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Abstract

Many search and security games played on a graph can
be modeled as normal-form zero-sum games with strategies
consisting of sequences of actions. The size of the strategy
space provides a computational challenge when solving these
games. This complexity is tackled either by using the com-
pact representation of sequential strategies and linear pro-
gramming, or by incremental strategy generation of itera-
tive double-oracle methods. In this paper, we present novel
hybrid of these two approaches: compact-strategy double-
oracle (CS-DO) algorithm that combines the advantages of
the compact representation with incremental strategy genera-
tion. We experimentally compare CS-DO with the standard
approaches and analyze the impact of the size of the sup-
port on the performance of the algorithms. Results show that
CS-DO dramatically improves the convergence rate in games
with non-trivial support.

Introduction
Scalable algorithms have driven many recent applications
of game theory in domains ranging from security (Tambe
2011) to Poker (Sandholm 2010). We present a new algo-
rithm for strictly competitive games in which players have
sequential strategies, but cannot directly observe the im-
mediate effects of the actions of their opponent during the
game. The strategy of each player in these games is mod-
eled as a finite-horizon Markov Decision Process (MDP) and
we term these games as normal-form games with sequen-
tial strategies (NFGSS). In typical examples, the strategies
of the players correspond to a movement on an underlying
graph in time, such as maritime transit (Vanek et al. 2010;
2012), search games (McMahan, Gordon, and Blum 2003),
network interdiction (Washburn and Wood 1995), or se-
curing road networks (Jain et al. 2011; Jain, Conitzer, and
Tambe 2013). Other examples assume a similar structure
of strategies, but do not focus on strictly competitive sce-
narios (e.g., in the fare evasion domain (Yin et al. 2012;
Jiang et al. 2013)).

In spite of the sequential nature of these scenarios, the
existing works do not use the standard sequential model
of extensive-form games (EFGs; players are able to ob-
serve and react to some actions of the opponent) due to
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the computational difficulties. EFGs have a crucial prop-
erty called perfect recall that holds when the players per-
fectly remember the history of play and gained information.
Most of the exact (Koller, Megiddo, and von Stengel 1996;
von Stengel 1996; Bosansky et al. 2013) and approxima-
tive algorithms (Zinkevich et al. 2008; Hoda et al. 2010) re-
quire perfect recall to guarantee finding the solution. Unfor-
tunately, the games of perfect recall suffer from extremely
large state space1. In EFGs without perfect recall, however,
equilibria might not exist (see e.g. (Wichardt 2008)) and
finding maximin strategies is known to be very hard (Koller
and Megiddo 1992). Moreover, practical algorithms (Lanc-
tot et al. 2012) require strong assumptions on the game struc-
ture that do not in general hold in NFGSS.

Previous works therefore tackled the algorithmic chal-
lenges in NFGSS along two main lines: (1) using a com-
pact network-flow representation of strategies with linear
programming (McMahan 2006; Jiang et al. 2013), or (2) it-
erative, strategy-generation framework of double-oracle al-
gorithms (McMahan, Gordon, and Blum 2003; Halvorson,
Conitzer, and Parr 2009; Jain et al. 2011; Vanek et al. 2012;
Jain, Conitzer, and Tambe 2013). The central idea of the iter-
ative approach is to restrict the size of the game by limiting
the strategies that can be played, and then to iteratively relax
the restrictions by adding new strategies into the restricted
game based on best-response calculations in the complete
game. As we show, however, both of the existing approaches
have limited scalability.

In this paper we combine these two lines of research and
introduce new compact-strategy double-oracle (CS-DO) al-
gorithm for NFGSS. We first formally define NFGSS, de-
scribe the compact network-flow representation, and linear
program for computing strategies in this representation. We
follow by the description of the CS-DO algorithm. Our al-
gorithm is inspired by the sequence-form double-oracle al-
gorithm designed for solving EFGs (Bosansky et al. 2013)
that also uses compact representation, but which cannot be
used directly for NFGSS due to its requirement of perfect re-
call. CS-DO thus extends this idea to NFGSS and it is able
to: (1) handle the imperfect recall in this class of games, (2)

1A single player without considering an opponent would have
over 2 × 106 states when remembering the history in the smallest
graph (3× 6) in our experiments.
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operate with a more general structure of the utility values
that appear in NFGSS, and (3) use a more fine-grained ex-
pansion of the restricted game. Afterwards we turn to the ex-
perimental evaluation of CS-DO, where two previous lines
of work act as the baseline approaches. The results show
that CS-DO provides significant computation time improve-
ments and allows us to scale to much larger instances of
games. Moreover, we offer novel insights into the perfor-
mance of the double-oracle algorithms by (1) directly com-
paring two substantially different approaches of expanding
the restricted game, and (2) by demonstrating a strong corre-
lation between the size of the support in the complete game
and the relative performance of iterative algorithms.

