
Truthful Mechanisms without Money for
Non-Utilitarian Heterogeneous Facility Location

Paolo Serafino
School of Computing
Teesside University

p.serafino@tees.ac.uk

Carmine Ventre
School of Computing
Teesside University
c.ventre@tees.ac.uk

Abstract

In this paper, we consider the facility location problem un-
der a novel model recently proposed in the literature, which
combines the no-money constraint (i.e. the impossibility to
employ monetary transfers between the mechanism and the
agents) with the presence of heterogeneous facilities, i.e. fa-
cilities serving different purposes. Agents thus have a signif-
icantly different cost model w.r.t. the classical model with
homogeneous facilities studied in literature. We initiate the
study of non-utilitarian optimization functions under this
novel model. In particular, we consider the case where the op-
timization goal consists of minimizing the maximum connec-
tion cost of the agents. In this setting, we investigate both de-
terministic and randomized algorithms and derive both lower
and upper bounds regarding the approximability of strate-
gyproof mechanisms.

1 Introduction
This work is motivated by a scenario of big data distribu-
tion in clouds. Consider a multinational company having to
decide how to distribute the data contained in its databases
over its data network. Not all the various offices working for
the company need access to the whole data, e.g., a payroll
office arguably needs access to employees’ data but not the
customers’, whilst sales offices need customers’ data but not
employees’. Thus, a demand-based allocation seems a sen-
sible approach. However, beside all the problems that repli-
cation might involve, space might be too limited a resource
to allow a replication of requested data to all the demand-
ing offices. Fast data access becomes then competitive and,
guided by their willingness to have prompt access to the data
they need, offices might strategize and amend their demands
accordingly. The company, however, wants to minimize the
maximum access time in order to guarantee a decent quality
of service so that each office can work efficiently.

Mechanism design is the typical answer to situations in
which agents can act selfishly and there is a divergence be-
tween designer’s and agents’ objectives. Indeed, we can cast
the aforementioned scenario into a mechanism design prob-
lem. We are given a graph G = (V,E) representing the data
network of the company, wherein the edges represent direct
links between data servers. Offices (selfish agents) reside on
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the nodes, declare what content (e.g., tables) of the database
they need to use and seek to minimize their individual con-
nection cost (defined as length of paths in G) to access their
data. From the company’s perspective, instead, the desider-
atum is to compute an allocation (i.e., assign each content
to a node of the graph) for which the maximum overall con-
nection cost is minimized. The mechanism should then be
truthful: the strategy maximizing the “happiness” of agents,
called utility, is truthtelling. Truthfulness is typically guar-
anteed by means of monetary transfers between designer
and agents. However, in this setting, it is not conceivable
to charge a payroll office because it does not need customer
data or to compensate a remote sales office that has to endure
a slow access to distantly located customer records. We then
want to study truthful (or strategyproof (SP)) mechanisms
without monetary transfers.

Generally speaking, this work belongs to the research
agenda of approximate mechanism design without money,
recently proposed in (Procaccia and Tennenholtz 2013). In
this family of mechanisms, truthfulness is typically enforced
by exploiting the approximation ratio of the mechanism in
those cases where the optimal outcome is not truthful. Our
motivating scenario above bears some similarities with the
archetypal problem in this agenda, facility location. Our
model has however two sources of novelty. With respect to
the main stream of works on facility location, we do not con-
sider “homogeneous” (i.e., serving the same purpose) facil-
ities, wherein the cost of an agent is defined as the cost of
connecting to the nearest facility, but rather heterogeneous
(i.e., serving different purposes) facilities, and hence the cost
of an agent is defined as the cost of accessing the facilities
she bids for. Such a model has been introduced very recently
in (Serafino and Ventre 2014) where we focused only on the
utilitarian objective function of minimizing the total connec-
tion cost of the agents (i.e., minimizing the social cost). We
differentiate from our previous work in that Min-Max, the
objective in the present paper, sits on the other end of the
spectrum.

Min-Max is a popular objective function in optimiza-
tion, mechanism design with (cf., e.g., the rich literature
on scheduling selfish machines dating back to (Nisan and
Ronen 2001)) and without money (see, e.g., (Koutsoupias
2014)), and studied already for homogeneous facility loca-
tion (Procaccia and Tennenholtz 2013). In particular, this
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objective function seems to be rather important to measure
fairness of allocation in the context of facility location, as
envy freeness – the concept usually adopted for fairness – is
not applicable when agents cannot exchange outcomes.

Our Contribution
We focus on the heterogeneous facility location problem in
the case in which G is a line and we have two facilities to
locate, the same setting previously studied in (Serafino and
Ventre 2014). Despite its apparent simplicity, this class of in-
stances models the aforementioned content distribution sce-
nario (G being the backbone of the company’s data network;
facilities being employee and customer records) yet already
encodes many intricacies. We study both deterministic and
randomized algorithms, and prove that in both cases the op-
timal allocation does not preserve truthfulness.

