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Abstract

We study the complexity of deciding if a given profile
of incomplete votes (i.e., a profile of partial orders over
a given set of alternatives) can be extended to a single-
crossing profile of complete votes (total orders). This
problem models settings where we have partial knowl-
edge regarding voters’ preferences and we would like
to understand whether the given preference profile may
be single-crossing. We show that this problem admits a
polynomial-time algorithm when the order of votes is
fixed and the input profile consists of top orders, but be-
comes NP-complete if we are allowed to permute the
votes and the input profile consists of weak orders or
independent-pairs orders. Also, we identify a number
of practical special cases of both problems that admit
polynomial-time algorithms.

1 Introduction
An important job for a designer of a multi-agent system is
identifying a good method of aggregating the agents’ prefer-
ences. It is well-known that this is not an easy task, at least
if agents’ preferences can be arbitrary total orders over the
available alternatives: every preference aggregation mecha-
nism for this setting exhibits undesirable behavior on some
inputs (Arrow 1951). However, the designer’s task becomes
much easier when agents’ preferences possess additional
structure.

For instance, the well-known class of single-peaked pref-
erences (Black 1958) admits a voting rule that always selects
a Condorcet winner (an alternative that is preferred to every
other alternative by a majority of voters) and is strategyproof
(Moulin 1991). Moreover, single-peaked preferences admit
efficient algorithms for problems that are more complex than
selecting a single winner and that are known to be hard for
general preferences, such as choosing a good ranking of the
alternatives (Brandt et al. 2010) or a representative commit-
tee (Betzler, Slinko, and Uhlmann 2013).

In this paper, we focus on another restricted preference
domain, namely, that of single-crossing preferences. A pref-
erence profile is single-crossing with respect to a fixed or-
dering of voters if for every pair of alternatives (a, b) it holds
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that all voters who prefer a to b precede all voters who pre-
fer b to a or vice versa. A profile is single-crossing if the
votes can be permuted so as to achieve the single-crossing
property. Single-crossing preferences, originally introduced
by Mirrlees (1971) and Roberts (1977), arise in situations
where voters and candidates are spread over a spectrum
of opinions—say, from extreme left-wing ones to extreme
right-wing ones—and left-leaning voters prefer left-leaning
candidates to right-leaning ones, and the other way round for
the right-leaning voters. While this domain is perhaps not
as well-known as that of single-peaked preferences, it has
many of the same desirable properties: for instance, under
single-crossing preferences the majority relation is transitive
(Mirrlees 1971), and single-crossing preferences admit effi-
cient algorithms for several voting problems that are hard for
the general domain (Cornaz, Galand, and Spanjaard 2013;
Skowron et al. 2013; Magiera and Faliszewski 2014).

However, in practice we rarely have access to voters’ full
preferences: voters are far more likely to only report some
part of their preference order, e.g., rank a few top alterna-
tives or report a small number of pairwise comparisons. In-
deed, in an overwhelming majority of data sets in PrefLib
(Mattei and Walsh 2013) preference profiles contain par-
tial orders. This phenomenon is recognized by computa-
tional social choice researchers, who showed that many of
the positive results that are known to hold for complete pref-
erence profiles can be extended to partial preference pro-
files (Baumeister et al. 2012; Narodytska and Walsh 2014).
It also motivated research on the possible/necessary winner
problem (Konczak and Lang 2005; Betzler and Dorn 2010;
Xia and Conitzer 2011; Baumeister and Rothe 2012), where
we ask whether a given candidate wins in some/all ex-
tensions of a given profile of partial votes to a profile of
full votes, under a particular voting rule. In a similar vein,
we can ask if a profile of partial votes can be extended
so that it enjoys a particular structural property, such as
being single-peaked/single-crossing, and, if the answer is
positive, whether we can identify an ordering of candi-
dates/voters witnessing this. Answering this question would
tell us whether voters’ preferences may be essentially one-
dimensional in nature; if this answer is positive, we may be
able to make a reasonably good decision quickly and with-
out eliciting full preferences.

For incomplete single-peaked preferences, the complex-
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ity of this problem has been investigated by Lackner (2014),
who proved that it is NP-complete when the input may con-
sist of arbitrary partial orders, and more recently by Fitzsim-
mons (2014), who showed it to be polynomial-time solv-
able for weak orders. The goal of our paper is to initiate
the complexity-theoretic investigation of this problem for in-
complete single-crossing preferences.

