈N ϕi(v) = v(N, {N, ∅}) for every v;

• Symmetry—payoffs do not depend on the agents’ names:
ϕi(f(v)) = ϕf(i)(v) for every v and every bijection f :

N → N , where f(v)(S, P )
def
= v(f(S), {f(T ) | T ∈

P}) and f(S)
def
= {f(i) | i ∈ S};

• Additivity—the sum of payoffs in two separate games
equals the payoff in the combined game: ϕ(β1v1 +
β2v2) = β1ϕ(v1) + β2ϕ(v2) for all v1, v2 and scalars
β1, β2 ∈ R, (v1 + v2)(S, P )

def
= v1(S, P ) + v2(S, P ) and

(βv)(S, P )
def
= β · v(S, P );3

• Null-Player Axiom—agents with no impact on
the value of any coalition should get nothing:
∀(S,P )∈EC(N),i∈S∀T∈P∪{∅}v(S, P ) − v(S−i, τ

T
i (P )) =

0 ⇒ ϕi(v) = 0 for every v and i ∈ N , where
τTi (P )

def
= P \ {S, T} ∪ {S \ {i}, T ∪ {i}}.

Shapley (1953) famously proved that in games without
externalities there exists a unique value that satisfies all four
axioms. This value can be obtained through the following
process. Assume that agents enter the grand coalition in a
random order. As an agent i enters, he receives a payoff that
equals his marginal contribution to the group of agents that
he joins: v(S ∪ {i})− v(S). Then, the Shapley value is the
expected outcome of agents’ contributions over all orders:

SVi(v̂)
def
=

1

|N |!
∑

π∈Ω(N)

v̂(Cπi ∪ {i})− v̂(Cπi ), (1)

where Ω(N) is the set of all orders (permutations of N ),
and Cπi is the set of agents that appear in permutation π af-
ter i. Let us present the Shapley value in a more concise

2As these axioms can be used for games both with and without
externalities, we state them in the more general form.

3This translation of Additivity is consistent with Bolger (1989),
Macho-Stadler et al. (2007), McQuillin (2009), and Skibski et
al. (2013).

form. Let ζiS
def
= (|S|−1)!(|N |−|S|)!

|N |! if i ∈ S and ζiS
def
=

− |S|!(|N |−|S|−1)!
|N |! , otherwise. We have:

SVi(v̂)
def
=
∑
S⊆N

ζiS · v̂(S). (2)

In our proofs we will also need a class of elementary
games 〈e(S,P )〉(S,P )∈EC(N), where only one coalition em-
bedded in one partition has a non-zero value. Formally, for
every embedded coalition (S, P ) ∈ EC(N), we define:

e(S,P )(S̃, P̃ )
def
=

{
1 if (S̃, P̃ ) = (S, P ),
0 otherwise,

for every embedded coalition (S̃, P̃ ) ∈ EC(N).

Extended Shapley values: Skibski et al. (2013) showed that
only the six values from the literature that are listed in the in-
troduction satisfy a straightforward translation of Shapley’s
axioms to games with externalities. The authors also showed
that these values can be obtained using a process that is sim-
ilar to the one presented by Shapley. Specifically, assume
that the agents leave the grand coalition in a random order
and divide themselves into coalitions outside. In each step,
one agent departs and with some weight4 enters an exist-
ing coalition outside, or forms a new coalition. As a result
of leaving the (grand) coalition, the agent is granted his el-
ementary marginal contribution, i.e., the loss of the coali-
tion that he left. Now, the agent’s Shapley value extended to
games with externalities is the expected marginal contribu-
tion of this agent, i.e. the weighted average of his elementary
marginal contributions over all permutations.

The formulas for the six aforementioned values are:
• the externality-free value (Do and Norde 2007; de Clippel

and Serrano 2008)—an agent leaving the coalition always
forms a new one:

ϕfreei (v)
def
=
∑
S⊆N

ζiS ·v(S, {S}∪{{j} | j ∈ N\S}). (3)

• the McQuillin value (McQuillin 2009; Skibski 2011)—an
agent always chooses an existing coalition outside:

ϕMcQ
i (v)

def
=
∑
S⊆N

ζiS · v(S, {S,N \ S}). (4)

• the Bolger value (Bolger 1989)—an agent chooses each
option with the same probability:

ϕBi (v)
def
=
∑

(S,P )

βi(S, P )v(S, P ), (5)

where βi(S, P ) = (|S|−1)!
|N |!