Technical Background
This section describes the key components of normal-form
games with sequential strategies (NFGSS). We focus on
two-player zero-sum games, where N = {1, 2} is a set of
players; we use index i to denote one of the players, −i is
the opponent of player i. To solve a game we must find a
strategy profile (i.e., a strategy for each of the players) that
satisfies the conditions of a solution concept. Here we use
the Nash equilibrium (NE) solution concept that describes
behavior of agents under the assumption of rationality.

In normal-form games the pure strategies are associated
with actions that the players can take in the game. A mixed
strategy is a probability distribution over the set of all pure
strategies of a player and we denote by ∆ the set of all pairs
of mixed strategies for both players. For any pair of strate-
gies δ ∈ ∆ we denote utility U(δ) = U(δ1, δ2) to be the ex-
pected outcome for player 1 that tries to maximize this util-
ity, while player 2 minimizes it. A best response of player 1
to the strategy of the opponent δ2 is a strategy δBR

1 for which
U(δBR

1 , δ2) ≥ U(δ′1, δ2) for all strategies δ′1 ∈ ∆1. Best re-
sponse is defined similarly for player 2. A strategy profile
δ∗ = (δ∗1 , δ

∗
2) is a NE if for each player i it holds that the

strategy δ∗i is a best response to the strategy of the opponent.
A game can have multiple NE, but all of them have the same
expected utility for the players, called the value of the game
and denoted by V ∗.

Normal-Form Games with Sequential Strategies
In NFGSS, the strategy space of a player formally corre-
sponds to a finite-horizon, acyclic Markov decision process
(MDP). Each player follows a different MDP that represent
her observable states (we use lower index to indicate the
player). We denote Si to be the set of all states in MDP,
Ai to be the set of actions in the MDP of player i (called
marginal actions). We also use Ai as a function to refer
to a subset of actions applicable in particular state s ∈ Si

as Ai(s) ⊆ Ai. We allow stochastic transitions in MDPs;
T : Si × Ai × Si → R is the function that defines the tran-
sition probabilities. In NFGSS, a pure strategy is a selection
of an action to play in each state of the MDP, and a mixed
strategy is a probability distribution over pure strategies.

We define the utility function in NFGSS by following the
approach present in literature (e.g., see (McMahan 2006;
McMahan and Gordon 2007; Jiang et al. 2013)) and as-
sume that each combination of actions (ai, a−i) applicable

in some states si and s−i can have assigned a utility value
(further termed as marginal utilities). We denote this utility
value as U ((si, ai), (s−i, a−i)). The overall expected out-
come of the game can be then linearly composed from the
utility values assigned to combinations of marginal actions.
Formally, for a mixed strategy profile δ = (δi, δ−i) we set:

U(δ1, δ2) =
∑

S1×A1

∑
S2×A2

δ1(s1, a1)δ2(s2, a2) · U((s1, a1), (s2, a2))

(1)

where δi(si, ai) represents the probability that state si is
reached and then action ai is played in this state when
player i follows mixed strategy δi. This assumption is some-
times called a separability condition (Jiang et al. 2013).

Compact Representation of Strategies A separable util-
ity function allows the mixed strategies to be compactly rep-
resented as a network flow (McMahan 2006; Yin et al. 2012;
Jiang et al. 2013). We use x : S1 × A1 → R to repre-
sent the marginal probability of an action being played in a
mixed strategy of player 1, X denotes the set of all possible
network-flow strategies (we use y and Y for player 2). We
also use x(s1) to refer to the probability that the state would
be reached following this strategy. Formally, this probability
is calculated as the sum of marginal probabilities incoming
to state s1 and it must be equal to the sum of the marginal
probabilities assigned to the actions played in this state:

x(s1) =
∑

s′1∈S1

∑
a′
1∈A(s′1)

x(s′1, a
′
1) · T (s′1, a′1, s1) =

=
∑

a1∈A(s1)

x(s1, a1) ∀s1 ∈ S1 (2)

0 ≤ x(s1, a1) ≤ 1 ∀(s1, a1) ∈ S1 ×A(s1) (3)

We assume that each MDP has a starting root state, denoted
sr1 for player 1, with probability x(sr1) = 1.

