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Abstract
Core-selection is a crucial property of social choice
functions, or rules, in social choice literature. It is also
desirable to address the incentive of agents to cheat by
misreporting their preferences. This paper investigates
an exchange problem where each agent may have mul-
tiple indivisible goods, agents’ preferences over sets of
goods are assumed to be lexicographic, and side pay-
ments are not allowed. We propose an exchange rule
called augmented top-trading-cycles (ATTC) procedure
based on the original TTC procedure. We first show that
the ATTC procedure is core-selecting. We then show
that finding a beneficial misreport under the ATTC pro-
cedure is NP-hard. Under the ATTC procedure, we fi-
nally clarify the relationship between preference misre-
port and splitting, which is a different type of manipu-
lation.

Introduction
Designing rules/mechanisms that achieve good properties
is a central research topic in mechanism design and social
choice literature. In this paper we study exchange problems
with following properties: (i) each agent is initially endowed
with a set of indivisible goods, (ii) each agent has a strict
preference relation over the set of possible bundles of the
goods, (iii) compensation using monetary transfers is pro-
hibited. Exchange rules must be designed so that it prescribe
the socially desirable trade of goods. Such exchange prob-
lems have many real applications, such as on-campus uni-
versity housing markets (Chen and Sönmez 2002), nation-
wide kidney exchanges (Roth, Sönmez, and Ünver 2004),
and barter exchanges in disaster areas.

Core-selection is one of the most well-studied properties
that rules are expected to achieve. A rule is said to be core-
selecting if no group of agents has an incentive to make a
cartel and trade their goods among themselves. By defini-
tion, core-selecting rules encourage agents to participate in
the rules and result in a Pareto efficient trade of goods, which
in a sense is a socially optimal outcome. When each agent is
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assumed to have a single good, Gale’s Top-Trading-Cycles
(TTC) procedure is core-selecting (Ma 1994).

Another common requirement is strategy-proofness, i.e.,
each agent has no incentive to misreport her preference. To
be more precise, for each agent, submitting her true pref-
erence is a dominant strategy regardless of the submitted
preferences of other agents. Unfortunately, Sönmez (1999)
showed that when there is at least one agent who initially
owns more than one good and the agents’ preferences are
strict, as in our exchange problems, there exists no rule that
is strategy-proof and core-selecting.

In the wake of this impossibility, we tackle the incentive
issue from the theory of computational complexity. Even if
an agent is selfish and hopes to benefit by misreporting, as-
suming finding a beneficial misreport is hard, e.g., it requires
to solve an NP-hard problem, then, as long as its compu-
tational power is limited, it will refrain from doing such a
manipulation. Under this assumption, in a sense, showing
that finding a beneficial preference misreport under a rule is
NP-hard can substitute strategy-proofness. Such a complex-
ity approach for incentive issues, especially in social choice,
has attracted much attention from computer scientists, and
is considered one of the main stream approaches in compu-
tational social choice literature (Pini et al. 2011).

In this paper for our exchange problems, we propose
a rule called augmented top-trading-cycles (ATTC) proce-
dure. We show that the ATTC procedure is core-selecting
under the lexicographic preference domain. We then show
that finding a beneficial misreport under the ATTC proce-
dure is NP-hard by a reduction from MONOTONE-3SAT.
Finally, we consider a different type of manipulation called
splitting manipulation, and clarify its relation with prefer-
ence misreporting. We show that for any splitting manipula-
tion, there exists a corresponding preference misreport that
gives the same utility as the splitting to the manipulator.

Related Works
The exchange model we deal with in this paper is also
known as housing market (Shapley and Scarf 1974), where
each agent initially owns a single house, his/her preference
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is strict, and monetary transfers are prohibited. In hous-
ing markets literature, the TTC procedure is characterized
by three properties: individual rationality, Pareto efficiency,
and strategy-proofness (Ma 1994). Also it always chooses
the unique core assignment (Roth and Postlewaite 1977).
Other types of rules’ properties have been studied in AI,
e.g., fairness (de Keijzer et al. 2009; Endriss et al. 2006),
envy-freeness (Chevaleyre, Endriss, and Maudet 2007). On
the other hand, when at least one agent initially owns more
than one house, as well as the impossibility result presented
in the previous section advents, we can no longer guarantee
the uniqueness of the core assignment (Sönmez 1999).