∑
ω∈Ω(N\S) prω(S, P ) if i ∈

S and βi(S, P ) = − |S|!|N |!
∑
ω∈Ω(N\S∪{i}) prω||i(S, P ),

otherwise. Here, ω||i is a concatenation of
two permutations: ω and i, and prω(S, P ) =∏
j∈N\S

1
|{T\(S∪Cω

j ∪{j})|T∈P}|+1 .

4While these weights can be any real number, monotonic values
are obtained only for non-negative weights. In this case, it is more
intuitive to think of a weight as the probability with which an agent
enters a coalition outside. Thus, in what follows, we will refer to
weights as probabilities.
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• the Macho-Stadler et al. value (Macho-Stadler et
al. 2007)—in the k-th step, an agent chooses a coalition
of size b with probability b/k, and forms a new one with
probability 1/k:

ϕMSt
i (v)

def
=
∑

(S,P )

ζiS
ΠT∈P\{S}(|T | − 1)!

(|N | − |S|)!
v(S, P ). (6)

• the Hu-Yang value (Hu and Yang 2010)—the probabilities
of forming all partitions should be the same:

ϕHYi (v)
def
=
∑

(S,P )

ζiS
θ(S, P )

|P(N)|
v(S, P ), (7)

where θ(S, P ) is the number of partitions from P(N) that
can be obtained from P \ S by inserting agents from S.

• the Myerson value (Myerson 1977)—a non-monotonic
value, obtained through the process with negative weights
(with no interpretation in terms of probability):

ϕMi (v)
def
=
∑

(S,P )

(−1)|P |−1(|P |−1)!·µi(S,P )v(S, P ), (8)

where µi(S,P )

def
= 1
|N | −

∑
T∈P\S,i 6∈S

1
(|P |−1)(|N |−|T |) .

Partition Decision Trees
In this section, we propose Partition Decision Trees (PDT)—
our representation for coalitional games with externalities.

PDT rules: We represent the game by a set of PDT rules.
A single PDT rule consists of a rooted directed tree, where
non-leaf nodes are labelled with agents’ names, leaf nodes
are labelled with payoff vectors, and edges are labelled with
numbers that correspond to coalitions. Formally, a PDT rule
T is a tuple T = 〈V,E, x, fV , fE〉, where (V,E) is a di-
rected tree with root x (i.e., V is a set of nodes, E ⊆ V × V
is a set of directed edges, and for every y ∈ V there exists
exactly one path from x to y); fV : V → N ∪ RN is a label
function for nodes, and fE : E → {1, 2, . . . , |N |} is a label
function for edges, with the assumption that fV (v) ∈ V for
every non-leaf v and fV (v) ∈ RN for every leaf v.

Given a rule T , let Π(T ) be the set of paths from the
root to any leaf (we will only consider such paths), and let
last(π) denote the last, leaf node in any π ∈ Π(T ). Now, ev-
ery path π = (v1, v2, . . . , vk) ∈ Π(T ) represents a partition
of agents, where fE(vi, vi+1) is the number of the coalition
to which agent fV (vi) belongs. Thus, for every such path:

• all non-leaf nodes on the path are labelled with different
agents, i.e., |{fV (v1), fV (v2), . . . , fV (vk−1)}| = k − 1;

• for every path from x to vi, the set of labels on the edges is
the set of consecutive natural numbers beginning with 1.
Thus, fE(v1, v2) = 1, and a label of an edge is not bigger
than the maximal label used earlier on this path plus one:
fE(vi, vi+1)≤max1≤j<ifE(vj , vj+1)+1 for 1≤ i<k;

• the label of a leaf node has exactly the same
size as the number of coalitions |fV (vk)| =
max1≤j<kfE(vj , vj+1).

“If agents a and c are together, then add 10 to the value of this
coalition; if not, then:

- if b is in s coalition with a, then add 8 to the value of this coali-
tion, and add 2 to the value of the coalition with c;

- if b is in a coalition with c, then do not add anything;

- if b is not in a coalition with a and c, then add 5 to the value of
the coalition with a, 2 to the value of the coalition with c, and 1
to the value of the coalition with b.”