Solving the Game We compute a pair of equilibrium
strategies x∗, y∗ using a linear program (LP) that is simi-
lar to sequence-form LP (Koller, Megiddo, and von Sten-
gel 1996; von Stengel 1996). Let vs2 be the expected util-
ity value that can be achieved from state s2 for player 2. In
equilibrium strategies, both players have the same expected
value in their root states (i.e., in vsr1 and vsr2 ) equal to the
value of the game V ∗. In NE, player 2 is playing the best
response by selecting such action a2 in state s2 that the ex-
pected utility value of the state vs2 is minimal. Therefore,
the expected utility vs2 is smaller than or equal to the ex-
pected value for each state-action combination (s2, a2) that
consists of immediate expected utility of this action and the
expected utility of the succeeding states s′2, weighted by the
probability that this state would be reached T (s2, a2, s

′
2):

max
x∈X

vsr2 (4)

vs2 ≤
∑

s1,a1∈S1×A1

x(s1, a1) · U((s1, a1), (s2, a2))+∑
s′2∈S2

vs′2T (s2, a2, s
′
2) ∀(s2, a2) ∈ S2 ×A(s2) (5)
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where x satisfies network-flow constraints (2)-(3). A similar
program can be constructed for player 2 with a minimizing
objective and reversing the inequality in constraint (5).

Compact-Strategy Double-Oracle Algorithm
This section describes the compact-strategy double-oracle
(CS-DO) algorithm. We first give an overview of the algo-
rithm, following by the detailed description of each of the
main components.

Our algorithm builds on the double-oracle algo-
rithm (McMahan, Gordon, and Blum 2003; Vanek et al.
2010; Jain et al. 2011; Jain, Conitzer, and Tambe 2013) that
repeats three steps until convergence: (1) create a restricted
game by limiting the set of pure strategies that each player
is allowed to play, (2) compute a pair of Nash equilibrium
strategies in this restricted game, and (3) compute a best re-
sponse strategy for each player against the current equilib-
rium strategy of the opponent. The best response may be any
pure strategy in the unrestricted game. This strategy is added
to the restricted game and may be a part of the solution in
the next iteration. The algorithm terminates if neither of the
best responses to the equilibrium strategies improve over the
value of the equilibrium strategies in the restricted game.

CS-DO does not use the pure strategies. Instead, the main
idea is to (1) create the restricted game by restricting the
players to play a specific implicit default strategy in each
node of their respective MDPs; (2) solve this restricted game
using the LP described in the previous section, and (3) grad-
ually relax this restriction by allowing new marginal actions
to be played for specific states of MDPs.

There are several notable differences between CS-DO
and the most related algorithm (Bosansky et al. 2013) that
makes the methods for creating, expanding, and maintain-
ing valid restricted game more complex. First, CS-DO ex-
pands two separate MDPs instead of a single EFG game tree.
Second, the utility value is defined for any pair of marginal
actions in NFGSS instead of only for the terminal states in
EFGs. Third, states in MDPs do not encode the complete
history and the assumption of perfect recall does not hold for
strategies in NFGSS. Finally, CS-DO allows a more fine-
grained expansion of the restricted game, where the best-
response algorithms can suggest only a single marginal ac-
tion to add to the restricted game.

Restricted Game
We use an example MDP to illustrate the methods for the
restricted game (see Figure 1). For brevity, we use a deter-
ministic MDP, however, all formulas and ideas hold for the
stochastic transitions as well.