One common approach for going beyond such an “impos-
sibility” result is to weaken one of the requirements. For in-
stance, several papers have designed strategy-proof rules by
weakening the core-selecting property (Pápai 2003; 2007;
Todo, Sun, and Yokoo 2014). Others restrict the agents’ pref-
erence domain (Sonoda et al. 2014).

Our approach keeps the core-selecting property, but weak-
ens strategy-proofness by focusing on the computational
hardness of beneficial manipulation. In various mechanism
design/social choice problems, many works consider the
computational hardness of beneficial manipulation, such as
voting (Bartholdi, Tovey, and Trick 1989) and two-sided
matching (Teo, Sethuraman, and Tan 2001; Pini et al. 2011).
Although it has been pointed out that such a computational
complexity approach is not always sufficient as a barrier for
agents’ incentives (Faliszewski, Hemaspaandra, and Hemas-
paandra 2010; Faliszewski and Procaccia 2010), we believe
that discussing complexity in exchange problems is an im-
portant first step to develop useful exchange rules for self-
interested agents in practice.

In this paper we focus on the lexicographic preference do-
main. This restriction leads to compact representations of
the agents’ preferences, and makes sense whenever those
preferences are non compensatory (Gigerenzer and Gold-
stein 1996). Thus such preferences have been well stud-
ied in the AI (Booth et al. 2010; Yaman et al. 2011;
Conitzer and Xia 2012).

The effect of splitting manipulations has been stud-
ied in several algorithmic/economic environments, such
as scheduling (Moulin 2008), voting (Conitzer 2008;
Todo, Iwasaki, and Yokoo 2011), combinatorial auc-
tions (Yokoo, Sakurai, and Matsubara 2004), two-sided
matching (Todo and Conitzer 2013; Afacan 2014), and
coalitional games (Aziz et al. 2011; Yokoo et al. 2005;
Ohta et al. 2008), some of which are also known as false-
name manipulations. Especially in research on exchanges, a
class of exchange rules resistant to splitting manipulations,
as well as another class of manipulations called hiding (At-
lamaz and Klaus 2007), has been proposed (Todo, Sun, and
Yokoo 2014). However, this class of rules does not satisfy
the core-selecting property.

Preliminaries
In this section we introduce the exchange problem with mul-
tiple indivisible goods studied in this paper as well as several
properties of exchange rules that have been discussed in the
literature.

Model
We have a set of agents N = {1, . . . , n} and a finite set
of heterogeneous indivisible goods K. An assignment x =
(x1, . . . , xn) is a partition of K into n subsets, where xi is
the bundle assigned to agent i. We denote by X the set of all
possible assignments.

The assignment of the goods to the agents is made based
on the agent preferences, which are orders/rankings on the
subsets of the goods. Since the set of possible bundles grows
exponentially with the number of available goods, we need
to represent a preference compactly in order to handle a large
number of goods. In this paper we focus on lexicographic
preferences domain, in which the preference over all sub-
sets of goods can be obtained base on the linear order of the
goods.
Definition 1 (Lexicographic Preference Domain). Let O be
the set of all possible linear orderings over K. The lexico-
graphic preference P associated with a linear ordering �∈
O is defined as follows: for any A,B ⊆ K, we have APB
iff there exists k∗ ∈ A \B such that {k ∈ B | k � k∗} ⊆ A
holds. We denote by L the lexicographic preference domain,
i.e., the set of preferences over the bundles of goods that can
be represented by lexicographic preferences.
In the rest of this paper, we assume that agent preferences
are lexicographic. Since there exists a bijection between O
and L , whenever there is no ambiguity, for any i ∈ N , we
assume Pi denotes the lexicographic preference associated
with�i of the considered exchange problem, andRi denotes
the preorder associated with Pi (which includes reflexivity).

An exchange problem (e,�) is defined by an initial en-
dowment e = (ei)i∈N ∈ X and by a preference profile
� = (�i)i∈N ∈ On of linear orders, where �i denotes
the linear order representing the preferences of agent i. For
any i ∈ N and any �′i∈ O , we denote by (�′i,�−i) the
preference profile (�1, . . . ,�i−1,�′i,�i+1, . . . ,�n).