Our Contribution. We consider the complexity of decid-
ing whether a given profile of partial orders can be extended
to a profile of total orders that is single-crossing. We investi-
gate this problem both for the setting where we are allowed
to permute the votes so as to achieve the single-crossing
property and for the setting where the desired ordering of
the votes is fixed.

We first focus on the case where the ordering of the votes
is provided as part of the input, and show that our problem
admits an efficient algorithm when the input profile consists
of top orders, or when no input vote contains an antichain of
size 3 and for every pair of candidates there is at least one
voter who is able to compare them. We then turn to the prob-
lem of checking whether a given profile of partial orders can
be extended to a profile of total orders that is single-crossing
with respect to some ordering of votes. We show that this
problem is NP-complete, even if all votes in the input are
weak orders, or if in each input vote all antichains of size 2
are pairwise disjoint. Given these hardness results, we focus
on top orders, and obtain polynomial-time algorithms un-
der mild additional assumptions on voters’ preferences. We
show that, given a profile of top ordersR, we can efficiently
decide whether it can be extended to a single-crossing pro-
file of total orders if R contains at least one full vote and
(i) we seek an ordering of the votes where some such vote
appears first or (ii) the input profile is narcissistic, i.e., each
candidate is ranked first by at least one voter.

We also investigate alternative extensions of the single-
crossing property to the domain of partial votes. In particu-
lar, we define the notion of a weakly single-crossing profile,
and show that such profiles can be detected efficiently.

Relevance of Our Study. We believe that understanding
the single-crossing property in the context of partial prefer-
ence orders is important in its own right. However, our re-
search also has a more direct motivation: knowing that a pro-
file of partial preference orders can be extended to a single-
crossing one can simplify the winner determination process,
both in single-winner and in multi-winner elections.

Consider a profile of top orders in a single-winner elec-
tion. If we know that the votes can be extended to a single-
crossing profile for a given voter order, then we can find the
median vote in this order and pick its top candidate as the
winner. This candidate is a possible Condorcet winner and,
thus, a natural one to select.

For the case of multi-winner elections, Skowron et
al. (2013) have shown an efficient winner determina-
tion algorithm for the voting rule of Chamberlin and
Courant (1983), for the case of single-crossing elections (in
the general setting, the rule is NP-hard (Procaccia, Rosen-
schein, and Zohar 2008; Lu and Boutilier 2011)). Their al-
gorithm focuses on the top parts of the votes, but requires the

order witnessing that the election is single-crossing. Thus, if
we could find an order witnessing that a profile of top orders
can be extended to a single-crossing profile, then we could
use the algorithm of Skowron et al. (2013).

There is a further added benefit of considering the single-
crossing property in the context of partial preference or-
ders. Intuitively, when voters cast partial preference orders,
they only specify pairwise comparisons that they truly care
about. Consequently, the resulting profiles are much more
likely to satisfy various structural properties (such as be-
ing single-peaked/single-crossing) than profiles where vot-
ers are forced to rank candidates that they do not care about
(and may therefore rank them in a way that hides the true
preference structure).

Related Work. Both single-peaked and single-crossing
preferences can be recognized in polynomial time if the in-
put is a collection of total orders (Bartholdi and Trick 1986;
Escoffier, Lang, and Öztürk 2008; Elkind, Faliszewski, and
Slinko 2012; Bredereck, Chen, and Woeginger 2013b). The
problem becomes much more difficult if we ask whether a
given preference profile is close to being single-peaked or
single-crossing, or, more generally, close to belonging to
some restricted domain, for an appropriate notion of dis-
tance; indeed, many (though not all!) variants of this prob-
lem are known to be NP-hard (Erdélyi, Lackner, and Pfan-
dler 2013; Bredereck, Chen, and Woeginger 2013a; Fal-
iszewski, Hemaspaandra, and Hemaspaandra 2014). Both
single-peaked and single-crossing preferences arise in soci-
eties that are, in some sense, one-dimensional; however, the
two notions are distinct, in the sense that there are single-
peaked elections that are not single-crossing and vice versa
(Mirrlees 1971); see also the work of Elkind et al. (2014).