We prove a lower bound of 3/2 on the approximation
guarantee of deterministic SP mechanisms. The proof con-
nects three different instances and uses truthfulness con-
straints on two agents to establish the lower bound. This is
somehow more complex than typical lower bounds in litera-
ture wherein two instances and one lying agent are normally
considered. As we already noted in (Serafino and Ventre
2014), designing deterministic SP mechanisms for the prob-
lem appears difficult. We then analyze a deterministic SP
algorithm for the location of heterogeneous facility already
introduced in the literature (Serafino and Ventre 2014), and
prove it is 3–approximate in our scenario. We observe that it
is also SP (as strategyproofness is independent from the ob-
jective function of the mechanism but depends solely on the
agents’ cost function), and constitutes a tight approximation
guarantee for our problem.

Regarding randomized mechanisms we first prove a lower
bound of 4/3 and then design a 3/2-approximate random-
ized SP mechanism. This algorithm is mainly based on the
idea of allocating (in expectation) each facility on the aver-
age position of the subgraph of G comprised of agents re-
questing it. This way truthfulness is guaranteed since there
is no advantage in hiding one’s own requested facilities as
the aforementioned subgraph can only move away from the
lying agent. (Note that adding unneeded facilities does not
help either.) A complication to this intuition is that facilities
cannot always be located in the “middle” of the subgraph.
Our algorithm works around this, while preserving truthful-
ness and guaranteeing a good approximation.

Roadmap. The remainder of this paper is organized as fol-
lows. Section 2 briefly surveys some related literature. In
Section 3 we formalize our model for the heterogeneous fa-
cility location problem on the line. In Section 4 we discuss
our results about deterministic algorithms whereas in Sec-
tion 5 we present our results for randomized algorithms. Fi-
nally, in Section 6 we draw some conclusions and highlight
some future research efforts.

2 Related Work
The facility location problem has been extensively studied
from a Mechanism Design perspective under both utilitar-

ian and non-utilitarian objective functions. We briefly review
some literature in both scenarios.

As for utilitarian objective functions, in (Moulin 1980)
the author studies the case of a single homogeneous facil-
ity on the line and single-peaked agents (i.e., agents whose
valuation has a single peak – their preferred location – and
decreases as the location of the facility gets farther from the
peak) and proves that generalized median voter schemes are
the only deterministic SP mechanism. Schummer and Vohra
(Schummer and Vohra 2002) extend this result to continu-
ous graphs, characterizing truthfulness on continuous lines
and trees. They show that on circular graphs every SP mech-
anism must be dictatorial.

In the aforementioned paper (Procaccia and Tennenholtz
2013) the authors initiated the field of approximate mech-
anism design without money by studying the problems of
truthfully locating (without money) one and two homoge-
neous facilities, wherein agents can lie about their location
on a continuous line. They focus on both social cost and
min-max objective functions. For 2-facility location and util-
itarian objective, they propose the Two-Extremes algorithm,
that places the two facilities in the leftmost and rightmost
location of the instance, and prove that it is group strate-
gyproof and has a linear (in the number of agents) approx-
imation. This lower bound has later been shown to be tight
by the characterization of truthfulness given in (Fotakis and
Tzamos 2013): the authors show that there are only two de-
terministic SP mechanisms with bounded approximation ra-
tio for the 2-facility location problem on the line: Dictatorial
and Two-Extremes. Lu et al. (Lu, Wang, and Zhou 2009)
prove a 1.045 lower bound for randomized mechanisms and
an n/2-approximate lower bound for randomized mecha-
nisms, thus improving the bounds given in (Procaccia and
Tennenholtz 2013). Alon et al. (Alon et al. 2010) study con-
tinuous cycles and derive a linear (in the number of agents)
lower bound for SP mechanisms and a constant approxima-
tion bound for randomized mechanisms. Closer to our set-
ting is the work by Dokow et al (Dokow et al. 2012) who
focus on discrete lines and cycles instead, and prove that SP
mechanisms on discrete large cycles are nearly-dictatorial,
since all agents are able to effect the outcome to a certain
(albeit limited) extent. Contrarily to the case of continuous
cycles studied in (Schummer and Vohra 2002), for small dis-
crete graphs Dokow et al. prove that there are anonymous
(i.e., independent from agents’ IDs) SP mechanisms. Fur-
thermore, they prove a linear lower bound in the number of
agents for the approximation ratio of SP mechanisms on dis-
crete cycles. The model of heterogeneous 2-facility location
we study in this paper has been introduced in (Serafino and
Ventre 2014), where we studied both deterministic and ran-
domized strategyproof algorithms, with the aim to minimize
the social cost. Furthermore, we proved an approximation
lower bound of 9/8 for deterministic algorithms, and proved
that a simple adaptation of the Two-Extremes algorithm pro-
posed in (Procaccia and Tennenholtz 2013) provides a linear
approximation, in the number of agents, to the optimum. In-
terestingly, we proved that the optimum is strategyproof in
expectation.