Properties of Exchange Rules and Known Results
An exchange rule can be described as a function f : X ×
On → X that maps any exchange problem to a possible as-
signment. Let fi(e,�) denote the bundle assigned to agent
i under assignment f(e,�).
Definition 2 (Individual Rationality). For an exchange
problem (e,�), an assignment x ∈ X is said to be individ-
ually rational if xiRiei holds for any agent i. An exchange
rule f is said to be individually rational (IR) if for any ex-
change problem (e,�), f(e,�) is individually rational.

In other words, for every agent, as long as she truthfully
reports her preference, an agent never worse off by partici-
pating in an IR exchange rule. Under such an exchange rule,
every agent is incentivized to participate.
Definition 3 (Pareto Efficiency). For an exchange problem
(e,�), an assignment x ∈ X is said to be Pareto domi-
nated by another y ∈ X if (i) for any agent i ∈ N , yiRixi
holds, (ii) for at least one agent j ∈ N , yjPjxj holds. An
exchange rule f is said to be Pareto efficient (PE) if for any
exchange problem (e,�), f(e,�) is not Pareto dominated
by any assignment.
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When an assignment x is Pareto dominated by another
assignment y, all the agents weakly prefer y to x. Thus,
choosing x is suboptimal. In this sense, using a PE exchange
rule is “socially optimal”, i.e., it never chooses a suboptimal
assignment.

Definition 4 (Core Selection). For an exchange problem
(e,�), a coalition T ⊆ N blocks an assignment x ∈ X if
there exists an assignment y ∈ X such that (i) for any agent
i ∈ T , yi ⊆

⋃
j∈T ej , (ii) for any agent i ∈ T , yiRixi, (iii)

for at least one agent j ∈ T , yjPjxj . The core C(e,�) is the
set of all assignments that are not blocked by any coalition.
An exchange rule f is said to be core-selecting (CS) if for
any exchange problem (e,�), f(e,�) ∈ C(e,�) holds.

Intuitively, the existence of a set of agents T that blocks an
assignment means that they jointly have incentives to form
a cartel and get higher utility by leaving behind all the other
agentsN \T . When an exchange rule is CS, no set of agents
has such an incentive, and thus they are expected to partici-
pate without forming any such cartel. In this sense, CS can
be regarded as a refinement of IR to any coalition of agents.
By setting T = N , the definition coincides with that of PE.
Thus, if an exchange rule is CS, it is also PE and IR.

Strategy-proofness, which is a well-known property of ex-
change rules, is a quite strong incentive constraint. Under a
strategy-proof exchange rule, for every agent, reporting her
true preference is a dominant strategy. Sönmez (1999) stud-
ied a broad class of economic environments that contains
exchange problems as a special case. One of his findings re-
veals that under any strict preference domain, no exchange
rule exists that is IR, PE, and strategy-proof when at least
one agent is endowed with more than one good. From this
result, even under the lexicographic preference domain, no
exchange rule exists that is IR, PE, and strategy-proof.

Our focus in this paper is to design an exchange rule that
is IR, PE, and “hard to manipulate,” while it is inevitably not
strategy-proof.

Augmented Top-Trading-Cycles Rule
Let δ : K → N be the function that maps for any good
k ∈ K to its owner δ(k) in e. Next we describe our ex-
change rule that was inspired by the well-known Gale’s Top-
Trading-Cycle (TTC) procedure:

Definition 5 (Augmented TTC procedure). For any ex-
change problem (e,�), the Augmented TTC (ATTC) pro-
cedure ϕ runs as follows:

1. For the initial step, create a directed graph G1 =
(V1, E1) such that V1 = K is the set of vertices and E1

is the set of arrows, where each (k, k′) ∈ E1 is directed
from each k ∈ K to k′, which is the most preferred good
in K according to �δ(k). Set t← 1.

2. Let Ct be the set of the vertices of Vt included in a cycle in
Gt = (Vt, Et). For any good k ∈ Ct and any (k, k′) ∈ Et
assign k′ to δ(k). Create a new set of vertices Vt+1 =
Vt\Ct and a new set of arrowsEt+1, where each (k, k′) ∈
Et+1 is directed from any k ∈ Vt+1 to k′, which is the
most preferred good in Vt+1 according to �δ(k).

