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Abstract

School choice programs are implemented to give stu-
dents/parents an opportunity to choose the public school
the students attend. Controlled school choice programs
need to provide choices for students/parents while
maintaining distributional constraints on the balance on
the composition of students, typically in terms of so-
cioeconomic status. Previous works show that setting
soft-bounds, which flexibly change the priorities of stu-
dents based on their types, is more appropriate than set-
ting hard-bounds, which strictly limit the number of
accepted students for each type. We consider a case
where soft-bounds are imposed and one student can be-
long to multiple types, e.g., “financially-distressed” and
“minority” types. We first show that when we apply a
model that is a straightforward extension of an exist-
ing model for disjoint types, there is a chance that no
stable matching exists. Thus, we propose an alternative
model and an alternative stability definition, where a
school has reserved seats for each type. We show that
a stable matching is guaranteed to exist in this model,
and develop a mechanism called Deferred Acceptance
for Overlapping Types (DA-OT). The DA-OT mecha-
nism is strategy-proof and obtains the student-optimal
matching within all stable matchings. Computer simu-
lation results illustrate that the DA-OT outperforms an
artificial cap mechanism, where the number of seats for
each type is fixed.

Introduction
The theory of two-sided matching has been developed and
has been applied to various markets in practice.1 Also, there
is a growing interest for this topic among AI and multia-
gent systems researchers, e.g., handling optimization prob-
lems in kidney exchange (Awasthi and Sandholm 2009),
compactly representing preferences (Pini, Rossi, and Ven-
able 2014), handling partial preferences (Drummond and
Boutilier 2013), and so on.

In many application domains, various distributional con-
straints are often imposed on an outcome. For example,
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1See Roth and Sotomayor (1990) for a comprehensive survey
of many results in this literature.

regional maximum quotas are imposed in the Japan Res-
idency Matching Program, which organizes matching be-
tween medical residents and hospitals. To avoid placing too
many doctors in urban areas and causing doctor shortage in
rural areas, the Japanese government now imposes a regional
maximum quota on each region of the country (Kamada and
Kojima 2014). Regional maximum quotas are utilized in var-
ious contexts, such as Chinese graduate school admissions,
Ukrainian college admissions, Scottish probationary teacher
matching, among others (Kamada and Kojima 2014). Fur-
thermore, there are many matching problems in which min-
imum quotas are imposed (Fragiadakis et al. 2012; Goto et
al. 2014). School districts may need at least a certain number
of students in each school in order for the school to operate,
as in college admissions in Hungary (Biró et al. 2010). The
cadet-branch matching program organized by United States
Military Academy imposes minimum quotas on the number
of cadets who can be assigned to each branch (Sönmez and
Switzer 2013).

Yet another type of distributional constraint dealt with in
this paper is diversity constraints in school choice programs.
Such programs are implemented to give students/parents an
opportunity to choose the public school the students attend.
However, a school is required to satisfy balance on the com-
position of students, typically in terms of socioeconomic
status. Controlled school choice programs need to provide
choices for students/parents while maintaining distributional
constraints.

A seminal work by Abdulkadiroglu and Sonmez (2003)
proposes using the Deferred Acceptance (DA) mechanism
in school choice programs. Kojima (2012) considers a
model where there are two types of students, i.e., minor-
ity and majority, and shows that setting hard-bounds for
the number of majority students may hurt the minority
students. To overcome this shortcoming, Hafalir, Yenmez,
and Yildirim (2013) propose soft-bounds for the number
of minority students, i.e., schools give higher priority to
minority students up to a certain number. Kominers and
Sönmez (2012) consider a model where each seat/slot of
one school has a different priority ranking for students. This
model can represent certain types of affirmative action and
can be considered a generalization of (Hafalir, Yenmez, and
Yildirim 2013). Ehlers et al. (2014) generalize the model
in (Hafalir, Yenmez, and Yildirim 2013) to cases where the
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number of student types can be more than two.
Our work is based on Ehlers et al. (2014) and exam-

ines a more general case where one student can belong to
multiple types, e.g., a student belongs to both ‘financially-
distressed” and “minority” types. Although we can assume
all types are disjoint by enumerating all combinations of
types and consider each combination a different type (e.g.,
financially-distressed minority, financially-distressed major-
ity, financially-sound minority, and financially-sound major-
ity), setting an appropriate quota for each finely divided type
would be difficult. Furthermore, when the number of types
increases, considering all combinations and setting appro-
priate goals for each type combination becomes impractical.
As far as the authors aware, no previous work has consid-
ered a model where a student can belong to multiple types
with soft-bounds.