The literature on Min-Max objective function is quite rich
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in the case of mechanism design with money (mainly be-
cause it shows the tension between approximation and truth-
fulness – being VCG not applicable) but sparse in the case of
moneyless mechanisms. Procaccia and Tennenholtz prove in
their model tight bounds for min-max approximation with 1
facility and nearly tight results with 2 facilities. The paper
(Koutsoupias 2014) studies moneyless SP mechanisms ap-
proximating min-max objective for scheduling selfish unre-
lated machines whose execution times can be verified.

3 Maximum Cost Model
We study the min-max objective function for the heteroge-
neous 2-facility location problem on the line (hereinafter fa-
cility location, for short). We need to locate two facilities on
a linear unweighted graph so as to minimize the maximum
connection cost of the agents.

The input to the problem consists of a set of agents
N = {1, . . . , n}; an undirected unweighted linear graph
G = (V,E), where V ⊇ N ; and a set of facilities F =
{F1,F2}. The types of the agents are subsets of F, called
their facility set. We let Ti ⊆ F denote the true type of
agent i. Sometimes, slightly abusing notation, we will re-
gard Ti as a set of indices j s.t. Fj ∈ Ti. A mechanism M
for the facility location problem takes as input a vector of
types T = (T1, . . . , Tn) and returns as output a feasible al-
location M(T ) = (F1, F2), such that Fi ∈ V , i = 1, 2, and
F1 6= F2. Given a feasible allocation F = (F1, F2), agent
i has a cost defined as costi(F) =

∑
j∈Ti

d(i, Fj), where
d(i, Fj) denotes the length of the shortest path from i to Fj
in G. Agents seek to minimize their cost and could, there-
fore, misreport their facility sets to the mechanism if this
reduces their cost. We let T ′i ⊆ F denote a declaration of
agent i to the mechanism. We are interested in the following
class of mechanisms.
Definition 3.1. A mechanism M is truthful (or strate-
gyproof, SP, for short) if for any i, any declaration T ′i of
agent i, any declarations of the other agents T−i we have
costi(F) ≤ costi(F ′), where F = M(T ) and F ′ =
M(T ′i , T−i). A randomized M is truthful in expectation if
the expected cost of every agent is minimized by truthtelling.

We want truthful mechanisms M that return an allo-
cation F = M(T ) that minimizes the maximum cost
function mc(F) = maxi∈N costi(F), namely: M(T ) ∈
argminF feasible mc(F). We call these mechanisms optimal
and denote an optimal allocation on declaration vector
T as OPT (T ) if mc(OPT (T )) = minF feasible mc(F).
Sometimes truthfulness and optimality are incompatible and
therefore we have to content ourselves with sub-optimal so-
lutions. In particular, we say that a mechanism M is α-
approximate if mc(M(T )) ≤ α · mc(OPT (T )). Further-
more, we denote as Vj [T ] the set of agents wanting ac-
cess to facility Fj according to a declaration vector T , i.e.,
Vj [T ] = {i ∈ N |Fj ∈ Ti}.

For the sake of notational conciseness, in the remainder
of the paper we will often omit the declaration vector T
(e.g., Vk[T ] simply denoted as Vk) and denote an untruth-
ful declaration (T ′i , T−i) of agent i by a prime symbol (e.g.,
Vk[T ′i , T−i] simply denoted as V ′k).

1 2 3

{F1,F2}

F2

{F1}

F1

{F1}

(a)

1 2 3

{F1}{F1}

F1

{F1,F2}

F2

(b)

1 2 3

{F1,F2} {F1} {F1,F2}

F2 F1

F2F1

F ′1 =

= F ′2

(c)

Figure 1: Instances used to prove the lower bound of 3/2

4 Deterministic Mechanisms
In this section we analyze deterministic mechanisms for the
min-max heterogeneous facility location problem.

Lower bound
We start by presenting a negative result stating the impossi-
bility of approximating the optimal allocation within 3/2 of
the optimal value while maintaining strategyproofness.

Theorem 4.1. There exists no α-approximate deterministic
SP algorithm for the facility location problem with α < 3/2.