(a) G1 (b) G2

Figure 1: Example of the ATTC procedure

3. If Vt+1 = ∅ then quit the procedure. Otherwise set t ←
t+ 1 and go back to (2).
During the ATTC procedure, each agent is divided into

several atomic agents, each of which is assigned exactly one
good from the original agents’ endowments. Then, the stan-
dard TTC procedure is applied to these atomic agents. The
ATTC procedure generalizes the TTC procedure, since if
each agent is initially endowed with a single good, it be-
comes identical to the TTC procedure. The TTC procedure
is well-known because whenever each agent is initially en-
dowed with a single good, this procedure is CS and strategy-
proof.

Since at any step t of the ATTC procedure at least one
cycle is contained in the ATTC graph Gt, and such a cycle
contains at least one good, it is clear that the ATTC proce-
dure runs in polynomial time.
Example 1. Consider N = {1, 2}, K = {α, β, γ}, and
an exchange problem (e,�) = (({α, β}, {γ}), (�1,�2))
where γ �1 β �1 α and β �2 α �2 γ hold.

Figure 1 (a) shows the ATTC graph G1. There exists a
cycle that contains β and γ, and the ATTC procedure as-
signs γ to δ(β) = 1 and β to δ(γ) = 2. Figure 1 (b) shows
the ATTC graph G2. There exists a cycle that only contains
α, and the ATTC procedure assigns α to δ(α) = 1. Thus,
ϕ1(e,�) = {α, γ} and ϕ2(e,�) = {β} hold.

In Example 1, agent 1 obtains β and γ by misreporting�′1
where β �′1 γ �′1 α holds. Since {β, γ}P1ϕ1(e,�) holds,
the ATTC procedure is not strategy-proof.

Core Selection
In this section we show that the ATTC procedure inherits
the CS property of the TTC procedure for the lexicographic
preference domain.
Theorem 1. The ATTC procedure ϕ is CS.

Proof. For the sake of contradiction we assume that there
exists an exchange problem (e, (�i)i∈N ) such that the as-
signment x, returned by the ATTC procedure for such prob-
lems, is blocked by coalition T . Let y ∈ X be an assignment
satisfying the conditions (i), (ii), and (iii) in Definition 4.

Let St be the subset of agents of N that obtain a good
during round t of the ATTC procedure, let Tt = T ∩ St,
and let xti be the good obtained by agent i ∈ St during
this round (this xti is unique since the arrows from all the
goods belonging to agent i point to the same good during
the step t of the ATTC procedure). For any i ∈ N , let Li
represents the list of the goods of K ranked by �i, such that
∀r ∈ {1, . . . , |K|}, Li(r) is the rth best good for agent i.
Let L−1i (k) denote the index of good k ∈ K in Li.
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For any round t of the ATTC procedure, let Ht
1 be the

property where ∀i ∈ Tt, x
t
i ∈ yi. Let Ht

2 be the property
where ∀i ∈ Tt,∀j ∈ N, xti ∈ ej ⇒ j ∈ T . Finally let Ht

3

be the property where ∀i ∈ Tt,∀r ∈ {1, . . . , L−1i (xti) −
1}, Li(r) ∈ xi ⇔ Li(r) ∈ yi. We prove Ht

1, Ht
2 and Ht

3 by
induction for any round t.
Base case: For H1

1 , ∀i ∈ T1, we have x1i = Li(1). yiRixi
implies that x1i ∈ yi. For H1

2 , ∀i ∈ T1, let j ∈ N
be such that x1i ∈ ej . By contradiction, if j /∈ T , then
x1i /∈

⋃
i′∈T ei′ . But byH1

1 we know that x1i ∈ yi. Therefore
there is a contradiction, and j ∈ T . Finally, H1

3 is trivially
true since ∀i ∈ T1, L

−1
i (x1i ) = 1.

Induction step: First, we prove Ht
3. By contradiction we as-

sume that ∃i ∈ Tt and ∃r ∈ {1, . . . , L−1i (xti)−1} such that
Li(r) ∈ yi and Li(r) /∈ xi By hypothesis yi ⊆

⋃
i′∈T ei′ ,

so δ(Li(r)) ∈ T . Furthermore Li(r) cannot belong to Gt
because Li(r) �i xti and xti is the best remaining good for
agent i in Gt. So ∃l ∈ {1, . . . , t − 1} and ∃j ∈ Sl \ {i}
such that xlj = Li(r). Since δ(Li(r)) ∈ Tl and by repeat-
edly applying H l

2 along the cycle of Gl containing xlj , we
know that j ∈ T . By H l

1 we have Li(r) ∈ yj since j ∈ Tl

and xlj = Li(r). There is a contradiction because we have
Li(r) ∈ yj and Li(r) ∈ yi with i 6= j. So we proved that
∀i ∈ Tt,∀r ∈ {1, . . . , L−1i (xti)−1}, Li(r) ∈ yi ⇒ Li(r) ∈
xi. This result also implies that Li(r) ∈ xi ⇒ Li(r) ∈ yi,
since based on our hypothesis, we know that yiRixi.