Figure 1: An example of a PDT rule.

Since we want to ensure that all partitions are different, we
label all outgoing edges of a node with different numbers: if
fE(vi, vj) = fE(vi, vl) for some vi, vj , vl, then vj = vl.

Satisfiability of the PDT rule: Partition P∈P satisfies π=
(v1, v2, . . . , vk)∈Π(T ), denoted by P ∼π, if it covers the
partition described by this path; thus, for any two members
of the same coalition that appear on the path, the labels of
outgoing edges are the same (i.e., for every a, b ∈ S ∈ P ,
if fV (vi) = a and fV (vj) = b for some 1 ≤ i, j < k,
then fE(vi, vi+1) = fE(vj , vj+1)). Since paths describe
different partitions, there exists no more than one path in
one PDT rule satisfied by a partition P . If P ∼ π, then
there exists a mapping from the coalitions in partition P to
the set of labels of edges (coalition’s numbers) with zero:
gPπ : P → {1, 2, . . . ,max1≤j<kfE(vj , vj+1)}∪{0}, where
0 is assigned to coalitions which agents does not appear on
the path. For example, path π, i.e., a →1 c→2 b→1[8, 2],
from Figure 1 is satisfied by P = {{a, b, d}, {c}, {e}, {f}}
with the mapping gPπ ({a, b, d}) = 1, gPπ ({c}) = 2, and
gPπ ({e}) = gPπ ({f}) = 0.

According to the mapping gPπ for P ∼ π, for every coali-
tion S embedded in partition P such that agents in S appear
on the path π, there exists a unique value in a payoff node:
fV (last(π))[gPπ (S)]. All other coalitions have zero value:

ωPπ (S) =

{
fV (last(π))[gPπ (S)] if gPπ (S) > 0,

0 otherwise,
(9)

for every P ∼ π and coalition S ∈ P .
Now, the value of coalition S embedded in P in game

vT described by the PDT rule T is the value from the path
satisfied by partition P (if it exists):

vT (S, P )
def
=

∑
π∈Π(T ),
P∼π

ωPπ (S). (10)

1038



The sum symbol can be misleading here, as in every PDT
rule there exists at most one path satisfied by a particular
partition P . If T = {T1, T2, . . .} is the set of PDT rules,
then the game vT described by the set of rules T is the sum
of games described by each of the following rules:

vT (S, P )
def
=
∑
T∈T

vT (S, P ) =
∑
T∈T

∑
π∈Π(T ),
P∼π

ωPπ (S). (11)

A sample rule is presented in Figure 1. For complexity re-
sults, we assume that the size of a PDT rule is defined as
the sum of the sizes of labels, and thus equals O(number of
nodes + number of values in the leaf nodes).

Properties of the PDT representation: We will first show
that PDTs are fully expressive.
Lemma 1. Partition Decision Trees are fully expressive, i.e.,
every game v can be represented using this representation.

Proof. The class of elementary games e(S,P ) (in which only
one coalition in one partition has a non-zero value) forms
a basis for games with externalities (Bolger 1989). Thus, it
is enough to show that the game e(S,P ) can be represented
using PDT for every (S, P ) ∈ EC(N). To this end, let π
be any order of agents N (i.e., π : {1, 2, . . . , |N |} → N )
with π(1) ∈ S. Consider a PDT rule 〈V,E, x, fV , fE〉,
such that 〈V,E〉 is a path (v1, v2, . . . , vn, vn+1) of length
|N | + 1, x is the first node on this path, fV (vk) = π(k)
for k ≤ n, fV (vn+1) = [1, 0, . . . , 0], and fE(vk, vk+1) =
coalition of agent π(k). Now, only partition P satisfies this
path, and the only non-zero valued coalition is S.

In the proof above, we used only paths, i.e., every non-leaf
node had only one outgoing edge. However, using only paths
may decrease conciseness by a factor of |N |. Let us denote
by |Π(T )| the sum of sizes of all paths in T . The following
lemma shows that if a game is represented using the PDT
rule T , then the corresponding representation formed by all
paths from the tree T can be |N | times bigger than the size of
the rule. It is key for our computational results that it cannot
be bigger than that.
Lemma 2. For any PDT rule T , |Π(T )| ≤ |N ||T | holds.
Moreover, there exists a T such that |Π(T )| = Θ(|N ||T |).