In this paper, we first show a model that is a straightfor-
ward extension of the model used in Ehlers et al. (2014). It
turns out that we cannot guarantee the existence of a sta-
ble matching in this model. Thus, we propose an alternative
model and an alternative stability definition, where a school
has reserved seats for each type, and stability is defined
based on the number of students who are assigned to the re-
served seats. We show that a stable matching is guaranteed
to exist and develop a mechanism called Deferred Accep-
tance for Overlapping Types (DA-OT) that obtains a stable
matching. The DA-OT mechanism is strategy-proof and ob-
tains the student-optimal matching within all stable match-
ings. We also show computer simulation results, which il-
lustrate that the DA-OT outperforms an artificial cap mech-
anism, where the number of reserved seats of each type is
fixed.

Model for controlled school choice program
Basic model
We first show a basic model that is a straightforward exten-
sion of the one presented in Ehlers et al. (2014). A market is
a tuple (S,C, T, τ,X,�S ,�C , qC , pC,T ), where each com-
ponent is defined as follows:
• finite number of students S = {s1, s2, . . . , sn},
• finite number of schools C = {c1, c2, . . . , cm},
• type space T = {t1, t2, . . . , tk},
• type function τ : S → 2T , where τ(s) is the set of types

to which student s belongs,
• set of contracts X = S × C, where (s, c) ∈ X means

student s is matched to school c,
• students’ preference profile �S= (�s1 , . . . ,�sn), where
�s is the strict preference relation of student s ∈ S over
contracts related to s, i.e., (s, c) �s (s, c′) means that
student s strictly prefers school c over school c′,
• schools’ priority profile �C= (�c1 , . . . ,�cm), where

each �c is the strict priority ranking of school c ∈ C over
contracts related to c, i.e., (s, c) �c (s

′, c) means that stu-
dent s has a higher priority ranking than student s′ to be
enrolled at school c,

• vector of maximum quotas qC = (qc)c∈C , where qc is the
maximum quota (capacity) of school c ∈ C,

• vector of soft-bounds pC,T = (pc1,T , . . . , pcm,T ), where
each pc,T = (pc,t1 , . . . , pc,tk) represents type specific
soft-bounds, i.e., pc,t is a (non-binding) target quota of
students with type t that school c is supposed to accept.

We assume |τ(s)| ≥ 1, i.e., a student can belong to multi-
ple types. This is the only essential difference between our
model and the one in Ehlers et al. (2014), which assumes
|τ(s)| = 1. To be more precise, the model in Ehlers et
al. (2014) applies two parameters, i.e., a floor and a ceil-
ing, that specify a non-binding target range. In this paper, to
simplify our model and to make theoretical analysis more
tractable, we use only one parameter that corresponds to the
floor for each school and each type.2

For notational simplicity, we assume each contract
(s, c) ∈ X is acceptable for both s and c. This assumption
is not crucial and the results obtained in this paper still hold
when this assumption is relaxed, i.e., when a student (or a
school) considers some schools (or students) unacceptable.
We also assume

∑
c∈C qc ≥ n holds, i.e., the total capacity

of the schools is large enough to accept all the students. We
assume

∑
t∈T pc,t ≤ qc holds for all c ∈ C, i.e., target quo-

tas can be satisfied without violating the maximum quota.
For X ′ ⊆ X , let X ′s denote {(s, c) ∈ X ′ | c ∈ C}, and

X ′c denote {(s, c) ∈ X ′ | s ∈ S}. Also, let X ′c,t denote
{(s, c) ∈ X ′ | s ∈ S, t ∈ τ(s)}.

We say X ′ is feasible if |X ′s| = 1 and |X ′c| ≤ qc hold
for all s ∈ S and c ∈ C. We call a feasible set of contracts
a matching. Let X denote a set of matchings. X ′ ∈ X is
student-optimal within X if X ′s �s X

′′
s or X ′s = X ′′s hold

for all X ′′ ∈ X and s ∈ S. A mechanism is a function that
takes a profile of students’ preferences as input and returns
matching X ′. We say a mechanism is strategy-proof if no
student ever has any incentive to misreport her preference,
regardless what the other students report.

Let us introduce two conditions that compose stability.

Definition 1 (fairness). We say student s has justifiable
envy toward s′ 6= s in matching X ′, where (s, c), (s′, c′) ∈
X ′, if the following conditions hold: (s, c′) �s (s, c),
(s, c′) �c′ (s′, c′), and ∀t ∈ τ(s′) \ τ(s), |X ′c′,t| > pc′,t
(or τ(s′) \ τ(s) = ∅). We say that matching X ′ is fair if no
student has justifiable envy. We say a mechanism is fair if it
always gives a fair matching.

Basically, student s can have justifiable envy toward an-
other student s′, when s would rather be matched to school
c′ than her current school c, and she has a higher priority
ranking at c′ than student s′. However, if s′ belongs to type
t (and s does not belong to it), and the number of type t stu-
dents accepted to c′ is less than or equal to pc′,t, the envy of
s toward s′ cannot be justified.

