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Abstract

We consider the problem of fair division of a two dimen-
sional heterogeneous good among several agents. Applica-
tions include division of land as well as ad space in print
and electronic media. Classical cake cutting protocols either
consider a one-dimensional resource, or allocate each agent
several disconnected pieces. In practice, however, the two
dimensional shape of the allotted piece is of crucial impor-
tance in many applications, e.g., squares or bounded aspect-
ratio rectangles are most useful for building houses as well
as advertisements. We thus introduce and study the problem
of envy-free two-dimensional division wherein the utility of
the agents depends on the geometric shape of the allocated
pieces (as well as the location and size). In addition to envy-
freeness, we require that the fraction allocated to each agent
be at least a certain constant that depends only on the shape
of the cake and the number of agents. We focus on the case
where the allotted pieces must be square and the cakes are ei-
ther squares or the unbounded plane. We provide algorithms
for the problem for settings with two and three agents.

1 Introduction
Fair division (often termed cake-cutting) is an active field
of research and application in mathematics, economics, and
recently also in AI. The basic setting considers a heteroge-
neous good, e.g. land, that must be divided among several
agents. The agents may have different preferences over the
possible pieces/sub-sets of the good, e.g. one agent prefers
the forest while the other prefers the sea shore, and the goal
is to divide the good among the agents in a way that deemed
“fair”. Fairness can be defined in several ways, but, pro-
portionality and envy-freeness are the most commonly used.
Proportionality means that each agent gets at least its “fair-
share” of the good, i.e. with n agents, the piece allotted to
each agent is worth at least 1/n of the value of the entire
good - according to agent’s subjective valuations. Envy-
freeness means that no agent would prefer getting a piece
allotted to another agent. The existence of proportional di-
visions was already proved in the initial work of (Steinhaus
1948), and the existence of envy-free divisions was estab-
lished by (Stromquist 1980). This latter proof is existential
in nature. Constructing such envy-free divisions turns out to
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be a much harder task. The first protocol for three agents, in-
volving ten steps and five cuts, was discovered by Selfridge
and Conway (Brams and Taylor 1996). The construction of
a protocol for envy-free division among four or more agents
was a long-standing open problem, resolved only in 1995
with the publication of the Brams-Taylor protocol (Brams
and Taylor 1995).

Interestingly, in all this research, spanning over half a cen-
tury, little attention has been given to the case of dividing a
two-dimensional good.

Indeed, almost all work on cake cutting explicitly assumes
that the cake is a one-dimensional interval, and the allotted
pieces are either sub-intervals, or a (possibly unbounded)
collection thereof. This is usually justified by the reason-
ing that higher dimensional settings can always be projected
onto one dimension, and hence, fairness in one-dimension
implies fairness in higher dimensions. However, projecting
back from the one dimension, the resulting two-dimensional
plots are thin rectangular slivers, of little use in most practi-
cal applications; it is hard to build a house on a 10 × 1, 000
meter plot even though its area is a full hectare, and a thin
0.1-inch wide advertisement space would ill-serve most ad-
vertises, regardless of its height. Thus, in most applications,
the geometric shape of the allotted piece is of prime impor-
tance.

Hence, we argue that when dividing a two-dimensional
resource, one must also require that allotted plots be of “us-
able” shape, e.g. a square. Equivalently, one can allow arbi-
trary plots but note that the utility of any such plot is deter-
mined by the most valuable square therein. These two for-
mulations are equivalent and we use them interchangeably
throughout the paper.

Once allotted plots must be of a specific shape(s), it may
no longer be possible to allocate the entire land; a square
cannot be divided into two squares. Thus, we must assume
free disposal, meaning that the protocol need not allocate
the entire “cake”. Once free disposal is permitted, how-
ever, envy-freeness can trivially be obtained by simply giv-
ing nothing to all agents, which is clearly not a solution of
interest. Thus, our goal is to obtain an envy-free division
that also guarantees some minimum utility to each agent.
Specifically, we seek an envy-free division that guarantees
that each agent’s piece is worth at least an α-fraction of the
value of the entire cake, according to the agents subjective
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valuations. In general, we want α as large as possible, but
note that apriori it is not at all clear that such a guarantee is
possible for any constant α.