The restricted game in CS-DO is determined by the sets
of states SR

i ⊆ Si and actions AR
i ⊆ Ai for each player (we

omit player index when not needed). We say that state s is
included in the restricted game iff s ∈ SR (states t1–t5 and
one terminal state in the example); we say that an included
state is expanded iff either there is some action playable in
this state in the restricted game (i.e.,AR(s) 6= ∅; states t1,t2,
and t5 in the example), or this state is terminal in the orig-
inal MDP (state after playing b10 in the example). Finally,

Figure 1: An example of a partially expanded determinis-
tic MDP representing a player’s strategy. Solid nodes and
edges represent the states and actions included in the re-
stricted game, the dashed ones are not included in the re-
stricted game.

we say that action a ∈ AR is fully expanded iff all the suc-
ceeding states that can be immediately reached by playing
this action (i.e., s′ ∈ S s.t. T (s, a, s′) > 0) are expanded in
the restricted game (actions b1, b4, and b10). The remaining
actions in the restricted game are not fully expanded (actions
b2 and b3).

The CS-DO algorithm assumes a default strategy to be
played in nodes that are not included, or not expanded in the
restricted game (e.g, choosing the leftmost action in the ex-
ample). Formally, the default strategy is a mixed strategy2

δDEF
i ∈ ∆i. As new states and actions are added into the re-

stricted game, the player can choose a strategy that differs
from the default strategy and that consists of actions added
to the restricted game. The algorithm assumes that whenever
action a is added into the restricted game, all immediate suc-
cessor states are also added into the restricted game.

Finally, we use x (or y for player 2) to represent the ex-
tended strategy in the complete game, which is created by
extending the strategy x from the restricted game with the
default strategy. Depending on which states and actions are
included in the restricted game, we put x(s, a) equal to:

• 0, if state s is expanded, but action a is not in AR
1 (s)

• x(s, a), if state s is expanded and action a is in AR
1 (s)

• x(s) · δDEF
1 ((s, a)|s) otherwise, where the marginal prob-

ability is calculated as a product of probability that this
state would be reached from its predecessors x(s), and
the probability distribution over actions in this state ac-
cording to the default strategy calculated as a conditional
probability δDEF

1 ((s, a)|s).

Maintaining a Valid Restricted Game The algorithm
needs to ensure that the strategy in the restricted game can
always be extended into a well-formed strategy in the com-
plete game – i.e., to keep the restricted game valid. How-
ever, naı̈vely adding new actions and states into the restricted
game can make the extended strategies malformed, causing
the double-oracle algorithm to converge to an incorrect re-
sult. This is due to the imperfect recall, since one state can
be reached using different combinations of actions.

2This strategy can be any arbitrary but fixed mixed strategy. We
use a pure default strategy that selects the first action according to
an arbitrary but fixed ordering of A(s).
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An example situation is depicted in Figure 1 (choosing the
leftmost action is the default strategy), where the extended
strategy violates the network-flow constraints in state t5. Ac-
cording to the LP of the restricted game, the marginal prob-
ability of action b10 equals to the marginal probability of ac-
tion b4. However, the overall incoming probability into the
state t5 is equal to b4 + b2 in the extended strategy due to
playing the default strategy in state t3.

The algorithm prevents these situations and whenever a
new state s is added into the restricted game, the algorithm
checks: (1) whether this state can be reached by following
the default strategy from a different state s′ that is already
included, but not yet expanded in the restricted game, and
(2) if this state s is not expanded in the restricted game yet,
whether it is possible to reach some different state s′′ that
is already included in the restricted game by following the
default strategy from s. If such a sequence of actions and
state s′ or s′′ is detected, all states and actions corresponding
to this sequence are also added into the restricted game.

Utility Values in Restricted Game The solution of a valid
restricted game is found with network-flow LPs constructed
from the restricted sets SR and AR for each player. How-
ever, the algorithm must also modify the utility function
to address the default strategy. Consider again our exam-
ple. State t4 is included in the restricted game, but it is not
expanded yet and the default strategy is used in this state.
In case there is a large negative utility assigned to actions
b7 and b8, the unmodified utility function overestimates the
value after playing action b3 and the solution of the restricted
game would not be optimal.