Definition 2 (nonwastefulness). We say student s claims an
empty seat of c′ in matching X ′, where (s, c) ∈ X ′, if the
following conditions hold: (s, c′) �s (s, c) and |X ′c′ | < qc′ .

2In principle, extending our model and mechanism to handle
a floor and a ceiling for each type is rather straightforward. Since
these quotas are soft-bounds, they can be treated in a similar way.
However, this change makes the notations and descriptions ex-
tremely verbose. Thus, we decided to apply a simpler model.
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Also, we say student s claims an empty seat of c′ by type in
matching X ′, where (s, c) ∈ X ′, if the following conditions
hold: (s, c′) �s (s, c) and ∃t ∈ τ(s), |X ′c′,t| < pc′,t. We
say that matching X ′ is nonwasteful if no student claims
an empty seat or claims an empty seat by type. We say a
mechanism is nonwasteful if it always gives a nonwasteful
matching.

We say a matching is stable if it is fair and nonwasteful.
When |τ(s)| = 1 for all s ∈ S, our definition of stability
becomes equivalent to fairness under the soft-bounds and
nonwastefulness used in Ehlers et al. (2014).

Next, let us show a case where no stable matching exists.
Example 1. Assume S = {s1, s2, s3, s4}, C = {c1, c2, c3},
T = {t1, t2, t3}, τ(s1) = {t3}, τ(s2) = {t1, t2}, τ(s3) =
{t1}, and τ(s4) = {t2}. Also assume qc1 = 2, pc1,t1 = 1,
pc1,t2 = 1, pc1,t3 = 0, qc2 = 1, and qc3 = 1. We assume
pc2,t and pc3,t are 0 for all t. The priorities of all schools
are identical, i.e., �c: (s1, c), (s2, c), (s3, c), (s4, c). Also,
�s2 : (s2, c2), (s2, c1), (s2, c3). The preferences of the other
students are identical, i.e., �s: (s, c1), (s, c2), (s, c3).

Let us show that there exists no stable matching in this
situation. First, let us assume s2 is assigned to c1. If s3 or s4
is assigned to c1, s1 has justifiable envy. If no other student
is assigned to c1, s1 claims an empty seat of c1. Thus, s1
must be assigned to c1. Then, s3 or s4 must be assigned
to c2. However, s2 has justifiable envy toward the student
assigned to c2. Thus, s2 cannot be assigned to c1.

Next, let us assume s2 is not assigned to c1. Then both
s3 and s4 are assigned to c1. Otherwise, they can claim an
empty seat by type. Assume s2 is assigned to c2. Then s1
must be assigned to c3. However, since s1 has justifiable
envy toward s2, s2 cannot be assigned to c2. Thus, let us
assume s2 is assigned to c3. However, then s2 has justifiable
envy toward s3 or s4. If s2 is not assigned to any school,
there exists school c whose maximum quota is not satisfied.
Then s2 claims an empty seat of c. Thus, there exists no
matching that is fair and nonwasteful.

New model
Let us consider a slightly modified model. The model is
quite similar to the previous model. One major difference
is that school c provides distinct reserved seats for each
type, and each contract explicitly states the fact that a stu-
dent is assigned to a particular seat of a school. The prefer-
ences/priorities of the students/schools, as well as stability
requirements, are defined based on these contracts.

To be more precise, we represent a market as a tu-
ple (S,C, T, τ,X,�S ,�C , qC , pC,T ). The definitions of
S,C, T, τ , and qC are identical to the previous model.
School c provides distinct reserved seats for each type. Con-
tract x ∈ X is represented as (s, c, t), which describes the
fact that student s is assigned to type t seat of school c. Thus,
X is given as {(s, c, t) | s ∈ S, c ∈ C, t ∈ τ(s)}.

We assume student s has a strict preference over contracts
related to her. Thus, s has a preference over seats of the same
school. This assumption is natural if we assume a school
provides a different program for different seats, e.g., a stu-
dent who is assigned to a “financially-distressed” seat can

obtain a scholarship, and a student who is assigned to an
“English as a second language” seat can attend an English
language class. Also, this definition allows a case such that
(s, c, t) �s (s, c

′, t) �s (s, c, t
′) �s (s, c

′, t′), i.e., student s
prefers type t seat over type t′ seat, and if the types of seats
are the same, she prefers school c over school c′.3

We also assume school c has a strict priority ranking over
contracts related to it. Thus, when both s and s′ have types
t and t′, there is a chance that (s, c, t) �c (s′, c, t) and
(s′, c, t′) �c (s, c, t′) hold, i.e., the relative ordering of s
and s′ can be different for different seats. This assumption
is also natural, e.g., for “financially-distressed” seats, s has
a higher priority ranking than s′ since s is more financially
distressed, while for “standard” seats, s′ has a higher priority
ranking than s since s′ has a better SAT score.