We focus on the cases of two and three agents (which,
unsurprisingly, already turn out to be non-trivial). We fo-
cus on the case where the usable shapes are square, and the
initial land is either also a square or the unbounded plane
(when the cake is unbounded we also allow the squares to
be unbounded, i.e. we consider a quarter-plane and a half-
plane as ’squares’ of infinite side-length). Similar results,
though more complex in presentation, can be obtained for
other shapes.

1.1 Motivating example
The following example illustrates the insufficiency of exist-
ing cake-cutting algorithms. Suppose you and a partner are
joint owners of a square land estate near the sea. The estate
is a 100-by-100 square meters whose western side is adja-
cent to the sea. Suppose you believe that the most valuable
part of the estate is the seashore, e.g., because your desire is
to have a home near the sea. One day you decide to break the
partnership and divide the land using the classic procedure
for envy-free division: “You cut, I choose”. You let your
partner divide the land to two plots, knowing that you have
the right to choose the plot that is more valuable according
to your own subjective preferences. Your partner makes a
cut parallel to the shoreline at a distance of only 1 meter
from the sea. 1 Which of the two plots would you choose?
The western plot contains a lot of sea shore, but it is so nar-
row that it has no room for building anything. On the other
hand, the eastern plot is large but does not contain any shore
land. Whichever plot you choose, the division will not pro-
portional for you, because your utility is far less than half the
value of the original land estate. Of course the cake could
be cut in a more sensible way (e.g. by a line perpendicular
to the sea), but the current protocols say nothing about how
exactly the cake should be cut in each situation in order to
guarantee that the division is fair in a way that respects the
geometric constraints.

The reason that the classic procedure fails here is that it is
based on the assumption of additive utilities, meaning that
the sum of the utilities you can derive from two parts of the
land equals the utility you derive from the entire land. If
utilities were additive then one of the plots would necessarily
have a utility of at least 1

2 of the total value. However, in
reality the utility of land is not an additive function.

In the above example, assuming you want to build a
square house, the utility you can derive from each land-plot
is the utility of the most valuable square contained in that
plot, and thus the sum of utilities of the western and eastern
parts in separation is much less than the utility of the land-
estate as a whole. Thus, while the cut-and-choose protocol
guarantees an envy-free division, it does not guarantee any
positive utility to the agents.

1The reason why he decided to cut this way is irrelevant since
a fair division protocol is expected to guarantee that the division
is fair for every agent playing by the rules, regardless of what the
other agents do.

1.2 Our results
For the case that the original cake is a square, we present:

• A protocol for envy free division with two agents that
guarantees each agent a utility of at least 1/4-th of the
value of the entire cake. This matches the existential up-
per bound established by (Segal-Halevi, Hassidim, and
Aumann 2014).

• A protocol for envy free division with three agents that
guarantees each agent a utility of at least 1/10-th of the
value of the entire cake. The existential upper bound of
(Segal-Halevi, Hassidim, and Aumann 2014) for this case
is 1/6-th.

For the case that the original cake is the unbounded plane,
we present a protocol for envy free division with three agents
that guarantees each agent a utility of at least 1/3-rd of the
value of the entire cake.2 This protocol is clearly existen-
tially optimal, as 1/n is the best possible fraction in the case
where all agents have identical valuations.

The remainder of the paper is structured as follows. Im-
mediately following we review the related research. The for-
mal definitions and model are provided in Section 2. Section
3 presents the core geometric concepts and techniques, in-
cluding our main concept of a knife function, which is a gen-
eralization of the “moving knife” concept used by both clas-
sic and modern works on cake cutting (Dubins and Spanier
1961; Stromquist 1980; Brams, Taylor, and Zwicker 1997;
Manabe and Okamoto 2012). These geometric techniques
are then applied in the construction of the envy-free divi-
sion procedures for two agents (Section 4) and three agents
(Section 5).

1.3 Related work
As far as we know, existing protocols for envy-free division
(Stromquist 1980; Brams and Taylor 1995; Reijnierse and
Potters 1998; Su 1999; Barbanel and Brams 2004; Manabe
and Okamoto 2010; Cohler et al. 2011; Deng, Qi, and Saberi
2012; Kurokawa, Lai, and Procaccia 2013; Chen et al. 2013)
do not make any shape-related guarantees. When applied
to agents with non-additive utility functions, the utility per
agent might be arbitrarily small.