Proof. We defined the size of a PDT rule as the number of
nodes plus the number of values in leaf nodes. Since each
path contains one leaf node, the number of values in the leaf
nodes does not change if we split the rule into a set of paths.
The length of any path is not bigger than |N |, thus the num-
ber of nodes is less than or equal to |N ||number of leafs|,
which is less than |N ||T |.

To see that a PDT rule can sometimes be |N | times more
concise than a set of paths, consider the following set of
paths (assuming z is the last, n-th agent of N ):

a
1→ b

1→ . . .
1→ z

2→ [xn−1, yn−1]

. . .

a
1→ b

1→ c
2→ [x2, y2]

a
1→ b

2→ [x1, y1].

This set of paths can be described using n non-leaf nodes
(that form the path (a, b, . . . , z), each node (except for a and
z) with two edges labelled 1 and 2), n − 1 leaf nodes and
2n − 2 values in the leaf nodes, while the number of non-
leaf nodes equals 2 + 3 + . . .+ (n+ 1) = Θ(n2).

The above lemma is also useful for comparisons with dif-
ferent representations. For arbitrary value vectors in the leaf
nodes, in order to represent the same game, Weighted MC-
Nets (Michalak et al. 2010b) would have a rule for every
path of the PDT tree (with size being equal to the size of the
path), and Embedded MC-Nets would have a rule for every
value in the leaf of every path. Thus, PDT representations
can be more concise than these alternate representations.

Since the partition function is always exponential, it is
easy to see that PDT can be exponentially more concise.
Lemma 3. Partition Decision Trees can be exponentially
more concise than the partition function.

Proof. It is enough to consider any polynomial-size PDT
rule. For example, a PDT rule a→1 1 assigns value 1 to
every coalition with agent a. The partition function which
describes this game is exponential in |N |.

In the game described by the rule above, all other agents are
null-players. The fact that the size of PDT rules does not
depend on the null-players will be crucial for our computa-
tional results in the next section (see Theorem 2).

Computing the Extended Shapley Values
In this section, we prove that, given the PDT representation,
five out of the six extended Shapley values can be calcu-
lated in polynomial time. We start by observing that all the
six values satisfy Additivity—one of Shapley’s standard ax-
ioms. Thus, a value for a game described by a set of rules
equals the sum of values for games described by a single
rule. This comes from the additive definition of PDT rules
(see formula (11)). In the following lemma, we argue that
paths are also additive; hence, for additive values we can fo-
cus on calculating a value of a game defined by one path.
Lemma 4. Let T be the set of PDT rules and Π(T ) =∑
T∈T Π(T ) the set of all paths. Assume that ϕ satisfies Ad-

ditivity. Then, ϕ(vT ) =
∑
π∈Π(T ) ϕ(vπ), i.e., a value for

the game described by the set of PDT rules equals the sum
of values of games described by all paths in the rules.

Proof. Based on the additivity of ϕ and additivity of PDT
rules, we have: ϕ(vT ) =

∑
T∈T ϕ(vT ). Thus, it is enough

to argue that vT =
∑
π∈Π(T ) v

π . Consider an embedded
coalition (S, P ). Based on the definition of PDT rules, in
rule T there exists exactly one path, say π̃, satisfied by P .
Thus, vT (S, P ) = ωPπ̃ (S), as all other paths of T will not
be satisfied by P and contribute nothing to v(S, P ) (see for-
mula (10)). In the same manner, vπ(S, P ) = 0 for π ∈ T
such that π 6= π̃. Thus, we can state that:

vT (S, P ) =
∑
π∈T

vπ(S, P ),

which concludes the proof.
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To provide our main computational result, we need to
strengthen the standard Null-Player Axiom. Based on the
standard definition, an agent who does not have any impact
on the value of any coalition (i.e., the null-player) should get
nothing. This, however, does not imply that the agent has no
impact on the payoffs of other agents. The stronger require-
ment of the payoff scheme is called the Strong Null-Player
Axiom.
• Strong Null-Player Axiom (deleting a null-player from the

game does not affect agents’ payoffs): if i is a null-player
in v, then ϕ(v) = ϕ(v−i), where v−i is a game defined by
removing null-player i from game v, for every game v.5

Let us introduce the class of games that plays an important
role in our computational analysis of PDT:

Ψ(N)
def
= {

∑
S∈P

cSe
(S,P ) | P ∈ P(N), 〈cS〉S∈P ∈ R|P |}.