For any subset of contracts X ′ ⊆ X , let X ′s denote
{(s, c, t) ∈ X ′ | c ∈ C, t ∈ T}, and X ′c denote {(s, c, t) ∈
X ′ | s ∈ S, t ∈ T}. Also, let X ′c,t denote {(s, c, t) ∈ X ′ |
s ∈ S}. Note that |X ′c,t|means the number of type t students
accepted to c in the previous model. Here, |X ′c,t| means the
number of students accepted to type t seats of school c. The
actual number of type t students accepted to c can exceed
|X ′c,t|, since a student who has another type (as well as t)
might be assigned to a different seat of school c.

The definition of feasibility in this model is identical to
the original model. We modify the definitions of fairness and
nonwastefulness as follows.
Definition 3 (fairness). We say student s has justi-
fiable envy toward s′ 6= s in matching X ′, where
(s, c, t), (s′, c′, t′) ∈ X ′ and (s, c′, t′′) ∈ X \X ′, if the fol-
lowing conditions hold: (s, c′, t′′) �s (s, c, t), (s, c′, t′′) �c′

(s′, c′, t′), and either (fr-i) t′ = t′′ or (fr-ii) |X ′c′,t′ | > pc′,t′ .
As in the original definition, basically, student s can have

justifiable envy toward another student s′, when s prefers
(s, c′, t′′) over her current contract, and (s, c′, t′′) has a
higher priority ranking at c′ than (s′, c′, t′). However, if
t′ 6= t′′ and the number of type t′ contracts accepted to c′
is less than or equal to pc′,t′ , this envy cannot be justified.
Definition 4 (nonwastefulness). We say student s claims
an empty seat of c′ in matchingX ′, where (s, c, t) ∈ X ′ and
(s, c′, t′) ∈ X \X ′, if (s, c′, t′) �s (s, c, t), and one of the
following conditions holds:
(nw-i) |X ′c′ | < qc′ , or
(nw-ii) c = c′, (s, c, t′) �c (s, c, t), and |X ′c,t| > pc,t.
We say student s claims an empty seat of c′ by type in match-
ing X ′, where (s, c, t) ∈ X ′ and (s, c′, t′) ∈ X \ X ′, if
(s, c′, t′) �s (s, c, t) and the following condition holds:
(nw-iii) |X ′c′,t′ | < pc′,t′ .

Conditions (nw-i) and (nw-iii) are basically identical to
the original definition. Condition (nw-ii) can be considered

3If a student is indifferent between different seats of the same
school, we can artificially extend her preference and apply our
mechanism. Our mechanism is still strategy-proof and obtains a
stable matching. However, we can no longer guarantee student-
optimality. See Abdulkadiroglu, Pathak, and Roth (2009) for dis-
cussion on handling indifference in students’ preferences.
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as s has justifiable envy toward her own contract (s, c, t),
which is accepted while she prefers (s, c, t′) and it has a
higher priority ranking at c than (s, c, t).

One main reason that no stable matching exists in the pre-
vious example is that s1 and s2 are complimentary for c1,
i.e., if c1 accepts s2, it also needs to accept s1, while if
c1 does not accept s2, it cannot accept s1. By introducing
type-specific contracts, such a complementary relation dis-
appears. Accepting contract (s2, c1, t1) (or (s2, c1, t2)) does
not give any advantage for (s1, c1, t3) to be accepted. As
shown in the next section, a stable (i.e., fair and nonwaste-
ful) matching always exists.

Deferred Acceptance mechanism for
Overlapping Types

In this section we propose a strategy-proof mechanism
called Deferred Acceptance mechanism for Overlapping
Types (DA-OT).

The mechanism is built upon choice functions ChS :
2X → 2X and ChC : 2X → 2X . ChS is a choice func-
tion of students S, which is a union of individual choice
functions, i.e., ChS(X ′) :=

⋃
s∈S Chs(X

′). In the same
way, ChC is a choice function of schools C, which is a
union of individual choice functions, i.e., ChC(X ′) :=⋃

c∈C Chc(X
′). The choice function of student s is sim-

ple. Chs(X ′) returns {(s, c, t)} ∈ X ′s, where (s, c, t) is
s’s most preferred contract in X ′s (or ∅ if X ′s is ∅). The
choice function of school c is more complicated and is de-
fined as follows. Here, Yc,t := {(s, c, t) ∈ Y | s ∈ S} and
Zc,t := {(s, c, t) ∈ Z | s ∈ S}.
Definition 5 (Choice function of school c). Chc(X ′) is de-
fined as follows:

Step 1 Y ← ∅, Z ← X ′c.
Step 2 For each t ∈ T , repeat the following procedure: If
|Yc,t| = pc,t or |Zc,t| = 0 then go to the procedure for
next t. Otherwise, choose (s, c, t) ∈ Z with the highest
priority ranking in Z based on �c. Move (s, c, t) from Z
to Y .