The algorithm thus uses a modified utility functionUR for
each action in the restricted game that is not fully expanded.
This modified utility function propagates the utility values
of all actions that will be played using the default strategy
in not expanded states from now on. Formally we define the
new utility function UR to be equal to U for each combina-
tion of actions in states, if either (1) both of these actions are
fully expanded in the restricted game, or (2) neither of these
actions is included in the restricted game. Otherwise, we add
to the utility of an action also the utility value corresponding
to the continuation of the strategy according to the default
strategy. From the perspective of player 1, for each not fully
expanded action a1 played in state s1, we use:

UR((s1, a1), (s2, a2)) = U((s1, a1), (s2, a2))+∑
s′1∈S1 :AR(s′1)=∅

∑
a′
1∈A(s′1)

UR((s′1, a
′
1), (s2, a2))·

δDEF
1 ((s′1, a

′
1)|(s1, a1)) (6)

where δDEF
1 ((s′1, a

′
1)|(s1, a1)) denotes the conditional prob-

ability of playing an action a′1 in state s′1 after playing action
a1 in s1 (this probability is zero if state s′1 is not reachable
after playing a1). The algorithm calculates utility values for
every state and action of the opponent (s2, a2) that can have
a non-zero extended strategy y.

Note that we use UR for any subsequent nodes s′1 and
actions a′1 in the definition. This is due to the possibility

Best Response: s - current state,y - extended strategy of the op-
ponent

1: if s is terminal then
2: return 0
3: for a ∈ A1(s) do
4: va ←

∑
s2∈S2,a2∈A2

y(s2, a2)U((s, a), (s2, a2))

5: for s′ ∈ S1 s.t. T (s, a, s′) > 0 do
6: va ← va +BR1(s

′, y) · T (s, a, s′)
7: maxAction← argmaxa∈A1(s) va
8: if maxAction is not in the default strategy or

there is a change in some successor of s then
9: backup s,maxAction

10: return vmaxAction

Figure 2: The best-response algorithm for player 1.

of action of the opponent a2 also being not fully expanded.
Since we assume that both MDPs forming strategy spaces
for the players are finite and acyclic, this modified utility
function is well-defined. CS-DO algorithm uses a two-step
dynamic program to calculate these values in order to avoid
repeated calculations:

Step 1: First, the algorithm calculates utility values UR

for each action of player 1 that is included but not fully ex-
panded in the restricted game, against all actions of the op-
ponent (s2, a2) that are either (1) included in the restricted
game (i.e., s2 ∈ SR

2 ∧ a2 ∈ AR
2 ), or (2) they can have a

non-zero probability in the extended strategy from the re-
stricted game (i.e., ∃s′ ∈ SR

2 : δDEF
2 ((s2, a2)|s′2) > 0). The

algorithm calculates the values according to Formula 6 us-
ing only original utility function U on the right side of the
equation.

Step 2: Next, the algorithm calculates utility values UR

for each action of player 2 that is included but not fully ex-
panded in the restricted game according to Formula 6, and
uses utility values UR calculated during the first step when
necessary on the right side of the equation.

Best-Response Algorithm
The best-response algorithm (BR) determines which states
and actions to add to the restricted game. For each player,
BR returns the set of best-response actions as well as the
expected utility value of the best response. Best response
is calculated against the current optimal extended strategy
of the opponent, so the default strategy of the opponent is
taken into account. BR is a depth-first search through the
unrestricted MDP selecting the best action to play in each
state (BR for player 1 is in Figure 2). In each state, the al-
gorithm calculates the expected utility value for each action
applicable in this state (line 4) and then recursively calcu-
lates the expected utility for each of the successors (line 6).
Finally, the algorithm selects the best action for this node
(line 7) and keeps it as a best-response candidate (line 9).
Best-response actions are then found by following the best-
response candidates from the root state.

There is one notable exception to the described behavior.
If the selected maxAction for some state s corresponds to
an action prescribed by the pure default strategy, this action
is stored as a best-response candidate only if some action
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a′ was selected in one of the successors of s and this ac-
tion a′ is not prescribed by the pure default strategy (line 8).
This condition ensures that the algorithm adds the default-
strategy actions into the restricted game only if necessary.

Convergence Analysis
CS-DO algorithm converges to a Nash equilibrium of the
complete game. The convergence follows from three steps:
(1) note that a best-response algorithm returns a value that
is strictly better for the player if and only if there exists an
action not included in the restricted game that is a part of the
best response; (2) if such an action does not exist for either
of the players, the value of the best responses must be equal
to the current value of the restricted game, as well as the
value of the complete game V ∗; (3) the algorithm is finite
because in each iteration either at least one action is added
to the restricted game, or the algorithm terminates.