Thus, Ψ(N) is the set of all games in which only coalitions
in a single partition have non-zero values. Note that calcu-
lating the payoff of only one agent in an elementary game
e(S,P ) already requiresO(|N |) steps for five extended Shap-
ley values. Interestingly, we show that for games from the
class Ψ(N), which are linear combinations of elementary
games, the payoffs of all agents for four extended Shapley
values can also be calculated in time O(|N |).
Theorem 1. The externality-free, the McQuillin, the Macho-
Stadler et al., and the Myerson values can all be calculated
in O(|N |) time for v ∈ Ψ(N).

Proof. We will show that all four values can be calcu-
lated in linear time for every game v ∈ Ψ(N). Let v =∑
S∈P cSe

(S,P ) for some P∈P(N) and C =
∑
S∈P cS .

• the externality-free value: based on formula (3), we can
make the following remarks. If P consists of more than
one non-singleton coalition, then all payoffs equal zero.
If P has one non-singleton coalition S, then ϕfree(v) =

cSϕ
free(e(S,P )) and ϕfreei (v) = cSζ

i
S . Now, ζiS is equal

for every agent in S, and it is equal for every agent
not in S, and both values can be easily calculated in
linear time. Finally, if P is the set of singleton coali-
tions, i.e., P = {{i} | i ∈ N}, then ϕfreei (v) =

c{i}ϕ
free
i (e({i},P ))+

∑
j∈N,j 6=i c{j}ϕ

free
i (e({j},P )). This

simplifies to: ϕfreei (v)=(c{i}−
C−c{i}
|N |−1)/|N |= |N |c{i}−C

(|N |−1)|N | .

• the McQuillin value: based on formula (4), if P =
{N} then all payoffs equal cN

|N | . If |P | > 2, then all
payoffs equal zero. Otherwise, P = {S,N \ S} and
ϕMcQ(v) = cSϕ

McQ(e(S,P )) + cN\Sϕ
McQ(e(N\S,P )).

For every agent i, this equals cSζiS + cN\Sζ
i
N\S which

takes only two different values (for agents from S and not
from S), and both can be calculated in linear time.
5Note that if i is a null-player in v, then creating a game without

i is straightforward, as values of all embedded coalitions obtained
by inserting agent i into (S, P )∈EC(N\{i}) are equal. For exam-

ple, game v−i can be defined as follows: v−i(S, P )
def
=v(S, P∪{i})

for every (S, P )∈EC(N\{i}).

• the Macho-Stadler et al. value: based on formula (6), for
i ∈ S, ϕMSt

i (e(S,P )) =
∏

T∈P (|T |−1)!

|N |! . Thus, the pay-

off αP =
∏

T∈P (|T |−1)!

|N |! does not depend on i and S

and can be calculated in linear time. Also, if i 6∈ S,
then ϕMSt

i (e(S,P )) = − |S|
|N |−|S|αP . From both equa-

tions and for v =
∑
S∈P cSe

(S,P ), it follows that
ϕMSt
i (v) = αP (cS −

∑
T∈P,T 6=S

|T |
|N |−|T |cT ). Now,

if we calculate
∑
T∈P

|T |
|N |−|T |cT (denoted X) and αP

first, then ϕMSt
i (v) = αP (cS − X + |S|

|N |−|S|cS) =

αP (cS
|N |

|N |−|S| −X), which can be calculated in constant
time for every agent i ∈ N .
• the Myerson value: based on formula (8), i’s pay-

off in game e(S,P ) equals (−1)|P |−1(|P | − 1)!( 1
|N | −∑

T∈P\S,i 6∈S
1

(|P |−1)(|N |−|T |) ). To simplify, denote βP =

(−1)|P |−1(|P |−1)!, γT = 1
(|P |−1)(|N |−|T |) for every T ∈

P and Γ =
∑
T∈P γT . Thus, for i ∈ S, ϕMi (e(S,P )) =

βP ( 1
|N | − Γ + γS) and ϕMi (e(T,P )) = βP ( 1

|N | − Γ +

γS + γT ) for T 6= S. Assume that v =
∑
S∈P cSe

(S,P ).
Let us calculate X =

∑
T∈P cT ( 1

|N | − Γ + γT ) first.
Now, for i ∈ S, ϕMi (v) = βP (X +

∑
T∈P,T 6=S cT γS) =

βP (X+γS(C−cS)), which can be calculated in constant
time for every agent.