Second, we proveHt
1. Let i ∈ Tt.Ht

3 implies that xti ∈ yi
since based on our hypothesis, we know that yiRixi,

Finally, we prove Ht
2. Let i ∈ Tt and j ∈ N such that

xti ∈ ej . By contradiction, if j /∈ T , then gti /∈
⋃
i′∈T ei′ .

But by Ht
1 we know that xti ∈ yi. Therefore there is a con-

tradiction, and j ∈ T .
Because Ht

1 and Ht
3 are true for all t, for any agent i ∈

T , yi = xi must hold. Thus, x is not blocked by T . This
contradicts the assumption and concludes the proof.

Incentives
In practice, even if an agent is selfish and hopes to benefit by
misreporting, her computation power is limited (Bartholdi,
Tovey, and Trick 1989). Under this “bounded rationality”
assumption, we expect that an agent will refrain from mis-
reporting, if she needs to solve a NP-hard problem to find a
beneficial manipulation. We show in this section that finding
a beneficial preference misreport in the ATTC procedure is
NP-hard, which gives agents reasonable incentives to report
their true preferences.

We formalize the manipulation problem on the ATTC pro-
cedure as follows:
Definition 6 (BENEFICIAL-MISREPORT).
Instance: an exchange problem (e,�), an agent i ∈ N .
Objective: find a misreport �′i∈ O such that
ϕi(e, (�′i,�−i))Piϕi(e,�).
To show the NP-hardness of BENEFICIAL-MISREPORT,

we introduce the following problem:
Definition 7 (ALMOST-CONSISTENT-MONOTONE (ACM)
3SAT).

Instance: a collection C = {c1, . . . , cm} of m clauses on
a set U of variables such that all clauses have exactly
three literals. The set of possible clauses is restricted to
clauses with only positive literals and to clauses with only
negative literals (w.l.o.g., we assume that the indices of
the clauses with only positive literals are always lower
than the indices of the clauses with only negative literals).
Furthermore the first literals of them−1 first clauses are
consistent.

Objective: find a truth assignment of the variables satisfy-
ing all the clauses.
ACM 3SAT corresponds to the MONOTONE 3SAT prob-

lem restricted to instances where the first literals of their
m−1 first clauses are consistent. MONOTONE 3SAT is NP-
hard (Gold 1978).
Lemma 1. ACM 3SAT is NP-hard.

We omit the proof due to space limitations.
Before introducing our complexity result we introduce

some notations for the ACM 3SAT problem. Let M =
{1, . . . ,m} and L = {1, 2, 3}. Let I =M×L be the set of
literal indices. For any l ∈ L, let clr denote the lth literal of
cr. Let µ ∈M be the index of the first clause with only neg-
ative literals, i.e., for all r ∈ M, if r < µ then cr only con-
tains positive literals, and if r ≥ µ then cr only contains neg-
ative literals. Finally let I(c) = {(r, l) ∈ I | clr = c} be the
set of all literal indices that corresponds to literal c. To sim-
plify the notations we also consider function first(c) which
returns for any literal c the pair of indices (r′, l′) ∈ I(c) with
the smallest value for the first component. We also consider
for any literal c and any r ∈ M such that ∃l ∈ L with
(r, l) ∈ I(c), function next(c, r, l), which returns the pair
of indices (r′, l′) ∈ I(c) that follows (r, l) in I(c) when we
order the pair of indices in increasing order by the first com-
ponent’s value. (when such an element does not exist next
returns (0, 0)). Now we are able to show the main result:
Theorem 2. BENEFICIAL-MISREPORT is NP-hard.

Proof. To prove this result we show that, from an instance of
ACM 3SAT, we can build in polynomial time an instance of
BENEFICIAL-MISREPORT, and from this instance’s optimal
solution we can construct a truth assignment of U that is
consistent with C, if such an assignment exists.