2 Preliminaries
For each integer k, we denote the set {1, . . . , k} by [k]. Let
C be a finite set of candidates (alternatives). A (strict) par-
tial order is a binary relation� over C that has the following
properties: for every a, b, c ∈ C (i) a 6� a; (ii) a � b implies
b 6� a; (iii) a � b and b � c implies a � c. We say that
a pair of alternatives a, b is comparable in � if a � b or
b � a; otherwise we say that a and b are incomparable in
� and write a⊥� b. A partial order � is said to be total if
a � b or b � a for every a, b ∈ C. A total order � is an ex-
tension of a partial order �′ if for every pair of alternatives
a, b such that a �′ b it holds that a � b.

When a � b, we say that � ranks a above b. For read-
ability, we will often denote a generic partial order by r and
write a �r b or r : a � b when r ranks a above b.

A partial order � is said to be a weak order if for all
a, b, c ∈ C it holds that a⊥� b and b⊥� c implies a⊥� c.
Equivalently, in a weak order � all candidates are parti-
tioned into several equivalence classes C1, . . . , Ck so that
for a ∈ Ci, b ∈ Cj we have a⊥� b if i = j and a � b if
i < j. Weak orders can be understood as total orders with
ties allowed. A top order is a weak order where |C1| = · · · =
|Ck−1| = 1. Intuitively, top orders correspond to a voter
ranking some of her most preferred alternatives, and leaving
the remaining alternatives unranked. Thus, we refer to the
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candidates in
⋃k−1

i=1 Ci as the ranked candidates.
A set C ′ ⊆ C is said to be an antichain in � if a⊥� b

for all a, b ∈ C ′. A partial order � is said to be an indepen-
dent pairs order if all antichains of size 2 in � are pairwise
disjoint (this implies that � has no antichains of size 3).
Single-Crossing Property. A list R = (r1, . . . , rn) of
(partial) orders is called a (partial) profile. We refer to el-
ements of [n] as voters: the order ri is the vote of voter i.
Definition 1. A profileR = (r1, . . . , rn) of total orders over
a candidate set C is said to be single-crossing with respect to
a total order @ on [n] if for every pair of candidates a, b ∈ C
such that the first voter in @ prefers a to b it holds that the
voters who prefer a to b precede in @ the voters who prefer
b to a. A profile R = (r1, . . . , rn) of total orders is said to
be single-crossing if there exists a total order @ on [n] such
thatR is single-crossing with respect to @.
Definition 2. A profile R = (r1, . . . , rn) of partial orders
over a candidate set C is said to be single-crossing with
respect to a total order @ on [n] if there exists a profile R̂ =
(r̂1, . . . , r̂n) of total orders, where r̂i is an extension of ri
for each i ∈ [n], that is single-crossing with respect to @.R
is said to be single-crossing if there exists a total order @ on
[n] such thatR is single-crossing with respect to @.
Computational Problems. The goal of this paper is to
study the computational complexity of the following two
problems (and their special cases):

PARTIAL ORDER SINGLE-CROSSING CONSISTENCY
— FIXED ORDER (PO-SCC-F):
Given a candidate set C, a profile R = (r1, . . . , rn) of
partial orders over C, and a total order @ on [n], decide
whetherR is single-crossing with respect to @.

PARTIAL ORDER SINGLE-CROSSING CONSISTENCY
(PO-SCC):
Given a candidate set C and a profileR = (r1, . . . , rn)
of partial orders over C, decide whether R is single-
crossing.

We are also interested in special cases of PO-SCC-F and
PO-SCC where the input profile contains: (i) weak orders
only (WO-SCC-F/WO-SCC), (ii) top orders only (TO-
SCC-F/TO-SCC), (iii) independent-pairs orders only (IP-
SCC-F/IP-SCC).

We omit some proofs due to space constraints. The omit-
ted proofs appear in the full version of the paper.

3 Fixed Order of Votes
Before we move to the computational results, let us illus-
trate how counterintuitively partial orders can behave with
respect to the single-crossing property. Let us define a re-
laxed variant of this property, tailored to partial orders.
Definition 3. A profile R = (r1, . . . , rn) of partial orders
over a candidate set C is seemingly single-crossing with re-
spect to a total order @ over [n] if for every pair of candi-
dates a, b ∈ C the voters can be divided into two (possibly
empty) consecutive intervals with respect to @ so that (i) in
one of these intervals each voter either prefers a to b or in-
dicates that a and b are incomparable, and (ii) in the other

interval each voter either prefers b to a or indicates that
a and b are incomparable. A profile R = (r1, . . . , rn) of
partial orders is seemingly single-crossing if it is seemingly
single-crossing with respect to some total order @ over [n].