Most other results related to cake-cutting with non-
additive utilities is either purely existential (Sagara and
Vlach 2005; Dall’Aglio and Maccheroni 2009; Hüsseinov
and Sagara 2013) or assume a 1-dimensional cake (Su 1999;
Caragiannis, Lai, and Procaccia 2011; Mirchandani 2013)

Relatively few papers explicitly relate to a two-
dimensional cake.3 Two of them discuss the problem of di-
viding a disputed territory between several bordering coun-
tries, with the constraint that each country should get a piece
that is adjacent to its border: (Hill 1983) proved that such a
partition exists and (Beck 1987) provided a division proce-
dure. (Iyer and Huhns 2009) describe a procedure that asks

2For two agents, the classical cut-and-choose procedure works.
3Several authors studied a circular cake (Thomson 2007;

Brams, Jones, and Klamler 2008; Barbanel, Brams, and Stromquist
2009), but this is a one-dimensional circle and the pieces are one-
dimensional arcs corresponding to thin wedge-like slivers.
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each of the n agents to draw n disjoint rectangles on the map
of the two-dimensional cake. These rectangles are supposed
to represent the “desired areas” of the agent. The procedure
tries to give each agent one of his n desired areas. However,
it does not succeed unless each rectangle proposed by an in-
dividual intersects at most one other rectangle drawn by any
other agent. If even a single rectangle of Alice intersects two
rectangles of George, then the procedure fails and no agent
gets any piece.

2 The Model
A cake C, which is a measurable subset of the two-
dimensional Euclidean plane, has to be divided among n
agents. Every agent i ∈ {1, ..., n} should receive a mea-
surable piece Pi ⊆ C (Note that we do not require that the
entire cake is divided).

Every agent i has an (additive) value measure Vi over
parts of C, normalized such that Vi(C) = 1. The value
measures are assumed to be finite and non-negative. The
measures are also assumed to be absolutely continuous with
respect to area(or just continuous for short), i.e., any piece
with an area of 0 has a value of 0 (Hill and Morrison 2010).
Hence, the value of a plot is the same whether or not it con-
tains its boundary. Equivalently, for every ε > 0 there is a
δ > 0 such that, for every s having area less than δ, the value
V (s) is less than ε.

There is a pre-defined family of shapes S, which is the
family of usable geometric shapes. In this paper, S is the
family of squares. Based on Vi and S we define the follow-
ing shape-based utility function, which assigns to a piece
P ⊆ C the value of the most valuable square contained in
P :

V S(P ) = sup
s∈S and s⊆P

V (s)

For example, if Alice wants to build a square house but
gets a land-plot P which is not square, then her utility is de-
termined by the most valuable square contained in her plot
P . From now on, we use the term value to refer to the addi-
tive measure V and the term utility to refer to the (not nec-
essarily additive) function V S .

An envy-free partition of a cake C is a partition in which
the utility of an agent from his allocated piece is at least as
large as his utility from every other:

∀i, j ∈ {1, ..., n} : V Si (Pi) ≥ V Si (Pj)

In addition to envy-freeness, every partition can be charac-
terized by its level of proportionality, which is the utility of
the least fortunate agent (also known as egalitarian social
welfare):

Prop(C, S, {Vi}ni=1, {Pi}ni=1) = min
i∈{1,..,n}

V Si (Pi)

So a proportional partition is a partition with a proportional-
ity of at least 1

n .
We are interested in finding, for given C, n and S, the

largest proportionality level that can be attained for every
combination of continuous value measures in an envy-free

V (C)
V S(C)

= 3
2

V (C)
V S(C)

= 2

Figure 1: Geometric loss factors relative to the family of squares.

division. We call this number the n-agent envy-free propor-
tionality level of C and S:

PropE(C, n, S) = inf
Vi

sup
Pi

Prop(C, S, {Vi}ni=1, {Pi}ni=1)

where the infimum is taken over all n-tuples of continuous
value measures Vi and the supremum is taken over all envy-
free partitions of C to n agents.