To any literal clr, we associate a good χlr. {χlr}(r,l)∈I con-
stitutes the endowment of agent i. Except for agent i, we
assume that the agents own only one good. To simplify no-
tations we identify a good with its owner. We first construct
the set of goods that agent i will try to acquire. We associate
to any clause cr of C good gr. These goods are the main
set of goods used to obtain a solution to the ACM 3SAT
problem. For any clause cr, agent i will be able to obtain
good gr by trading one of her goods from {χ1

r, χ
2
r, χ

3
r}. The

good used for this exchange by agent i must correspond to a
true literal based on the assignment of U we will construct.
Whenever agent i can acquire all the goods of {gr}r∈M, we
should be able to construct an assignment of U that is con-
sistent with C.

We need to establish some constraints on the set of goods
used by agent i to acquire the goods of {gr}r∈M to obtain
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consistent literals. No pair of them should correspond to a
variable and its negation. To avoid that, for any literal clr we
introduce good klr. Also for any (r, l) ∈ I such that r ≥ µ

and for any (s, t) ∈ I(¬clr) we create 3 goods αs,tr,l , β
s,t
r,l ,

and γs,tr,l . Figure 2 illustrates our construction. In this figure,
(i) a solid-line denotes the most preferred good, (ii) a dash-
line the second most preferred, (iii) a dots-line the third most
preferred, and (iv) a dashed-dotted line the fourth most pre-
ferred. Let clr be a positive literal and (s, t) ∈ I(¬clr). The
preferences of the agents are set up so that any path from
gr to χlr (resp. from gs to χts), in the ATTC graph, contains
the goods of {αr,lu,v}(u,v)∈I(¬clr) (resp. {γv,ws,t }(v,w)∈I(¬cts)

).
The agent preferences are also set up to force the exchange
between βr,ls,t and γr,ls,t whenever δ(βr,ls,t) does not acquire
αr,ls,t. Since βr,ls,t never belongs to a path from gr to χlr in
the ATTC graph, whenever χlr is used by agent i to acquire
the good gr (so αr,ls,t is traded but not βr,ls,t), goods γr,ls,t and
βr,ls,t are exchanged by their owners and no path is possible
anymore from gs to χts in the ATTC graph. Consequently
in such cases, agent i cannot use χts anymore to acquire gs.
So we preserved almost the consistency we were looking for
but not completely since agent i may still exchange first the
goods corresponding to negative literals. Below we explain
how we make this situation impossible.

We also need to force agent i to use only one of the goods
of {χ1

r, χ
2
r, χ

3
r} to acquire the good gr. For any (r, l) ∈ I we

introduce good plr, and for any s ∈ M we introduce goods
q1,2s and q2,3s . The preferences of the agents are such that if a
good χlr is used by agent i to obtain a good of {gs}s∈M then
the exchange between qt,t+1

r and pt+1
r is forced for any t ≥

l. In that case, no path from any good of {gs}s∈M to such
χtr is available in the ATTC graph anymore. Furthermore
the preferences are such that there is no path from a good of
{gs}s∈M to good χlr before all the goods χtr with t < l are
traded by agent i to obtain a good which cannot belong to
{gs}s∈M. Therefore we fulfill the condition where no two
goods of {χ1

r, χ
2
r, χ

3
r} are used by agent i to obtain a good

of {gs}s∈M. The preferences are also set up so that good
gr, with r < µ, can only be obtained by agent i by trading
a good of {χ1

r, χ
2
r, χ

3
r}. Therefore agent i cannot use one

of these three goods to obtain gs, with r 6= s, if she wants
to obtain the whole set of goods {gu}u∈M. The goods of
{χ1

r, χ
2
r, χ

3
r}, with r ≥ µ, can only be used by agent i to

obtain gr. So if agent iwants to obtain the whole set of goods
{gu}u∈M then it is clear that, for any r ∈M, she has to use
an object of {χ1

r, χ
2
r, χ

3
r} to obtain gr.

Finally, for any (r, l) ∈ I, we introduce good πlr to
force the goods of {gs}s∈M to be traded in increasing or-
der of their indices during the ATTC procedure. By doing
so we know that all the goods corresponding to the clauses
with only positive literals are traded before the goods corre-
sponding to the clauses with only negative literals start to be
traded. This is also why we focused on the monotonic ver-
sion of 3SAT for this proof. As a consequence we insure the
consistency of the truth assignment we are constructing.