Our main result is as follows:
Theorem 2. Assume that ϕ satisfies Additivity and the
Strong Null-Player Axiom. If ϕ(v) can be calculated in time
O(|N |) for every game v ∈ Ψ(N), then ϕ can be calcu-
lated in time O(|N |×|T |) for every set of PDT rules T . Fur-
thermore, the externality-free, the McQuillin, the Macho-
Stadler et al., and the Myerson values can all be calculated
in time O(|N |×|T |) for every set of PDT rules T .

Proof. We will show that a game represented by a PDT rule
consisting of one path π is in Ψ(M) for |M | = O(|π|).
This fact, combined with Lemma 2 and Lemma 4, shows
that ϕ can be calculated in time O(|N | × |T |) for every set
of PDT rules T . Moreover, this result combined with Theo-
rem 1 yields the linear complexity for all four values.

Let N be the set of all agents and M be the set of
all agents whose labels appear in the path π. Let P =
{S1, S2, . . . , Sk} be the partition ofM that corresponds to π
(thus, S1 gathers all nodes that have outgoing edges labelled
with number 1, S2 those labelled with number 2, etc.). We
can argue that all agents from N \ M are null-players, as
their position in the partition does not affect the payoff of
any coalition. This is due to the definition of path satisfiabil-
ity, which does not concern agents who do not appear in the
path. Thus, based on the Strong Null-Player Axiom, payoffs
in the game of N agents equal the payoffs in the game of
M non-null agents. Only the partition P of M satisfies the
path. Thus, only coalitions embedded in this partition have
non-zero value and the game vπ ∈ Ψ(M).

1040



The Hu-Yang value does not satisfy the Strong Null-
Player Axiom and we cannot limit our analysis to the agents
on the path. Nevertheless, it can be calculated in polynomial
time. To show this, we consider how adding the null-player
changes the values of the game and provide a formula for the
Hu-Yang value for a game with several null-players. Conse-
quently, we calculate this value in time O(|N |3×|T |).
Theorem 3. The Hu-Yang value can be calculated in time
O(|N |3 × |T |) for every set of PDT rules T .

Proof. We will show that ϕHY (e(S,P )) can be calculated
in time O(|N |). Thus, for every game v in the form
v =

∑
S∈P cSe

(S,P ), ϕHY (v) can be calculated in time
O(|N |2). Using the analogous analysis as in Theorem 2, the
Hu-Yang value can be calculated in time O(|N |3 × |T |).

Let us recall that θ(S, P ) is the number of partitions from
P(N) that can be obtained from P \ S by inserting agents
from S. Thus, we can argue that, for every (S, P ), i ∈ S:

θ(S, P ) =
∑

T∈P\S∪{∅}

θ(S \ {i}, τTi (P )). (12)

Let us consider game v∅j obtained by adding a null-player
j to the game v. Value v(S, P ) appears several times in the
formula—as v∅j (S∪{j}, τSj+(P )), and also ∀T ∈ P \S∪{∅}
as v∅j (S, τTj+(P )), where τTj+(P )

def
= P \ {T} ∪ {T ∪ {j}}.

ϕHY
i (v∅j ) =

∑
(S,P )

v(S, P )
|S|!(|N | − |S|)!

(|N |+ 1)!

θ(S ∪ {j}, τSj+(P ))

|P(N ∪ {j})|

+
∑

T∈P\S∪{∅}

v(S, P )
(|S| − 1)!(|N | − |S|+ 1)!

(|N |+ 1)!

θ(S, τTj+(P ))

|P(N ∪ {j})|
.

Using formula (12) we get:

ϕHY
i (v∅j ) =

∑
(S,P )

v(S, P )
(|S| − 1)!(|N | − |S|)!

|N |!
θ(S ∪ {j}, τSj+(P ))

|P(N ∪ {j})|

=
∑
(S,P )

ζiS ·
θ(S ∪ {j}, τSj+(P ))

|P(N ∪ {j})|
v(S, P ).