A similar function, Prop(C, n, S), can be defined exactly
the same as PropE(C, n, S) with the only difference being
that the supremum is taken over all partitions of C (regard-
less of envy). Obviously, because the supremum in PropE
is taken over a smaller set:

PropE(C, n, S) ≤ Prop(C, n, S)

Applying this notation, classic cake-cutting results imply
that for every cake C:

Prop(C, n, All) = PropE(C, n, All) =
1

n

Where ”All” is the collection of all geometric shapes. That
is: when all geometric shapes are usable, every cake C can
be divided in an envy-free way such that each agent receives
1
n of the total utility, for every combination of continuous
value measures. Recently, (Segal-Halevi, Hassidim, and Au-
mann 2014) proved that:

1

4n− 4
≤ Prop(Square, n, Squares) ≤ 1

2n

Our contribution in this paper is to calculate a
lower bound on PropE(Square, n, Squares) and
PropE(Plane, n, Squares) for n ∈ {2, 3}. Note that
envy-free division is a much more difficult task than
proportional division even without geometric constraints,
and even when there are only 3 agents.

3 Geometric Concepts
The land-estate example described in the introduction hints
that to achieve a fair division we must constrain the ways in
which agents are allowed to cut the cake. To this end we
now define several properties of geometric shapes.
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3.1 Geometric loss
Definition 1. For a cake C and family of shapes S, the ge-
ometric loss factor of C relative to S is the maximum factor
by which the utility of an agent from C is reduced by his
insistence on using shapes only from family S. Formally:

Loss(C, S) = sup
V

V (C)

V S(C)
where the supremum is over all continuous finite measures
V having V (C) > 0. The minimum possible loss factor
is 1 which means no loss. This is always the case when
C ∈ S since in that case V S(C) = V (C). When C is
not in S, the loss is generally larger than 1. For example,
assume that C is a 30-by-20 rectangle. The largest square
contained in C is 20-by-20. Hence, if V is uniform over
C (as in Figure 1/Left, representing an agent who wants a
maximal amount of land), then V (C)

V S(C)
= 600

400 = 3
2 , implying

that Loss(C, Squares) ≥ 3
2 . But the loss may be larger:

suppose V is uniform over the “shores” in the east and west
sides of C (as in Figure 1/Right, representing an agent who
wants a square with a maximal amount of shore land). In this
case V (C)

V S(C)
= 2, implying that Loss(C, Squares) ≥ 2.

We will see later that the loss in this case is exactly 2, and in
general the geometric loss of a rectangle with a length/width
ratio of L is dLe, so a thinner rectangle has a larger geomet-
ric loss.

The importance of the geometric loss concept becomes
clear when it is generalized to cake partitions:
Definition 2. For a partition of a cake to pieces P1 t P2 t
...tPm = C and a family of shapes S, the geometric loss of
the partition is the sum of the geometric loss factors of the
pieces:

Loss({P1, P2..., Pm}, S) =
m∑
i=1

Loss(Pi, S)

Intuitively, lower geometric loss is better: when a cake is
partitioned with a low geometric loss, it is possible to choose
at least one piece with a sufficiently high utility. For exam-
ple, assume the cake C is a 100-by-100 square and S is the
family of squares. If C is partitioned near its boundary to
100-by-1 and 100-by-99 rectangles (like the land-estate in
the introduction), then the loss factors of the pieces are 100
and 2 respectively so the loss of the partition is 102. But if
C is partitioned in the middle to two 100-by-50 rectangles,
then the loss factor of both pieces is 2 so the loss of the par-
tition is 4, in accordance with our intuition that the second
partition is “fairer” for the chooser. The following lemma
formalizes this intuition.

3.2 Chooser lemma
Lemma. (Chooser Lemma) If a cakeC is partitioned to dis-
joint pieces P1 t ...tPm = C and the geometric loss of the
partition is M , then for every value measure V and every
family of shapes S:

max(V S(P1), ..., V
S(Pm)) ≥ V (C)

M

CoverNum(C,squares)=2 =3 =2

Figure 2: Cover numbers of several geometric shapes.