We now define the agent preferences on the different

goods to obtain the above properties. For this proof we
only need to define the linear order on the best goods,
and an arbitrary order of the other goods will suffice.
In this proof we describe a preference as a tuple repre-
senting the preference order on the best goods. For any
r > 1, the preference of δ(gr) is (gr−1, k

1
r , k

2
r , k

3
r , gr).

The preference of δ(g1) is (k11, k
2
1, k

3
1, g1). For any klr,

let first(¬clr) = (s, t). If r < µ then the preference
of δ(klr) is (αr,ls,t, k

l
r). Otherwise the preference of δ(klr)

is (γs,tr,l , k
l
r). For any αs,tr,l , if next(clr, r, l) = (u, v) 6=

(0, 0) then the preference of δ(αs,tr,l ) is (αs,tu,v, β
s,t
r,l , α

s,t
r,l ).

Otherwise the preference of δ(αs,tr,l ) is (plr, β
s,t
r,l , α

s,t
r,l ). The

preference of δ(βs,tr,l ) is (αs,tr,l , γ
s,t
r,l , β

s,t
r,l ). For any γs,tr,l , if

next(cts, s, t) = (u, v) 6= (0, 0) then the preference
of δ(γs,tr,l ) is (βs,tr,l , γ

u,v
r,l , γ

s,t
r,l ). Otherwise the preference

of δ(γs,tr,l ) is (βs,tr,l , p
l
r, γ

s,t
r,l ). The preference of δ(p1r) is

(π1
r , q

1,2
r , p1r), of δ(p2r) is (q1,2r , π2

r , q
2,3
r , p2r), and the pref-

erence of δ(p3r) is (q2,3r , π3
r , p

3
r). The preference of δ(q1,2r ) is

(p1r, p
2
r, q

1,2
r ), and the preference of δ(q2,3r ) is (p2r, p

3
r, q

2,3
r ).

For any (r, l) ∈ I with r > 1, the preference of δ(πlr) is
(gr−1, χ

l
r, π

l
r). For any l ∈ L, the preference of δ(πl1) is

(χl1, π
l
1).

The last thing we need to establish is the true preferences
of agent i. They need to be such that agent i acquires all the
goods of {gr}r∈M for any beneficial misreport, but not if he
reveals her true preferences. These true preferences are de-
fined as (g1, . . . , gm, χ

1
m, χ

2
1, χ

3
1, χ

2
2, χ

3
2, . . . , χ

2
m, χ

3
m). By

revealing them, we can verify that agent i obtains, at the end
of the ATTC procedure, all her 3m + 1 best goods except
for good gm. The only way for her to improve this result is
to acquire all the goods of {gr}r∈M. We can easily show
that (i) we can build in polynomial time this instance be-
cause there are only O(m2) good, and (ii) whenever agent
i can beneficially manipulate the ATTC procedure, we can
construct in polynomial time from this manipulation a truth
assignment of the variables of U which is consistent with C.
On the other hand when such manipulation is not possible,
we can also easily show that no assignment of the variables
of U can be consistent with C. This contradicts the assump-
tion that P 6= NP since the NP-hard problem ACM 3SAT
is solvable in polynomial time.

Extended Model with Private Endowments
In this section, we consider the situation where each agent
can use multiple accounts, and the set of her accounts, as
well as her initial endowment, are private information. Each
agent can cheat exchange rule’s outcomes by pretending to
be multiple agents under different accounts (splitting ac-
counts). We assume that an agent can declare any preference
on each account. Thus, splitting accounts is clearly more
general than misreporting the preference of a single account.
However, to our surprise, it turns out that the spaces of pos-
sible outcomes by misreporting and splitting coincide in the
ATTC procedure.

Let us formally define splitting accounts. W.l.o.g., we can
assume manipulator i uses |ei| accounts, each of which is

911



Figure 2: Transformation of instance of ACM 3SAT into
instance of BENEFICIAL-MISREPORT

endowed with a single good. This is because in the ATTC
procedure, an agent is divided into atomic agents. Thus, the
outcome obtained by using less than |ei| accounts can be
also obtained by using |ei| accounts. Therefore, for an agent
i ∈ N , with initial endowment ei, a splitting manipulation
is described as a linear ordering profile (�k)k∈ei ∈ O |ei|.
Here, each �k indicates the linear order reported under the
account corresponding to the good k. Let S(ei) be the set of
all possible splitting manipulations for an initial endowment
ei. For an exchange problem (e,�), an agent i ∈ N , and a
splitting manipulation si ∈ S(ei), let ϕi(e, (si,�−i)) de-
note the bundle assigned to agent i when she uses the split-
ting manipulation si.