A profile of total orders is single-crossing if and only if
it is seemingly single-crossing. One might expect that the
same is true for profiles of partial orders, i.e., that a profile of
partial orders that is seemingly single-crossing with respect
to some order of votes @ can be extended to a profile of total
orders that is single-crossing with respect to @. However,
the next example shows that this is not the case.

Example 1. Let C = {a, b, c} and consider the following
profileR = (r1, r2, r3, r4) of partial orders:

r1 : a � b � c, r2 : c � b, r3 : b � a, r4 : a � c.

It is easy to see that R is seemingly single-crossing with
respect to the order 1 @ 2 @ 3 @ 4. However, R cannot
be extended to a profile of total orders (r̂1, r̂2, r̂3, r̂4) that is
single-crossing with respect to @. Indeed, a �r1 b, b �r3 a
implies that r̂4 would have to rank b above a, and b �r1
c, c �r2 b means that r̂4 would have to rank c above b.
By transitivity, it follows that r̂4 ranks c above a, but this is
impossible, since a �r4 c.

This argument does not show that R is not single-
crossing. In fact, R is single-crossing with respect to a dif-
ferent order of voters, namely 1 @′ 2 @′ 4 @′ 3, as wit-
nessed by the following profile (r̂1, r̂2, r̂3, r̂4) of total orders
(for convenience, the votes below are listed according to @′):

r̂1 : a � b � c, r̂2 : a � c � b,

r̂4 : a � c � b, r̂3 : c � b � a.

However, we can modify R so that it remains seemingly
single-crossing, but is not single-crossing with respect to any
order of voters. Specifically, set C ′ = {a, b, c, d, e, f}, and
consider the following profileR′ = (r′1, r

′
2, r
′
3, r
′
4) of partial

orders over C ′, which is obtained by prepending a single-
crossing profile of total orders over {d, e, f} toR:

r′1 : d � e � f � a � b � c,

r′2 : e � d � f, f � a, f � c � b,

r′3 : e � f � d, d � c, d � b � a,

r′4 : f � e � d, d � b, d � a � c.

It is easy to see thatR′ is seemingly single-crossing with re-
spect to 1 @ 2 @ 3 @ 4. Further, the {d, e, f}-parts of orders
in R′ ensure that the only orders for which R′ is seemingly
single-crossing are 1 @ 2 @ 3 @ 4 and 4 @ 3 @ 2 @ 1.
Thus, no extension ofR is single-crossing.

Example 1 shows that, to solve PO-SCC-F, it is not suffi-
cient to check whether the input profile is seemingly single-
crossing. Indeed, we have been unable to determine the com-
plexity of PO-SCC-F for unrestricted inputs. However, we
can show that this problem becomes polynomial-time solv-
able if we additionally assume that no order in the input pro-
file contains an antichain of size 3, and no pair of candidates
is incomparable in every vote.
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Theorem 2. One can determine whether an n-voter m-
candidate profile of partial orders R is single-crossing with
respect to a given order @ on [n] in O

(
m2 · n · (m+ n)

)
time under the following two conditions: (1)R does not con-
tain a vote with an antichain of size 3, and (2) no pair of
candidates is incomparable in every vote.

If a profile does not satisfy conditions (1) and (2) in the
statement of Theorem 2, but there are only few antichains of
size 3 and “fully” incomparable candidate pairs, we can still
solve this problem efficiently. Let a denote the total number
of antichains of size 3 in R and let b denote the number of
candidate pairs that are incomparable in all votes.
Corollary 3. The PO-SCC-F problem can be solved in
O
(
2a+b ·m2 · n · (m+ n)

)
time.

For top orders, a stronger result is true: TO-SCC-F is
polynomial-time solvable with no additional constraints on
the input profile. Moreover, for top orders the phenomenon
illustrated in Example 1 does not arise: every seemingly
single-crossing profile of top orders is single-crossing. To
prove this, we will now present an algorithm that, given a
profileR of top orders that is seemingly single-crossing with
respect to an ordering @, explicitly constructs an extension
of R that is single-crossing with respect to @. We first de-
scribe a subroutine E used by our algorithm.