Proof. Let us first consider the two instances depicted in
Figure 1(a) and Figure 1(b). The agents in the instance of
Figure 1(a) have declarations T1 = {F1,F2}, T2 = {F1}
and T3 = {F1}, whereas the agents in Figure 1(b) have
declarations T1 = {F1}, T2 = {F1} and T3 = {F1,F2}.
It is easy to check that the optimal allocation for the in-
stance of Figure 1(a) is F1 = (F1 = 2, F2 = 1), whereas
the optimal allocation for the instance of Figure 1(b) is
F2 = (F1 = 2, F2 = 3), having both cost 1. We note that,
in both cases, any second-best solution has cost 2, so any
3/2-approximate algorithm would return the optimal solu-
tion for these instances. Let us now consider the case when
agent 3 in instance 1(a) lies declaring T ′3 = {F1,F2} (see
Figure 1(c)). In this case we have two optimal solutions:
F ′1 = (F1 = 3, F2 = 1) and F ′2 = (F1 = 1, F2 = 3),
with cost 2. We note that we obtain the same instance (and
hence the same optimal solutions) if we consider the case
when agent 1 in instance 1(b) lies declaring T ′1 = {F1,F2}
instead of her true type. We now note that neither F ′1 nor
F ′2 are SP. In fact, if F ′1 is returned, we can then regard
the instance of Figure 1(c) as resulting from the instance of
Figure 1(a) when agent 3 lies, in which case agent 3 would
gain by lying, as cost3(F1) = 1 > 0 = cost3(F ′1). On the
other hand, ifF ′2 is returned, we can then regard the instance
of Figure 1(c) as resulting from the instance of Figure 1(b)
when agent 1 lies, in which case agent 1 would gain by ly-
ing, as cost1(F2) = 1 > 0 = cost1(F ′2). It is clear from
the above argument that an SP solution for the instance of
Figure 1(c) locates facility F1 at node 2, hence the only SP
solutions are (F1 = 2, F2 = 1) and (F1 = 2, F2 = 3). Since
the cost of these solutions is 3, the claim is proven.
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Since we have proved a 3/2 approximation lower bound
for deterministic SP algorithms, the following corollary eas-
ily follows.

Corollary 4.2. There is no optimal deterministic SP algo-
rithm for the facility location problem.

Upper bound
We now discuss a 3-approximate SP algorithm, named
TWOEXTREMES, given in (Serafino and Ventre 2014); the
algorithm is inspired by (Procaccia and Tennenholtz 2013).

Algorithm 1: TWOEXTREMES

Require: Line G, facilities F = {F1,F2}, declarations
T = {T1, . . . , Tn}

Ensure: F (T ), a 3-approximate allocation for 2-facility
location on G

1: F1 := minV1[T ]
2: F2 := maxV2[T ]
3: if F1 = F2 then
4: if F2 − 1 6=NIL then
5: F2 := F2 − 1
6: else
7: F1 := F1 + 1
8: end if
9: end if

10: return (F1, F2)

TWOEXTREMES locates facility F1 in the leftmost loca-
tion of V1[T ] and F2 in the rightmost location of V2[T ]. If a
tie occurs (line 3) the algorithm considers whether the cho-
sen location is not the leftmost location of the instance, in
which case F2 is moved left on the nearest node; otherwise,
F1 is moved right on the nearest node. This tie breaking rule
is essential to prove the strategyproofness of the algorithm.
Below, we state and prove for completeness this fact.

Theorem 4.3. (Serafino and Ventre 2014) Algorithm
TWOEXTREMES is SP.

Proof. For the sake of contradiction, let us assume that there
exist i ∈ N with type Ti and an untruthful declaration T ′i
such that

∑
j∈Ti

d(i, Fj(T )) >
∑
j∈Ti

d(i, Fj(T
′
i , T−i)),

where Fj(Z) denotes the location to which TWOEX-
TREMES, on input the declaration vector Z , assigns facil-
ity Fj . We need to analyse three cases: (a) i = minV1, (b)
i = maxV2, and (c) i /∈ {minV1[T ], maxV2[T ]}.

If case (a) occurs, it can be either Ti = {F1} or Ti =
{F1,F2}. If Ti = {F1} then F1 = i, costi(F (T )) = 0 and
i cannot decrease her cost any further by misreporting her
type. If Ti = {F1,F2}, then it can be either i = maxV2 (in
which case the algorithm returns (F1 = i − 1, F2 = i) or
(F1 = i, F2 = i + 1), costi(F) = 1 and i cannot decrease
her cost any further by lying) or i < maxV2 (in which case
F1 = i and i cannot influence the location of facility F2).