This transformation applied several times yields i’s value in
the game obtained by adding a set K of null-players:

ϕHYi (v∅K) =
∑

(S,P )

ζiS
θ(S ∪K,P \ S ∪ {S ∪K})

|P(N ∪K)|
v(S, P ).

Now, it is enough to calculate θ(S ∪K,P \ S ∪ {S ∪K}).
In general, if P is a partition of the set N , then we have:

θ(S, P ) =

|S|∑
i=0

(
|S|
i

)
Bi(|P | − 1)|S|−i,

where Bi is i-th Bell number. Thus, θ(S ∪K,P \ S ∪ {S ∪
K}) can be calculated in time O(|S| + |K|) = O(|N |),
which is enough to calculate all payoffs in timeO(|N |).

The Bolger value is the only extension for which we did
not provide a polynomial algorithm. Calculating this value is

difficult even for an elementary game e(S,P ), in which there
exists only one coalition in one partition with a non-zero
value (Bolger 1989 provided a recursive formula to calculate
the coefficients). However, whether a polynomial algorithm
exists under any concise representation is an open problem.

Related Work
The literature on concise representations of coalitional
games can be divided into two broad categories (Wooldridge
and Dunne 2006). The first category gives the character-
istic function a specific interpretation in terms of com-
binatorial structures such as graphs, e.g., Deng and Pa-
pdimitriou (1994), Greco et al. (2009), Wooldridge and
Dunne (2006), and the representations discussed in Aziz
and de Keijzer (2011). Such representations are guaran-
teed to be succinct, however they can express only certain
games. Our paper fits into the second category of repre-
sentations, where the emphasis is placed on full expressiv-
ity, often at the expense of succinctness: MC-Nets (Ieong
and Shoham 2006), its read-once extension (Elkind et al.
2009), Synergy Coalition Groups (Conitzer and Sandholm
2006), the Decision-Diagrams-based representations (Aa-
dithya et al. 2011, Sakurai et al. 2011), and the vector-
based representation (Tran-Thanh et al. 2013). While all the
above models concern games with no externalities, repre-
sentations for games with externalities include Embedded
MC-Nets (Michalak et al. 2010a; Ichimura et al. 2011) and
Weighted MC-Nets (Michalak et al. 2010b). To compare
with Partition Decision Trees, if we consider conciseness,
then these representations for games with externalities can
be lined up in the following way:

partition-function form� Partition Decision Trees�
Embedded MC-Nets� Weighted MC-Nets,

where A � B denotes that B can be exponentially more
concise than A, and B is at most polynomially less concise
than A.6 On the other hand, if we consider time complexity
of computing various direct extensions of the Shapley value:

partition-function form = Partition Decision Trees�
Embedded MC-Nets� Weighted MC-Nets,

whereA� B denotes that the set of extensions computable
in polynomial time based on A is a superset of the corre-
sponding set for B, and = denotes that both sets are equal.
Thus, we believe that the Partition Decision Trees represen-
tation is closer to the golden mean between the conciseness
of the representation and its computational properties.

The underlying formalism behind our representation is
that of decision trees. We note that the extensive form of
a game in game theory is also a decision tree—the differ-
ence is in that we can be often more concise since we do not

6Although the PDT representation cannot be exponentially
more concise than both MC-Nets representations, we can argue that
there exist subclasses of Embedded and Weighted MC-Nets that we
can concisely represent: for Weighted MC-Nets, these are the rules
that in every block contain only one logical rule made of positive
literals; for Embedded MC-Nets, these are the rules where only one
logical rule is after the “bar”, and no negative literals appear.
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model all moves. Thus, our representation can be directly
used to model sequential games of coalition formation.

Finally, we mention the work by Michalak et al. (2009),
with an overview of alternative ways to understand ex-
ternalities. A comprehensive discussion on representation
formalisms for various classes of games can be found in
(Chalkiadakis, Elkind, and Wooldridge 2011).

Conclusions
In this paper, we presented and analyzed Partition Decision
Trees—a new representation for coalitional games with ex-
ternalities. Two directions for future research appear espe-
cially interesting. Firstly, one can think of allowing nodes
to merge, which can further improve the conciseness of the
representation, but may be more difficult to handle algorith-
mically. Secondly, it would be interesting to extend PDT in
the similar direction in which MC-nets were extended by
read-once MC-Nets (Elkind et al. 2009).
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