Proof. By additivity,
∑m
i=1 V (Pi) = V (C). Multiply-

ing the left-hand side by the geometric loss (M ) and the
right-hand side by the definition of geometric loss gives:∑m
i=1 V (Pi) ·M =

∑m
i=1 Loss(Pi, S) ·V (C). At least one

of the m elements in the left-hand side must be greater than
or equal to the corresponding element in the right-hand side.
I.e., there is an i for which: V (Pi)·M ≥ Loss(Pi, S)·V (C).
By Definition 1: V S(Pi) ≥ V (Pi)

Loss(Pi,S)
≥ V (C)

M .

Hence, when the geometric loss of a partition is M , the
chooser can choose a piece with a utility of at least V (C)

M .

3.3 Cover numbers
An upper bound on the geometric loss factor can be proved
based on the following definition:

Definition 3. For a cake C and family of geometric shapes
S, CoverNum(C, S) is the minimum number of shapes
from family S whose union is exactly C.

Some examples are depicted in Figure 2. When C is a
hole-free rectilinear polygon and S the family of squares,
a minimum cover can be found in polynomial time (Bar-
Yehuda and Ben-Hanoch 1996).

Claim 1. For every cake C and family S:

Loss(C, S) ≤ CoverNum(C, S)

Proof. Let n = CoverNum(C, S) and let P1, ..., Pn ∈ S
be shapes that cover the cakeC such thatC = P1∪P2∪ ...∪
Pn. Let V be any value measure. A measure is additive, so
V (C) = V (P1) + V (P2) + ...+ V (Pn). Hence, there is at
least one piece Pi ∈ S such that V (Pi) ≥ V (C)

n . Therefore,
V S(C) = supp⊆C and p∈S V (p) ≥ V (Pi) ≥ V (C)

n , which
implies Loss(C, S) ≤ n.

An immediate consequence of Definition 1 is that
for every value measure V : V s(C) ≥ V (C)

Loss(C,S) ≥
1

CoverNum(C,S) (since V (C) is normalized to 1). Going
back to the 30 × 20 rectangle, as shown in Figure 2/Right,
CoverNum(C, Squares) = 2 so V S(C) ≥ 1

2 , meaning
that every agent, regardless of his preferences, can get a util-
ity of at least half the total cake value.
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3.4 S-Continuity
We are going to cut cakes using a generalization of a moving
knife. To use this generalization correctly we have to make
sure that the utility functions of the agents change contin-
uously during the movement of the knife. To this end we
present the following definition:
Definition 4. Let S be a family of shapes. A function K(t)
from a real interval to subsets ofR2 is called S-continuous if
for every ε > 0 there exists δ > 0 such that, for every t and
t′ which are at most δ apart (i.e.|t′ − t| < δ), and for every
shape s′ ∈ S contained in K(t′), there exists a shape s ∈ S
contained in K(t) such that s ⊆ s′ and Area(s′ \ s) < ε.

Intuitively, S-continuity means that, as the function K
changes over time, usable shapes are not created or de-
stroyed “all of a sudden”, but rather grow or shrink in a
smooth manner. As the examples below demonstrate, S-
continuity is different from continuity.

(a) Let S be the family of squares parallel to the axes.
The function K1(t) = [0, t]× [0, 1], defined for t ≥ 0, is S-
continuous. Proof: Intuitively, the function K1(t) describes
a rectangle growing smoothly eastwards; it is apparent that
no squares with positive area are created all of a sudden.
Formally, given ε > 0, select a δ such that 2δ + δ2 < ε. For
every t, t′ with |t′ − t| < δ, for every axis-parallel square
in K1(t

′) with side-length a+ δ, there is a contained square
in K1(t) with side-length at least a. The difference between
these squares has an area of at most 2δ + δ2 < ε.

(b) Similarly, the function K2(t) = [0, t]× [0, t], describ-
ing a square growing from the origin, is S-continuous.

(c) In contrast, the function K3(t) = [0, t]× [0, 1] ∪ [1−
t, 1] × [0, 1], defined for t ∈ [0, 1], is not S-continuous.
Proof: Intuitively, a square of side-length 1 is created at time
t = 0.5, when the two components ofK3(t) meet. Formally,
let ε = 0.75. For every δ > 0, select t = 0.5 − δ

3 and t′ =
0.5+ δ

3 . ThenK3(t
′) contains the square s′ = [0, 1]× [0, 1],

but all squares s ⊆ K3(t) have a side-length of less than 0.5,
hence Area(s′ \ s) > 0.75 = ε. Note that K3 is continuous
in the following sense: the symmetric difference between
K3(t+ δ) and K3(t) has zero area as δ tends to zero.