It is easy to check that case (b) is symmetric to case (a).
If case (c) occurs, then it can be either: Ti = {F1}, Ti =
{F2} or Ti = {F1,F2}. If Ti = {F1}, then i > minV1.
It is easy to check that if minV1 6= maxV2 then i cannot
influence the location of facility F1. Let us assume then that

` = minV1 = maxV2. In this case the algorithm outputs
either (F1 = `, F2 = ` − 1) or (F1 = ` + 1, F2 = `).
In either case, if T ′i = ∅ the output of the algorithm does
not change, whereas if F2 ∈ T ′i then the algorithm outputs
(F ′1 = `, F ′2 = i) (as i > maxV2) and costi(F (T )) ≤
costi(F (T ′i , Ti)). It is easy to check that the case when Ti =
{F2} is symmetric to the case when Ti = {F1}.

If Ti = {F1,F2} then minV1 < i < maxV2, and it is
easy to check that i cannot influence the outcome of the al-
gorithm.

We now prove that TWOEXTREMES is 3-approximate and
show that our analysis is tight.

Theorem 4.4. The TWOEXTREMES algorithm is 3-
approximate.

Proof. Let F∗ denote the optimal allocation and F denote
the allocation returned by the TWOEXTREMES algorithm.
Let us consider a node i such that i ∈ argmaxi∈N costi(F)
and let us denote EXT = costi(F). It is easy to check that
the following holds:

costi(F∗) = EXT −∆F ≤ OPT (1)

where ∆F =
∑
j∈Ti

∆Fj and ∆Fj = d(i, Fj) − d(i, F ∗j ).
Intuitively, (1) formalizes the fact that the optimal alloca-
tion locates the facilities closer to i with respect to TWOEX-
TREMES in order to lower the cost of agent i. Let S denote
the set {minV1,maxV2} if Ti = {F1,F2}, {minV1} if
Ti = {F1} and {maxV2} if Ti = {F2}. Because of the
change of facilities’ position, there is an agent x ∈ S and a
facility k ∈ Ti ∩ Tx such that d(x, Fk) ≤ d(x, F ∗k ). It is not
hard to check that the following holds for x ∈ S:

OPT ≥ costx(F∗) ≥ d(x, F ∗k ) ≥
≥ d(x, F ∗k )− d(x, Fk) ≥
≥ d(i, Fk)− d(i, F ∗k ) ≥ ∆Fk.

(2)

Two cases can occur: (i) |Ti| = 1 and (ii) |Ti| = 2. If case (i)
occurs, we notice that ∆F = ∆Fk, k ∈ Ti, and from (1) and
(2) we deriveEXT ≤ 2·OPT . If case (ii) occurs, we notice
that applying (2) with k and k + 1, we obtain 2 · OPT ≥
∆Fk+∆Fk+1, and, finally, from (1),EXT ≤ 3·OPT .

Theorem 4.5. The upper bound of Theorem 4.4 is tight.

Proof. We are now going to prove that the bound is tight.
Let us consider the 3-agent family of instances depicted in
Figure 2, where between nodes 1 and 2 and between nodes
4 and 5 there are λ “empty” nodes whereas between nodes
2 and 3 and between nodes 3 and 4 there are λ

2 “empty”
nodes. It is easy to check that the optimal allocation in this
case is F∗ = (F ∗1 = 2, F ∗2 = 4) and the optimal cost is
mc(F∗) = λ. Furthermore, it is easy to check that the cost
of the allocation F = (F1 = 1, F2 = 5) computed by algo-
rithm TWOEXTREMES is mc(F) = cost3(F) = 3λ, which
is indeed 3-approximate.
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1 2 3 4 5

λ λλ/2 λ/2

{F1}

F ∗1

{F1,F2}

F ∗2

{F2}

F1 F2

Figure 2: Instance showing that the bound of Theorem 4.4 is
tight.

5 Randomized Mechanisms
In this section we shift our focus on randomized algorithms.
Similarly to the case of deterministic mechanisms, our re-
sults are twofold: (i) we prove a negative result regarding
the impossibility of obtaining arbitrarily good approxima-
tions by means of SP algorithms and (ii) we present a 3/2-
approximate randomized SP algorithm.

Lower bound
We begin by proving the impossibility of approximating
the optimum within a factor of 4/3 and preserve the strat-
egyproofness.

1 2 3 4

{F1} {F1} {F1,F2} {F2}

F1 F2

Figure 3: Truthful instance used to prove the bound of The-
orem 5.1

Theorem 5.1. There is no SP randomized α-approximate
algorithm with α < 4/3.