Experiments
We experimentally compare the performance of the CS-DO
algorithm with the standard pure-strategy double-oracle al-
gorithm (PS-DO), and the algorithm solving the full linear
program using compact strategies (FULLLP). We use vari-
ants of search games inspired by existing games. The first
game is inspired by the maritime security problem (Transit
Game; (Vanek et al. 2012)), the second game is inspired by
the border security (Border Protection Game; (Bosansky et
al. 2013)). In both of these games, the evader tries to cross
an area represented as a graph, while the defender tries to
discover the evader. The evader receives a reward of 1 for
reaching the goal undetected, while the defender receives
a reward of 1 for encountering the evader. The games are
played for a fixed number of time steps and differ in the pro-
portional sizes of the strategy space for the players as well
as the size of the support for typical solutions. They are both
parameterizable, allowing us to evaluate performance across
different conditions.

Neither of the algorithms use any domain-specific knowl-
edge. Experiments were run using a single thread on a
standard PC. Each of the algorithms was given a maxi-
mum of 7 GB of memory for a process, and we used IBM
CPLEX 12.5 to solve the linear programs.

Experiment Settings
Transit Game The game is played on a grid, undirected
graph (see Figure 3, left subfigure). The evader tries to cross
the graph from left to right (the selection of a node in the left-
most column is the first move) and receives a small penalty
(0.02) for each step. The defender controls a single pa-
trolling unit that starts in the base (the black node). The
patrolling unit has limited resources and receives a large
penalty if it does not return to the base by the end of the
game. The movement of the units may fail with probability
0.1 (the unit stays in the same node). We vary the size of
the graph by increasing the number of the rows in the graph
(width), the number of the columns in the graph (length),
and the number of steps for both players.

Figure 3: Examples of the graphs for the search games. The
evader aims to cross from left to right.

Figure 4: Comparison of the computation times with in-
creasing size of the scenario in Transit Game. Length of the
graph is fixed to 2×width, the number of steps in the game
are set to length+2 (left graph) and length+4 (right graph).

Border Protection Game The game is played on a di-
rected graph (see Figure 3, right subfigure), where the evader
aims to cross safely from a starting node (E) to a destination
node (D), and the defender controls two patrolling units op-
erating in the selected nodes of the graph (the shaded areas
P1 and P2). Both patrolling units of the defender move si-
multaneously and may observe the signs of the recent pas-
sage in the visited nodes. Nature determines whether the
signs appear in a visited node (the probability is 0.1).

Results

The results are means from several runs (at least 10 for
smaller instances, the error bars in figures visualize 95%
confidence interval). In each run we used a different random
ordering of actions in states of MDPs to eliminate the effect
of some particular ordering that also determines the default
strategy in CS-DO.

Transit Game
Results in the Transit Game demonstrate the benefits of our
algorithm and show better scalability than both FULLLP and
PS-DO. We scaled the size of the scenario for fixed ratio
of the graph (length= 2×width) and fixed number of steps,
where steps=length+2, or steps=length+4. The results (see
Figure 4) show that CS-DO outperforms PS-DO by several
orders of magnitude even for the smallest scenarios. This is
caused by the exponential number of possible pure strategies
and relatively large support in the complete game (the size of
the support is typically 10− 25% of all marginal actions for
each player). These factors contribute to the large number of
iterations and slow convergence of PS-DO.
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CS-DO also outperforms FULLLP and the difference is
increasing with the increasing size of the game. This is due
to the fact that CS-DO is still able to create substantially
smaller restricted games (only ≈ 20% of all marginal ac-
tions for each player are part of the restricted games). On the
other hand, FULLLP outperforms PS-DO due to the com-
pact strategy representation and the fact that the depicted
graph sizes fit into memory (the largest game in this compar-
ison has 10, 503 marginal actions for the evader and 13, 210
for the defender).