(d) Similarly, if S is the family of axis-parallel squares
with side-length at least 0.5, then the function K1(t) =
[0, t]× [0, 1] is not S-continuous.
Lemma. (S-continuity lemma) If the measure V is abso-
lutely continuous and the function K(t) is S-continuous,
then the real function v(t) := V S(K(t)) is uniformly con-
tinuous.

Proof. Given ε > 0, we have to show the existence of δ > 0
such that, for every t, t′, if |t′−t| < δ then |v(t′)−v(t)| < ε.

By the absolute continuity of V , there is an ε′ > 0 such
that every s having Area(s) < ε′ has V (s) < ε.

By the S-continuity of K(t), there is a δ > 0 such that,
for every t, t′, if |t′ − t| < δ then for every S-shape s′ ⊆
K(t′), there is an S-shape s ⊆ K(t) such that s ⊆ s′ and the
difference s′\s has area less than ε′. Hence, V (s′)−V (s) =
V (s′ \ s) < ε.

By definition, v(t′) = V S(K(t′)) = V (s′), where s′ is an
S-shape contained in K(t′) for which V (s′) is maximized.

By the same definition, v(t) = V S(K(t)) ≥ V (s), where s
is an S-shape contained in K(t) having V (s′) − V (s) < ε.
Hence, v(t) > v(t′)− ε. By a symmetric argument, v(t′) >
v(t)− ε.

3.5 Knife functions
Definition 5. Let C be a cake. A knife function on C is
a function from [0, 1] to subsets of C having the following
properties:

1. KC(0) = ∅ and KC(1) = C;
2. KC is monotonically increasing with t, i.e. for every

t′ > t: KC(t
′) ⊃ KC(t);

3. Both KC(t) and C \KC(t) are S-continuous functions
(see definition 4).

The name “knife function” comes from the classic mov-
ing knife procedure for proportional cake-cutting. When a
knife moves over a cake, in the manner described by (Du-
bins and Spanier 1961), starting at time 0 and ending at time
1, the part of the cake already covered by the knife is a knife
function according to our definition. However, our definition
is more general and allows a “knife” that is not a straight line
and does not necessarily move parallel to itself.

For example, let C be the unit square and S the family of
squares. consider the two S-continuous functions defined in
the previous section: K1(t) = [0, t] × [0, 1] and K2(t) =
[0, t] × [0, t]. It is easy to check that both of them are knife
functions.

3.6 Geometric loss of knife functions
When a knife function KC , defined on a cake C, is
“stopped” at a certain time t ∈ [0, 1], it induces a partition
of C to the part which was already covered by the knife,
KC(t), and the part not covered, C \KC(t). Based on this
partition, we can define the geometric loss of the knife:
Definition 6. Let C be a cake. For every knife functionKC ,
define its geometric loss relative to the family S as:

Loss(KC , S) =

max
t
Loss(KC(t), S) + Loss(C \KC(t), S)

Intuitively, if Loss(KC , S) = M then the knife can be
stopped at any time t and the resulting partition has a geo-
metric loss of at most M . Two examples are illustrated in
Figure 3, from left to right:

(a) Let C = [0, L] × [0, 1]. Define the following knife
function: KC(t) = [0, L] × [0, t]. Obviously both KC(t)
and its complement C \KC(t) are rectangle-continuous, as
explained in example (a) of Subsection 3.4. Moreover, both
are rectangles so their geometric loss relative to the family of
rectangles is 1. HenceLoss(KC , Rectangles) = 1+1 = 2.

(b) Let C = [0, 1] × [0, 1]. Define the following knife
function: KC(t) = [0, t]× [0, t]∪ [1− t, 1]× [1− t, 1]. For
every t, KC(t) is a union of two squares and C \KC(t) is
also clearly seen to be a union of two squares. Since the two
squares meet only at their corners, no positive-area squares
are created “all of a sudden”; both functions are square-
continuous. Moreover, their geometric loss relative to the
family of squares is 2. Hence, Loss(KC , Squares) = 4.
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Loss(K, Rectangles) = 2

Loss(K, Squares) = ∞
Loss(K, Rectangles) = 4

Loss(K, Squares) = 4

Figure 3: Geometric loss of knife functions. K(t) is filled with horizontal lines. Dotted lines mark future knife locations.