We clarify the relationship between misreporting and
splitting in the ATTC procedure. We show that for any split-
ting manipulation, there exists a preference misreport that
returns the same assignment to the manipulator.
Proposition 1 (Splitting→Misreport). Given an exchange
problem (e,�), a manipulator i ∈ N , and a splitting ma-
nipulation si ∈ S(ei), Algorithm 1 returns a misreport
�′i∈ O such that ϕi(e, (�′i,�−i)) = ϕi(e, (si,�−i)).

Proposition 1 is proven by showing that Algorithm 1 is
valid. The first loop of Algorithm 1 provides a splitting ma-
nipulation, where agent i obtains exactly the same set of
goods, but such that no two goods of agents i appear in the
same cycle during the ATTC procedure. This part is con-
venient to ease the proof. The second loop orders the best
goods of the manipulation according to their appearance dur-
ing the ATTC procedure. This second loop relies on the pro-
cedure insert, which inserts an element at the tail of a list,
and the procedure follow, which provides the good follow-
ing another one in a cycle. The two main ideas behind the
algorithm are the following: (i) if a good o is traded during
the ATTC procedure to obtain a good o′ then putting o′ in
top of �δ(o) does not change the outcome of the ATTC pro-
cedure because δ(o) owns only o, and (ii) if a good o′ cannot
be acquired by δ(o) (even by misreporting) then putting o in
top of �δ(o) does not change the outcome of the ATTC pro-
cedure. We omit the proof due to space limitations.

Algorithm 1 Splitting-to-Misreport
Input: e ∈ X , � ∈ On, i ∈ N , si ∈ S(ei)
Output: �′i∈ O

1: while A cycle C containing more than one good of ei
appears during the ATTC procedure with parameters
(e, (si,�−i)). do

2: Let o and o′ be two distinct goods of ei in C.
3: l← follows(C, o), l′ ← follows(C, o′)
4: Let �′o and �′o′ be any linear orders where the best

goods are respectively l and l′.
5: si ← (�′o,�′o′ , (�g)g∈ei\{o,o′}).
6: end while
7: Let L′i be an empty list, and O an empty set of goods.
8: while (K \O) ∩ ei 6= ∅ do
9: Run the ATTC procedure to (e, (si,�−i)) re-

stricted to the goods of K\O. Let C be the first cycle
encountered which contains a good õ of ei \O.

10: L′i ← insert(L′i, follows(C, õ)), O ← O ∪ C.
11: end while
12: Let �′i be any linear order where the best |L′i| goods are

ranked as in L′i.

Proposition 1 implies that, while splitting accounts pro-
vides much richer manipulations than misreporting prefer-
ences (and actually any misreport can be obviously repre-
sented as a splitting), the spaces of the possible outcomes by
splitting and misreport coincide.

We then consider the complexity of the problem of find-
ing a beneficial splitting manipulation in the ATTC proce-
dure: BENEFICIAL-SPLITTING. From the relationship be-
tween misreporting and splitting, and since Algorithm 1 runs
in polynomial time, we have the following corollary:

Corollary 1. BENEFICIAL-SPLITTING is NP-hard.

Conclusions
In this paper we investigated exchange problems where each
agent initially has a set of indivisible goods and a lex-
icographic preference. We proposed the augmented TTC
procedure, which is core-selecting and runs in polynomial
time. Concerning agents’ incentives, we showed that find-
ing a beneficial misreport in the augmented TTC procedure
is NP-hard, while it is inevitably not strategy-proof due to
Sönmez’s finding. Most of our results are also valid in cases
where the ownerships of endowments are private and unob-
servable so that each agent can use splitting manipulations.

Our future work will characterize the augmented TTC
procedure. Since the core assignment is not always unique,
there might be a different exchange rule that is also core-
selecting and runs in polynomial time. For such a charac-
terization, we must discover unique properties of the ATTC
procedure.
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