Step 3 Repeat the following procedure: If |Y | = qc or
|Z| = 0, return Y . Otherwise, choose (s, c, t) ∈ Z with
the highest priority ranking in Z based on �c. Move
(s, c, t) from Z to Y .

The DA-OT is one instance of the generalized Gale-
Shapley mechanism presented in Hatfield and Mil-
grom (2005), which is defined as follows.

Definition 6 (Deferred Acceptance mechanism for Over-
lapping Types (DA-OT)).
Step 1 Re← ∅.
Step 2 X ′ ← ChS(X \Re), X ′′ ← ChC(X

′).
Step 3 If X ′ = X ′′, then return X ′, otherwise, Re← Re∪
(X ′ \ ChC(X ′)), go to Step 2.

Here Re represents the rejected contracts. A student can-
not choose a contract in Re. First, students propose a set
of contracts that are most preferred and not rejected so far
X ′. Then schools choose X ′′, which is a subset of X ′. If no

contract is rejected, the mechanism terminates. Otherwise,
the rejected contracts are added to Re, and the mechanism
repeats the same procedure.

About the complexity of the DA-OT, Re in Definition 6
expands monotonically. Thus, Step 2 is repeated at most |X|
times where X is the set of all contracts. The time required
to calculate ChS(X ′) or ChC(X ′) is at most linear in |X ′|.
Overall, the time complexity of the DA-OT is O(|X|2).

We show an example to illustrate the execution of the DA-
OT.
Example 2. We consider the situation basically identical to
Example 1. We assume the preference of s2 is given as:

�s2 : (s2, c2, t1), (s2, c2, t2), (s2, c1, t1),
(s2, c1, t2), (s2, c3, t1), (s2, c3, t2).

Also, the preferences of all schools are identical, and it is
defined as

�c: (s1, c, t3), (s2, c, t1), (s2, c, t2),
(s3, c, t1), (s4, c, t2).

First, each student chooses her most preferred contract;
X ′ = {(s1, c1, t3), (s2, c2, t1), (s3, c1, t1), (s4, c1, t2)}.
Chc1(X

′) is {(s3, c1, t1), (s4, c1, t2)}. (s1, c1, t3), which
has the highest priority ranking, is rejected since (s3, c1, t1)
and (s4, c1, t2) are selected at Step 2 in Definition 5.

Then s1 chooses her second preferred contract;
X ′ = {(s1, c2, t3), (s2, c2, t1), (s3, c1, t1), (s4, c1, t2)}.
Chc2(X

′) is {(s1, c2, t3)}, since (s1, c2, t3) has a higher
priority ranking than (s2, c2, t1).

Next s2 chooses her second preferred contract, i.e.,
(s2, c2, t2), but this contract is also rejected. Thus, s2
chooses her third preferred contract, i.e., (s2, c1, t1);
X ′ = {(s1, c2, t3), (s2, c1, t1), (s3, c1, t1), (s4, c1, t2)}.
Chc1(X

′) is {(s2, c1, t1), (s4, c1, t2)}, since (s2, c2, t1) has
a higher priority ranking than (s3, c1, t1).

Then s3 chooses her second preferred contract;
X ′ = {(s1, c2, t3), (s2, c1, t1), (s3, c2, t1), (s4, c1, t2)}.
Chc2(X

′) is {(s1, c2, t3)}, since (s1, c2, t3) has a higher
priority ranking than (s3, c2, t1).

Finally, s3 chooses her third preferred contract; X ′ =
{(s1, c2, t3), (s2, c1, t1), (s3, c3, t1), (s4, c1, t2)}. Then, no
contract is rejected and the mechanism terminates.

Note that in the original model, s1 has justifiable envy to-
ward s4 because c1’s target quotas are satisfied by accepting
s2. This is not the case in our new model, since s2 is ac-
cepted for a type t1 seat and s4 is accepted for a type t2 seat.

Properties of DA-OT
In this section, we first introduce another stability condition
called Hatfield-Milgrom (HM)-stability (Hatfield and Mil-
grom 2005). Next, we show HM-stability is equivalent to
our stability (Lemma 1). In Hatfield and Milgrom (2005), it
is shown that if ChC satisfies three properties, i.e., the irrel-
evance of rejected contracts, the law of aggregate demand,
and the substitutes condition, then a HM-stable matching al-
ways exists. Also, the generalized Gale-Shapley mechanism
is strategy-proof and obtains the student-optimal matching
in all the HM-stable matchings. We show ChC satisfies
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these properties (Lemma 2). From these lemmas, we obtain
our main theorem.

Definition 7 (HM-stability). We say matching X ′ is HM-
stable if there exists no x ∈ X \X ′ such that x ∈ ChS(X ′∪
{x}) and x ∈ ChC(X ′ ∪ {x}).
Lemma 1. Matching X ′ is HM-stable iff it is fair and non-
wasteful.