(c) Let C = R2 (the unbounded 2-dimensional plane)
and S the family of squares (which, as mentioned in the in-
troduction, also contains the half-planes). Define the fol-
lowing knife function: KC(t) = [−∞, tan (π · (t− 1

2 ))] ×
[−∞,∞]. both KC(t) and its complement C \ KC(t) are
half-planes, so their geometric loss relative to S is 1 and the
geometric loss of KC is 2.

4 Envy-Free Division For Two Agents
We now present a generic envy-free division procedure for
n = 2 agents, based on a knife function.
Claim 2. Let C be a cake, S a family of shapes and
M ≥ 2 an integer. If there is a knife function KC having
Loss(KC , S) ≤M Then:

Prop(C, 2, S) ≥ PropE(C, 2, S) ≥
1

M

Proof. C can be divided using the following procedure. (1)
Each agent i selects a time ti ∈ [0, 1] in which to “stop the
knife”. (2) The smaller time is selected; assume it is ti. (3)
Agent i receivesKC(ti) and agent 1−i receivesC\KC(ti).

To prove the lower bound, we show that every agent with
value measure V can select ti such that his allocated share
P satisfies: (a) V S(P ) ≥ V S(C \P ), and (b) V S(P ) ≥ 1

M .
By definition of a knife function, when t = 0:

V S(KC(t)) = V S(∅) = 0 ≤ V S(C) = V S(C \ KC(t))
and when t = 1: V S(KC(t)) = V S(C) ≥ 0 = V S(∅) =
V S(C \ KC(t)). The functions KC(t) and C \ KC(t) are
both S-continuous. Hence, by the S-continuity lemma (Sub-
section 3.4) the functions V S(KC(t)) and V S(C \KC(t))
are both continuous functions of t. By the intermediate value
theorem, there exists a time t in which the utilities on both
sides of the knife are equal: V S(KC(t)) = V S(C \KC(t)).
Denote this equal utility by U .

An agent stopping the knife at time t is guaranteed to re-
ceive either KC(t) or a piece that contains C \ KC(t). In
both cases the agent feels no envy and has a utility of at least
U . Because the geometric loss of the knife function KC is
at most M , by the Chooser Lemma U ≥ 1

M .

Corollary 1. By examples (a)-(c) in Subsection 3.6:
(a) PropE(Rectangle, 2, Rectangles) = 1

2 , as is al-
ready known from classic cake-cutting.

(b) PropE(Square, 2, Squares) ≥ 1
4 . Combining this

with the upper bound of (Segal-Halevi, Hassidim, and Au-

mann 2014), Prop(Square, 2, Squares) ≤ 1
4 , gives an

equality.
(c) PropE(Plane, 2, Squares) = 1

2 .

5 Envy-Free Division For Three Agents
Our procedure for 3 agents is a generalization of the Three
Knives procedure (Stromquist 1980). This procedure in-
volves a “sword” moved by a referee, and three “knives”
held by the 3 agents. This is an infinite procedure - for every
infinitesimal move of the sword, the agents should adjust the
locations of their knives. Because the allocated pieces must
be connected, no finite algorithm exists (Stromquist 2008),
so an infinite procedure is the best that can be hoped for.

To generalize Stromquist’s procedure, we will need two
functions: a knife function K(T ) on the entire cake, which
we call “sword function” (following Stromquist’s terminol-
ogy); and a family of knife functions kT (t) on the com-
plement of K(T ). We denote the complement of K(T )

by K(T ) := C \ K(T ) and the complement of kT (t) by
kT (t) := K(T ) \ kT (t). The following definition extends
the geometric loss concept from a single knife function to a
pair of a sword function and a family of knife functions:

Definition 7.