Proof. Let us consider the instance depicted in Figure 3. It
is easy to check that the (unique) optimal solution F∗ =
(F1 = 2, F2 = 3) has cost mc(F∗) = 1, whereas any
suboptimal allocation has cost at least 2. Let us consider
a generic randomized algorithm A that returns the opti-
mal allocation with probability ρ and some suboptimal al-
locations with probability 1 − ρ. If A is 4/3-approximate,
then 4/3 ≥ mc(A(T )) ≥ 1 · ρ + 2(1 − ρ) which im-
plies that A must return the exact solution with probabil-
ity ρ ≥ 2/3. In particular, this means that for agent 4 the
allocation computed by A has cost cost4(A(T )) ≥ 2/3.
If agent 4 lies declaring T ′4 = {F1,F2} (see Figure 4),
then the optimal allocations are F ′1 = (F1 = 2, F2 = 4)
and F ′2 = (F1 = 3, F2 = 4), having cost 2, whereas
any suboptimal solution has cost at least 3. Once again, A
would return optimal solutions with probability π and sub-
optimal solutions with probability 1 − π. In particular, to
preserve strategyproofness cost4(A(T ′)) ≥ 2/3 must hold,
which implies that 1 − π ≥ 2/3 (as both the optimal so-
lutions, F ′1 and F ′2, locate F2 on 4) and π ≤ 1/3. Hence,
mc(A(T ′)) ≥ 2 · 1/3 + 3 · 2/3 = 8/3, which yields an
approximation ratio of α ≥ 4/3.

Since we have proved a 4/3 approximation lower bound
for randomized SP algorithms, the following corollary easily
follows.

1 2 3 4

{F1} {F1} {F1,F2} {F1,F2}

F1 F2

Figure 4: Instance used in the proof of Theorem 5.1 wherein
agent 4 lies

Corollary 5.2. There is no optimal randomized SP algo-
rithm for the facility location problem.

Upper bound
We now present a randomized SP algorithm, which returns
3/2-approximate solutions. The main idea behind the al-
gorithm, called RANDAVG and presented in Algorithm 2,
is to locate in expectation facility Fk on the mean loca-
tion of Vk, thus guaranteeing that hiding Fk from one’s
own type is not profitable (i.e., Vk can only shrink away
from the lying agent). The algorithm uses a procedure
COMPUTESUPPORT(x, y) that returns a set of determinis-
tic feasible solutions called mean set. The mean set returned
by procedure COMPUTESUPPORT(x, y) is such that a feasi-
ble solution extracted uniformly at random from it has the
property that the expected location of F0 (F1, respectively)
is on x (y, respectively).1 There are, however, certain ex-
treme situations in which the existence of mean sets is not
guaranteed (cf. Lemma 5.3). RANDAVG needs to consider
these cases separately (cf. lines 3 and 6 of the algorithm) and
return deterministic solutions instead.

In this section, we let µk denote the average location of
Vk, i.e., µk = avg(Vk) = minVk+maxVk

2 , k = 0, 1. De-
pending on the parity of |Vk|, µk might either lie on a ver-
tex of G (if |Vk| is odd) or in between two vertices (if |Vk|
is even); we denote the former case as µk ∈ V and the
latter as µk ∈ E (meaning that µk lies on an edge of G,
formally: ∃(u, v) ∈ E such that µk = (u + v)/2). We let
RIGHT(µk) = dµke if µk ∈ E and µk + 1 otherwise. Simi-
larly, LEFT(µk) = bµkc if µk ∈ E and µk − 1 otherwise.

Lemma 5.3. Let G = (V,E) be the network on which
agents reside. There always exists a mean set for graph G
if either of the following holds: (i) |µk − µk+1| ≥ 1, (ii)
∀k ∈ {0, 1}, RIGHT(µk) 6= NIL and LEFT(µk) 6= NIL.

Proof. Let us focus on case (i) initially. We distinguish the
cases in which µk is in V from those in which it is in E. If
µk ∈ V and µk+1 ∈ V thenM = {(µk, µk+1)} is a mean
set forG (note that this solution is feasible as |µk−µk+1| ≥
1). If µk ∈ E and µk+1 ∈ V then: LEFT(µk) 6= NIL,
RIGHT(µk) 6= NIL and both LEFT(µk) 6= µk+1 and
RIGHT(µk) 6= µk+1 (as, by hypothesis, |µk − µk+1| ≥ 1).
Hence, M = {(LEFT(µk), µk+1), (RIGHT(µk), µk+1)} is
a feasible mean set for G. If both µk ∈ E and µk+1 ∈
E, then since |µk − µk+1| ≥ 1, we have that M =
{(LEFT(µk), LEFT(µk+1)), (RIGHT(µk),RIGHT(µk+1))}
is a mean set for G.

1To ease the notation, in this section we use binary indexes for
the facilities.
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Let us now focus on case (ii). We assume that
|µk − µk+1| < 1 (for otherwise the arguments above
apply). It is easy to check that the only case that can occur
is µk ∈ V and µk+1 ∈ E for some k ∈ {0, 1}. ThenM =
{(LEFT(µk),RIGHT(µk+1)), (RIGHT(µk), LEFT(µk+1))}
is a feasible mean set for G.

Observe that the proof of the lemma gives a constructive
way to implement (in polynomial-time) procedure COM-
PUTESUPPORT.