Proof. We first show that HM-stability implies fairness and
nonwastefulness. Let us assume X ′ is not fair, i.e., there
exists s, s′, where (s, c, t), (s′, c′, t′) ∈ X ′, (s, c′, t′′) ∈
X \X ′, (s, c′, t′′) �s (s, c, t), and (s, c′, t′′) �c′ (s

′, c′, t′)
hold. It is clear that (s, c′, t′′) ∈ Chs(X

′ ∪ {(s, c′, t′′)})
holds. Let us examine the choice function of school c′.
First, let us assume t′ = t′′ (Condition (fr-i) in Defini-
tion 3) holds. Then, (s, c′, t′) is chosen before (s′, c′, t′)
since (s, c′, t′) �c′ (s′, c′, t′) holds. Therefore, (s, c′, t′) ∈
Chc′(X

′ ∪ {(s, c′, t′)}) holds. Thus, X ′ is not HM-stable.
Next, let us assume |X ′c′,t′ | > pc′,t′ (Condition (fr-ii)
in Definition 3) holds. From the fact that (s′, c′, t′) ∈
Chc′(X

′), (s′, c′, t′) is accepted at Step 3 in Definition 5,
or there exists another contract (s′′, c′, t′) that is accepted
at Step 3 in Definition 5 and (s′, c′, t′) �c′ (s

′′, c′, t′). Thus,
when calculatingChc′(X ′∪{(s, c′, t′′)}), if (s, c′, t′′) is not
accepted at Step 2, it should be accepted at Step 3, since
(s, c′, t′′) is chosen before (s′, c′, t′) or (s′′, c′, t′). Thus,
(s, c′, t′′) ∈ Chc′(X ′ ∪ {(s, c′, t′′)}) holds; X ′ is not HM-
stable.

Next, let us assume s claims an empty seat of c′. Thus,
(s, c, t) ∈ X ′, (s, c′, t′) ∈ X \X ′, and (s, c′, t′) �s (s, c, t)
hold. It is clear that (s, c′, t′) ∈ Chs(X ′∪{(s, c′, t′)}). Also,
if |Xc′ | < qc′ , i.e., Condition (nw-i) in Definition 4, holds,
it is clear that (s, c′, t′) ∈ Chc′(X ′ ∪ {(s, c′, t′)}). Further-
more, if c = c′, (s, c, t′) �c (s, c, t), i.e., Condition (nw-ii)
in Definition 4, holds, then either (s, c, t) is accepted at Step
3 in Definition 5, or there exists another contract (s′, c, t)
that is accepted at Step 3 in Definition 5 and (s, c, t) �c

(s′, c, t). Thus, when calculating Chc(X ′ ∪ {(s, c, t′)}), if
(s, c, t′) is not accepted at Step 2, it should be accepted at
Step 3 since (s, c, t′) is chosen before (s, c, t) or (s′, c, t).
Thus, (s, c, t′) ∈ Chc(X

′ ∪ {(s, c, t′)}) holds; X ′ is not
HM-stable.

Finally, let us assume s claims an empty seat of c′ by type.
Thus, (s, c′, t′) ∈ X \ X ′ and (s, c′, t′) �s (s, c, t) holds.
It is clear that (s, c′, t′) ∈ Chs(X

′ ∪ {(s, c′, t′)}). Also,
|X ′c′,t′ | < pc′,t′ , i.e., Condition (nw-iii) in Definition 4,
holds. Then, (s, c′, t′) ∈ Chc′(X ′∪{(s, c′, t′)}) holds since
(s, c′, t′) should be accepted at Step 2; X ′ is not HM-stable.

Next, let us show that fairness and nonwastefulness imply
HM-stability. Assume matching X ′ is not HM-stable, i.e.,
there exists (s, c, t) ∈ X \X ′ such that (s, c, t) ∈ Chs(X ′∪
{(s, c, t)}) and (s, c, t) ∈ Chc(X ′∪{(s, c, t)}) hold. Let us
assume (s, c′, t′) ∈ X ′. It is clear that (s, c, t) �s (s, c′, t′)
holds since (s, c, t) ∈ Chs(X ′ ∪ {(s, c, t)}).

Assume Chc(X ′ ∪ {(s, c, t)}) = Chc(X
′) ∪ {(s, c, t)},

i.e., no contract is rejected as the consequence of accept-
ing (s, c, t). Then |X ′c| < qc must hold and X ′ is wasteful
from Condition (nw-i) in Definition 4. Thus, let us assume

(s′, c, t′′) ∈ Chc(X ′) and (s′, c, t′′) 6∈ Chc(X ′∪{(s, c, t)})
hold, i.e., (s′, c, t′′) is rejected as the consequence of accept-
ing (s, c, t).