The following table shows the cumulative times the al-
gorithms spent while solving LP, calculating best responses
(BR), and constructing the restricted game (RG), in a sce-
nario with width 5, length 10, and 12 steps:

Algorithm Iterations Total [s] LP [s] BR [s] RG [s]
FULLLP - 100 90 - -
PS-DO 585 907 190 72 576
CS-DO 146 53 18 31 1

Results show a large number of iterations of PS-DO causing
the algorithm to be the slowest. The majority of the time is
used to construct and solve the restricted game. Constructing
the restricted game is more time consuming since computing
the utility value for a pair of pure strategies is much more ex-
pensive than calculating utility for pair of marginal actions.
CS-DO, on the other hand, converges rather quickly and the
majority of time is used to calculate best-responses. This is
because the size of LP for the restricted game is rather small
(on average it adds 675 evader actions (25% of all marginal
actions) and 793 defender actions (24%)).

Better scalability of CS-DO is apparent when we further
increase the sizes of the graphs. While CS-DO successfully
solves even large graphs (width set to 10 − 11) in less than
3 hours, FULLLP fails to construct such games due to the
memory constraints (the game has 26, 610 marginal actions
of the evader and 33, 850 actions of the defender). Moreover,
FULLLP is often unable to solve the largest instances that fit
into memory in 60 hours.

Border Protection Game This game is better suited for
the standard double-oracle algorithm, since it has unequal
sizes of the strategy space (the defender controls two units
that move simultaneously and can observe signs in nodes,
while evader observes only its own position), and extremely
small support solutions (≈ 3% of the marginal actions for
each player). The left subfigure in Figure 5 shows the com-
putation times. The results confirm that the performance
of PS-DO dramatically improves. Both double-oracle algo-
rithms perform comparably and they both significantly out-
perform FULLLP. The time breakdown for the game with 5
steps is shown in the following table:

Algorithm Iterations Total [s] LP [s] BR [s] RG [s]
FULLLP - 12,177 12,174 - -
PS-DO 9 9.5 0.05 8.13 0.52
CS-DO 11 13 0.2 8.8 1.92

Both double-oracle algorithms are extremely efficient at
finding all strategies needed for solving the game. CS-DO
adds less than 7% of all marginal actions for the evader and

Figure 5: (Left) Comparison of computation times for Bor-
der Protection Game with graph from Figure 3 and increas-
ing number of steps. (Right) Comparison of the relative per-
formance of the DO algorithms depending on the size of the
support.

less than 3% for the defender. The slightly worse perfor-
mance of CS-DO is a result of additional overhead when
expanding the restricted game, and the slightly larger num-
ber of iterations due to the more conservative expansion of
the restricted game.

Support Size Analysis
The previous results suggest that there is a correlation be-
tween the size of the support in the complete game and the
performance of the DO algorithms. We analyze this factor
in more detail by using the Transit Game to produce games
with differing sizes of the support. We alter the utility values
for the evader’s reward from 1 to 20 and her penalty for a
time step from 0.01 to 2. We ran the experiments on small
graphs of width 4 and 5, where FULLLP performs well.

The right subfigure in Figure 5 shows the relative per-
formance of the double-oracle algorithms with respect to
FULLLP. The x-axis shows the size of the support for the
solution relative to the complete game, calculated by multi-
plying the proportional support sizes for both players. The
results show that there is a strong correlation between these
two factors (correlation coefficients are 0.715 for CS-DO
and 0.729 for PS-DO); the double-oracle algorithms typi-
cally perform worse with larger support. Moreover, the com-
parison shows that CS-DO is less sensitive to the changes in
the size of the support (see the linear fit of data, note the log-
arithmic y-scale). These experimental results demonstrate
that the size of the support can be a good indicator of the
expected performance of the iterative approach in practice.

Conclusions
This paper presents a novel hybrid algorithm for solving
normal-form games with sequential strategies that combines
a compact representation with incremental strategy genera-
tion. Experimental results confirm that our novel algorithm
outperforms existing approaches and scales to much larger
scenarios. Moreover, this paper provides unique insights into
the performance of double-oracle algorithms by comparing
two substantially different methods of incremental strategy
generation and correlating their relative performance to the
size of the equilibrium support.
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The presented algorithm and experimental results can
stimulate future research. Primarily, our approach can be tai-
lored to specific domains and deployed in many real-world
scenarios. Secondly, the main idea of our algorithm, the con-
cept of a default strategy to be played in local states of the
players and incremental relaxation of this restriction, can
transferred to more generic models such as decentralized
MPDs, or stochastic games. Finally, the experimental results
on support size suggest the directions for theoretical analysis
of the convergence rate for double-oracle algorithms.
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