Algorithm 2: RANDAVG
Require: Line G, facilities F = {F1,F2} , declarations
T = {T1, . . . , Tn}

Ensure: FAV G(T ), a 3/2-approximate allocation
for 2-facility location on G

1: µk := avg(Vk), ∀k ∈ {0, 1}
2: if ∃k ∈ {0, 1} s.t. RIGHT(µk) = NIL AND |µ0 − µ1| < 1

then
3: return

(
F̄k := µk, F̄k+1 := LEFT(µk+1)

)
4: end if
5: if ∃k ∈ {0, 1} s.t. LEFT(µk) = NIL AND |µ0 − µ1| < 1

then
6: return

(
F̄k := µk, F̄k+1 := RIGHT(µk+1)

)
7: end if
8: M := COMPUTESUPPORT(µk, µk+1)
9: return (Fk, Fk+1) ∈M with probability 1/|M|

Theorem 5.4. Algorithm RANDAVG is SP in expectation.

Proof. It is easy to check that algorithm RANDAVG returns
either a feasible mean set solution (i.e., line 9) or a feasi-
ble deterministic solution (lines 3 and 6) when no mean set
solution exists. For the sake of notation, in the remainder
we will denote a mean set solution as M and a determin-
istic solution as D. Let us denote by i the lying agent; we
shall prove that costi(F ′) ≥ costi(F), where F and F ′ de-
note the outcomes of RANDAVG on input the true type of
i and a misreport, respectively. (The value of costi(·) must
be intended here with respect to the expected locations of
the facilities in Ti.) The analysis distinguishes what type of
allocation (i.e.,M or D) F and F ′ are. By letting X → Y
symbolize that F is of type X and F ′ is of type Y , we con-
sider three cases: (a) M → M; (b) M → D; (c) F is of
type D.

Case (a). Let i ∈ {minV1,maxV1,minV2,maxV2}. In
this case each facility is located independently (in expec-
tation) and truthfulness follows from the simple observa-
tion that d(i, avg(Vk)) ≤ d(i, avg(V ′k)), for k ∈ Ti. If
i /∈ {minV1,maxV1,minV2,maxV2}, it is easy to check
that i cannot alter the outcome of RANDAVG.

Case (b). Let us consider the case M → D. Since F ′
is of type D, |µ′0 − µ′1| < 1 and there exists k ∈ {0, 1}
such that either LEFT(µ′k) = NIL or RIGHT(µ′k) = NIL.
We focus on the former case; the other case follows by
symmetry. Since LEFT(µ′k) = NIL then, by definition of
LEFT, µ′k ∈ V and, in turns, by definition of µ′k, V ′k = {`}
and µ′k = `. Note also that since |µ′k − µ′k+1| < 1 then
µ′k+1 ∈ E, with LEFT(µ′k+1) = `. In this case we then

have T ′` = {Fk,Fk+1}, T ′`+1 = {Fk+1} and T ′r = ∅ for
all r ≥ ` + 2, but Tl = T ′l for all l 6= i (i.e. only agent i
is lying). On this instance RANDAVG returns F ′ = (F ′k =
`, F ′k+1 = ` + 1). Let us assume that i = `. In this case,
if Ti = {Fk}, then F = (Fk = `, Fk+1 = ` + 1) and the
cost of agent i is unchanged, whereas if Ti = {Fk+1} then
Fk+1 = ` + 0.5 and costi(F ′) = 1 > 0.5 = costi(F).
Let us assume that i = ` + 1. We need to consider two
cases: Ti = {Fk} and Ti = {Fk,Fk+1}. If Ti = {Fk},
then RANDAVG outputs F = (Fk = ` + 1, Fk+1 = `)
and costi(F) = 0 < 1 = costi(F ′). If Ti = {Fk,Fk+1},
then F = (Fk = Fk+1 = ` + 0.5) and costi(F) = 1 =
costi(F ′). Let us assume that i ≥ ` + 2. In this case it can
be Ti = {Fk}, Ti = {Fk+1} or Ti = {Fk,Fk+1}. It is easy
to check that in all three cases costi(F ′) ≥ costi(F).

Case (c). Since F is of type D, by the same reasoning
of case (b) we conclude that there exists k ∈ {0, 1} such
that Vk = {`}, µk = ` and either LEFT(µk) = NIL or
RIGHT(µk) = NIL. We focus on the former case, the other
begin symmetric. We note that in this case we have a 2-
agents instance such that T` = {Fk,Fk+1}, and T`+1 =
{Fk+1}. Since the allocation outputted by RANDAVG is
(Fk = `, Fk+1 = ` + 1) it is easy to check that no agent
can lower her cost any further.

Theorem 5.5. Algorithm RANDAVG is 3/2-approximate.