First, let us consider the case where |X ′c,t| < pc,t. Then,
s claims an empty seat of c by type since Condition (nw-
iii) in Definition 4 holds. Next, let us consider the case
where s = s′ (and t′′ = t′). Then, (s, c, t) �c (s, c, t′)
and |X ′c,t′ | > pc,t′ holds. Thus, s claims an empty seat of
c since Condition (nw-ii) in Definition 4 holds. Finally, let
us consider the case where s 6= s′. Then, either (i) t = t′′

and (s, c, t) �c (s′, c, t), or (ii) (s, c, t) �c (s′, c, t′′) and
|X ′c,t′′ | > pc,t′′ holds. In case (i) s has justifiable envy to-
ward s′ since (s, c, t) �c (s′, c, t), and Condition (fr-i) in
Definition 3 holds. In case (ii), s has justifiable envy toward
s′ since (s, c, t) �c (s

′, c, t), and Condition (fr-ii) in Defini-
tion 3 holds.

Lemma 2. ChC satisfies the following properties.

Irrelevance of rejected contracts: For anyX ′ ⊆ X and x ∈
X \X ′, ChC(X ′) = ChC(X

′ ∪ {x}) if x /∈ ChC(X ′ ∪
{x}).

Law of aggregate demand: For any X ′, X ′′ ⊆ X with
X ′ ⊆ X ′′, |ChC(X ′)| ≤ |ChC(X ′′)|.

Substitutes condition: For any X ′, X ′′ ⊆ X with X ′ ⊆
X ′′, X ′ \ ChC(X ′) ⊆ X ′′ \ ChC(X ′′).

Proof. It is obvious that the irrelevance of rejected contracts
holds from Definition 5. To show the law of aggregate de-
mand and the substitutes condition, it is sufficient to show
that each individual choice function Chc satisfies the fol-
lowing conditions:

(a) For any X ′ ⊆ X and x ∈ X \ X ′, |Chc(X ′)| ≤
|Chc(X ′ ∪ {x})|.

(b) For any X ′ ⊆ X and x ∈ X \ X ′, X ′ \ Chc(X ′) ⊆
(X ′ ∪ {x}) \ Chc(X ′ ∪ {x}).

From Definition 5, it is clear that if |X ′c| ≤ qc, then
Chc(X

′) = X ′ holds. Also, if |X ′c| ≥ qc, then |Chc(X ′)| =
qc holds. In words, if the number of contracts related to c is
less than or equal to qc, then no contract is rejected. Also, if
the number of contracts related to c is more than or equal to
qc, then the number of accepted contracts equals qc. Thus, it
is clear that condition (a) holds.

Assume condition (b) is not satisfied, i.e., there exists
X ′ ⊆ X , x ∈ X \ X ′, x′ ∈ X ′ \ Chc(X ′), such that
x′ ∈ Chc(X ′ ∪ {x}), i.e., x′ is rejected from c when X ′ is
present, but it is accepted when X ′ ∪ {x} is present. There
can be multiple contracts that satisfy the above conditions.
Without loss of generality, we assume x′ has the highest pri-
ority ranking among such contracts. It is clear that xmust be
a contract related to c and x ∈ Chc(X ′∪{x}). If |X ′c| ≤ qc,
no contract is rejected thus |X ′c| > qc holds. Furthermore,
|Chc(X ′)| = |Chc(X ′ ∪ {x})| = qc holds. When calcu-
lating Chc(X ′ ∪ {x}), there are four possibilities: (i) both
x and x′ are accepted at Step 2 in Definition 5, (ii) x is ac-
cepted at Step 2 while x′ is accepted at Step 3, (iii) x is
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Figure 1: Ratio of claiming students
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Figure 2: Ratio of students with envy
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Figure 3: CDFs of students’ welfare
at α = 0.5

accepted at Step 3 while x′ is accepted at Step 2, or (iv) both
are accepted at Step 3.

In cases (i) or (iii), when X ′ ∪ {x} is present, x′ =
(s, c, t′) is accepted at Step 2 since |Yc,t′ | < pc,t′ holds.
Then, when only X ′ is present, x′ must be chosen before
|Yc,t′ | becomes equal to pc,t′ . Thus, x′ must be accepted also
in this situation. This is a contradiction. Thus, cases (i) and
(iii) are not possible. Also, in cases (ii) or (iv), when x′ is ac-
cepted at Step 3 when X ′ ∪ {x} is present, |Y | < qc holds.
Then, when onlyX ′ is present, x′ must be chosen before |Y |
becomes equal to qc. Thus, x′ must be accepted also in this
situation. This is a contradiction. Thus, cases (ii) and (iv) are
not possible.

Theorem 1. A stable matching always exists, and the DA-
OT is strategy-proof and obtains a stable matching, which is
student-optimal in all the stable matchings.