Loss(K, k, S) = max
T,t∈[0,1]

[Loss(K(T ), S) + Loss(kT (t), S) + Loss(kT (t), S)]

Claim 3. Let C be a cake and S a family of shapes. If
there is a sword function K(T ) on C and a family of knife
functions kT (t) on K(T ) and Loss(K, k, S) = M , then:
Prop(C, 3, S) ≥ PropE(C, 3,S) ≥ 1

M .

Proof. C can be divided using the following procedure. For
every T ∈ [0, 1]:

(1) Each agent i selects a certain ti(T ) ∈ [0, 1]. The selec-
tion should be such that every ti is a continuous function of
T (a similar requirement applies in Stromquist’s procedure).

(2) Each agent has the right to shout “cut!”.
(3) If one or more agents shouted “cut!”, then select one of

them arbitrarily, call him “the shouter” and give him K(T ).
(4) Call the other two agents “the waiters”. Divide K(T )

between them in the following way:
(4a) Let t∗ = median3i=1(ti(T )), i.e. the second of the

three ti’s.

1026



Figure 4: Sword and knife functions of Cor. 2(c). Horizontal lines represent K(T ). Vertical lines represent kT (t).

(4b) Give kT (t∗) to the waiter with the smaller ti and give
kT (t∗) to the remaining waiter.
To prove the lower bound, we show that every agent i can
select ti(T ) and decide whether to shout “cut”, such that:
(a) the utility of his allocated piece is at least as large as the
other two pieces, and (b) that utility is at least 1

M .
In step #1, agent i should select ti(T ) such that

Vi(kT (ti)) = Vi(kT (ti)); this is always possible because
of the continuity of the knife function kT . This guarantees
that, if agent i is one of the waiters, he will not envy the
other waiter.

In step #2, agent i should shout “cut” if he notices that
the value of K(T ) is equal to the value he would receive
in step #4 by not shouting “cut”. Because of the continuity
requirements, this guarantees that the shouter will not envy
the waiters and vice versa.

By the Chooser Lemma, each agent’s utility is at least
1
M .

Corollary 2. (a) Prop(Rectangle, 3, rectangles) = 1
3 (a

result from classic cake-cutting).
(b) Prop(Plane, 3, Squares) = 1

3 .
(c) Prop(Square, 3, Squares) ≥ 1

10 .

Proof. (a) Both the sword function K(T ) and the knife
function kT (t) are rectangles growing from the west towards
the east. The total geometric loss is clearly 1 + 1 + 1 = 3.

(b) The sword function is a half-plane bounded by a ver-
tical line moving from x = −∞ to x =∞. The knife func-
tion kT (t) is a quarter-plane to the east of the sword line,
bounded by a horizontal line moving from from y = −∞ to
y = ∞. Recall that we treat half-planes and quarter-planes
as squares with infinite side-length. Hence the total geomet-
ric loss is 3.

(c) The sword function is the union of two corner-squares
growing towards the center, as in example (b) of Subsection
3.6. The knife function is the union of four corner-squares as
illustrated in Figure 4. Since the squares meet only at their
corners, the function is square-continuous. By counting the
number of covering squares in different combinations of T
and t, it is possible to show that the geometric loss of kT (t)
is at most 4. This is also obviously true for kT (t). ForK(T )
the geometric loss is obviously 2. Hence the total geometric
loss is 10.

6 Conclusion and Future Work
We presented the problem of fairly dividing a cake to two
or three agents whose utility functions depend on geomet-
ric shape. Our main constructive contributions are generic,
symmetric, anonymous division protocols which achieve an
envy-free division and a minimum guaranteed utility for ev-
ery agent.

The tools developed in this paper are generic and can
work for cakes and pieces of other geometric shapes. In
fact, our tools reduce the envy-free division problem to a ge-
ometric problem - the problem of finding appropriate knife
functions.

We currently work on extending the results to n agents.
This is a challenging task as envy-free division is a difficult
problem even for 1-dimensional cakes.

One way to generalize our model is to consider a util-
ity function which takes into account both the value con-
tained in the best square and the total value of the plot, e.g.:
U(P ) =WV S(P ) + (1−W )V (P ), where W is an agent-
dependent constant.

Additional future research topics include: subjective ge-
ometric preferences (letting each agent i specify a different
family Si of usable shapes), efficiency and social-welfare
maximization.
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