Proof. We note that whenever algorithm RANDAVG returns
a deterministic solution, then it returns an optimal allocation.
Hence, in the remainder we restrict ourselves to considering
only the case when RANDAVG returns a mean set solution.

Let us denote a bottleneck agent (i.e., an agent incurring
the maximum cost) of RANDAVG by i, namely: costi(F) =
mc(F), where F denotes the output of RANDAVG. (Again,
costi(·) must be considered w.r.t. the expected locations of
the facilities in Ti.) Hereinafter, F∗ will denote the optimal
solution. We can assume that Ti = {F0,F1}, as otherwise
RANDAVG would return an optimal allocation. In details,
by letting Ti = {k}, we have AV G = mc(F) = Rk−Lk

2 ≤
mc(F∗) = OPT , where Lk = minVk and Rk = maxVk.

Let us denote ∆Fj = d(i, Fj)− d(i, F ∗j ), for j ∈ {0, 1}.
It is easy to check that:

costi(F∗) = AV G−∆F ≤ OPT, (3)

where ∆F = ∆F0+∆F1. Intuitively, the optimal allocation
locates the facilities closer to i with respect to RANDAVG
in order to lower the cost of agent i. Because of this, there is
an agent x ∈ {L0, R0} such that d(x, F0) ≤ d(x, F ∗0 ). It is
not too hard to check that the following holds:

OPT ≥ costx(F∗) ≥ R0 − L0

2
+ ∆F0. (4)

Likewise, there is an agent y ∈ {L1, R1} such that
d(y, F1) ≤ d(y, F ∗1 ) and we have:

OPT ≥ costy(F∗) ≥ R1 − L1

2
+ ∆F1. (5)

We now need to consider two cases: ∆F ≤ OPT
2 and ∆F >

OPT
2 . If ∆F ≤ OPT

2 , the claim follows immediately from
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(3), as AV G− OPT
2 ≤ AV G−∆F holds. If ∆F > OPT

2 ,
then the following holds:

OPT

2
< ∆F0 + ∆F1

≤ 2 ·OPT − R0 − L0

2
− R1 − L1

2

(6)

where the second inequality follows from (4) and (5). From
(6), we obtain

R0 − L0

2
+
R1 − L1

2
<

3

2
·OPT.

By observing that

AV G ≤ R0 − L0

2
+
R1 − L1

2
,

the claim follows.

a1 m1 o1 a2 m2 o2 a3

{F1} {F1,F2} {F2}

F ∗1 F ∗2F̄1 F̄2

λ λ

Figure 5: Tight instance for RANDAVG

Theorem 5.6. The upper bound of Theorem 5.5 is tight.

Proof. Figure 5 depicts a family of instances for which the
RANDAVG algorithm always returns a 3/2-approximate so-
lution, thus showing that the analysis above is tight. This
family of instances consists of (at least) 3 agents a1, a2 and
a3 such that: (i) a1 < a2 < a3; (ii) d(a1, a2) = d(a2, a3) =
λ, where λ ∈ Z; (iii) a1 = minV1, a2 = maxV1 = minV2
and a3 = maxV2; (iv) Ta = {F1}, Tb = {F1,F2} and
Tc = {F2}. It is easy to check that, for this family of in-
stances, the optimal allocation is (F ∗1 = o1, F

∗
2 = o2), such

that o1 = 2
3λ and o2 = 4

3λ, and mc((F ∗1 , F
∗
2 )) = 2

3λ. Algo-
rithm RANDAVG returns allocation (F1 = m1, F2 = m2)
such that: m1 = a1+a2

2 , m2 = a2+a3
2 and mc((F1, F2)) =

λ. Hence, the approximation ratio of algorithm RANDAVG
on this family of instances is 3/2.

6 Conclusions
We have studied the heterogeneous facility location prob-
lem with a non-utilitarian optimization function, namely the
maximum connection cost of the agents. More in general,
works falling in this research agenda often deal only with
single-parameter agents (exceptions being the studies on
mechanisms without money and verification (Koutsoupias
2014; Fotakis, Krysta, and Ventre 2014)).

We have shown that even for very simple agents’ do-
mains, comprised of only 2 bits, truthfulness might impose a
penalty on the quality of the solutions output by determinis-
tic mechanisms. Randomization provably helps to improve
the approximation quality, although in order to impose truth-
fulness we still have to content ourselves with suboptimal

allocations. This makes an interesting parallel with the case
where the social cost is minimized, as in the latter case opti-
mality and truthfulness can be both enforced by resorting to
randomization.

Naturally, our results leave a gap between upper and
lower bounds for both deterministic and randomized truth-
ful mechanisms. To close these gaps a better understanding
of truthfulness without money of multi-dimensional agents
needs to be acquired.
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