Proof. Hatfield and Milgrom (2005) show that when ChC
satisfies the three properties, a HM-stable matching al-
ways exists and the generalized Gale-Shapley mechanism is
strategy-proof and obtains the student-optimal matching in
all the HM-stable matchings. HM-stability is equivalent to
our stability (Lemma 1). The DA-OT is one instance of the
generalized Gale-Shapley mechanism. Also, ChC satisfies
these properties (Lemma 2).

Evaluation
This section evaluates our newly developed DA-OT by com-
puter simulation. As far as the authors aware, the DA-OT is
the only known strategy-proof mechanism that is guaranteed
to obtain a stable matching in our problem setting. More
specifically, the DA-OT can flexibly allocate seats across
types, i.e., it is nonwasteful. Also, the DA-OT is fair across
types, i.e., Condition (fr-i) in Definition 3 covers a case
where s and s′ have different types. If we give up nonwaste-
fulness and fairness across types, we can use the following
method. We fix the number of seats for each type. Let qc,t
denote the maximum quota for type t contracts of school c.
We set qc,t such that pc,t ≤ qc,t holds for all c ∈ C, t ∈ T ,
and

∑
t∈T qc,t = qc holds for all c ∈ C. Then, we apply

the standard DA mechanism, assuming school c is divided
into multiple sub-schools ct1 , ct2 , . . . with maximum quo-
tas qc,t1 , qc,t2 , . . ., respectively. We call this mechanism Ar-
tificial Cap Deferred Acceptance mechanism (ACDA). The
ACDA is wasteful, but no student claims an empty seat by

type. Also, it removes justifiable envy among the students
with the same type, i.e., if τ(s) = τ(s′), then s and s′ do not
have justifiable envy among themselves.

We compare the DA-OT and ACDA as follows. We con-
sider a market with n = 256 students, m = 8 schools, and
k = 4 types. For each c ∈ C, we set qc to 48, and for
each type t ∈ T , we set pc,t to 4. For each student s ∈ S,
we set |τ(s)|, i.e., the number of s’s types, to 2. We gener-
ate students’ preferences as follows. We create one common
m × |T | matrix V ∗, where each element v∗c,t is uniformly
drawn from [0, 1] at random. Then, for each student s ∈ S,
we create private m × |T | matrix V s, where each element
vsc,t is uniformly drawn from [0, 1] at random. Then we con-
struct cardinal utilities over all m schools and T types for
student s as αV ∗ + (1 − α)V s, for some α ∈ [0, 1], i.e.,
the cardinal utility of contract (s, c, t) is αv∗c,t+(1−α)vsc,t.
We then convert these cardinal utilities into an ordinal pref-
erence relation for each student. The higher the value of α is,
the more correlated the students’ preferences are. The prior-
ity ranking of each school c is drawn uniformly at random.
We create 100 problem instances for each parameter setting.

Figure 1 shows the ratio of students who claim an empty
seat. The x-axis denotes the value of α, and the y-axis de-
notes the average ratio of students who claim an empty seat.
Since the DA-OT is nonwasteful, no student claims an empty
seat. We observe that students are more likely to claim an
empty seat in the ACDA as α increases, e.g., more than 80%
of the students claim an empty seat when α ≥ 0.6. This
is because as students’ preferences become more correlated,
the competition among the students becomes more severe.

Figure 2 shows the ratio students with justifiable envy.
The x-axis is the same as in Fig. 1. Since the OT-DA is
fair, no student has justifiable envy. As in Fig. 1, students
are more likely to have justifiable envy in ACDA as α in-
creases, e.g., more than 70% of the students have justifiable
envy when α ≥ 0.7.

Figure 3 illustrates the students’ welfare by plotting the
cumulative distribution functions (CDFs) of the average
number of students matched with their i-th or higher ranked
contract when α is 0.5. Hence, a steep upper trend line is de-
sirable. The DA-OT performs much better than the ACDA
for all α. In Fig. 3, we can see For example, 80% of the
students obtain their first choice, and 96% of students ob-
tain their first or second choice in the DA-OT. While in the
ACDA, only 26% of students obtain their most preferred
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contracts, and 51% of students obtain their most or sec-
ond preferred contracts. Setting artificial caps decreases stu-
dents’ welfare, since it abandons too much flexibility.

Conclusion
In this paper, we developed a new model for controlled
school choice programs with soft-bounds, in which a stu-
dent can belong to multiple types. We first presented a model
that is a straightforward extension of an existing model for
disjoint types. We proved that there exists a case where no
matching is stable in this model and developed an alter-
native model. We showed that a stable matching is guar-
anteed to exist in this alternative model and developed the
DA-OT mechanism, which is strategy-proof and obtains the
student-optimal matching within all the stable matchings.
We also showed computer simulation results, which illus-
trate the DA-OT outperforms the ACDA, in which the num-
ber of seats for each type is fixed.

Our future works include introducing other type specific
constraints, such as ceilings, and developing a more general
mechanism that can simultaneously handle different types of
distributional constraints, e.g., regional minimum quotas.
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