Algorithm E : The algorithm takes as input a profile R =
(r1, . . . , rn) of top orders, where r1 is a total order, and an
order @ over [n] such that 1 @ i for each i ∈ {2, . . . , n}.
It computes a profile of total orders as follows:

1. It orders the votes inR according to @ to obtain a pro-
file S = (s1, . . . , sn); note that r1 = s1.

2. It sets ŝ1 = s1 and for each i ∈ {2, . . . , n} (in the
ascending order), it extends si to ŝi by ranking all the
unranked candidates as in ŝi−1 (note that by the time it
processes si, ŝi−1 is a total order).

3. It returns (ŝ1, . . . , ŝn).

Theorem 4. There is a polynomial-time algorithm that
given a profile R of top orders that is seemingly single-
crossing with respect to an order @ on [n], outputs an ex-
tension ofR that is single-crossing.

Proof. Let C be a set of candidates and letR = (r1, . . . , rn)
be a profile of top orders over C that is seemingly single-
crossing with respect to an order @ on [n]. Without loss of
generality, we assume that @ is given by 1 @ 2 @ · · · @ n.
To find a single-crossing extension R̂ = (r̂1, . . . , r̂n) of R,
we first compute an extension r̂1 of r1:

1. Set r̂1 = r1.
2. For each i = 2, . . . , n, if ri ranks some candidates that r̂1

does not yet rank, append these candidates to r̂1 (in order
of their appearance in ri).

3. If r̂1 still does not rank all the candidates, append them to
r̂1 in an arbitrary order.

Now we have a profile R′ = (r̂1, r2, . . . , rn) of top or-
ders, where r̂1 is a total order. We run Algorithm E onR′ to
obtain a profile of total orders. Note that in Algorithm E we

set S = R′, and therefore this profile, which we will denote
by R̂ = (r̂1, r̂2, . . . , r̂n), is an extension ofR. We claim that
R̂ is single-crossing with respect to @.

Suppose that R̂ is not single-crossing and let ` be the
largest index such that (r̂1, . . . , r̂`−1) is single-crossing.
Thus, (r̂1, . . . , r̂`) is not single-crossing and there exists a
pair a, b of candidates such that

r̂1 : a � b, r̂`−1 : b � a, r̂` : a � b.

Candidates a and b are ranked differently in r̂`−1 and r̂`,
so Algorithm E could not have derived the ranking a � b
in r̂` from r̂`−1. Hence, in r` we also have a � b. Since
r̂1 and r̂`−1 rank a and b differently and given how vote
r̂1 is computed, there must be a k, 1 ≤ k < ` − 1 such
that rk : a � b and neither a nor b are ranked in any ri,
i ∈ [k− 1]. Consequently, the triple (rk, r`−1, r`) witnesses
that R is not seemingly single-crossing with respect to 1 @
2 @ · · · @ n, a contradiction with our assumption. Thus, the
algorithm outputs a single-crossing extension ofR.

4 Arbitrary Order of Voters
We will now consider the scenario where the ordering of
the votes is not given in the input, and we have to decide
whether the given profile is single-crossing with respect to
some ordering of the votes. Note that in this setting we can
assume that all votes in the input profileR are pairwise dis-
tinct, as we can simply remove all duplicates without chang-
ing the answer. Therefore, we can view R as a set of votes,
and identify a voter i with her vote ri. In particular, it will
sometimes be convenient to write ri @ rj in place of i @ j.
Hardness Results The problem PO-SCC turns out to be
NP-complete. To show this, we will provide a reduction
from the BETWEENNESS problem, defined below, which is
known to be NP-complete (Opatrny 1979).

BETWEENNESS:
Given a set S = {s1, . . . , sm} and a set T of triples
over S, decide whether there exists a total order < over
S such that for each triple (si, sj , sk) in T it holds that
either si < sj < sk or sk < sj < si.
To reduce BETWEENNESS to PO-SCC, we use instances

of the following gadget. Let R = (r1, r2, r3) be a profile
over C = {a, b, c} such that: r1 : a � b � c, r2 : b � a � c,
and r3 : c � b � a. It is easy to verify that R is single-
crossing with respect to exactly two orders: 1 @ 2 @ 3 and
its reverse.
Theorem 5. PO-SCC is NP-complete.

Proof. Clearly, this problem is in NP. To show that is is
NP-hard, we provide a reduction from BETWEENNESS.

Let I = (S, T ) be an instance of BETWEENNESS, where
S = (s1, . . . , sm) and T = (t1, . . . , tn) is a set of triples
over S. The idea of our proof is to form a profile where the
voters correspond to the elements of the set S and the con-
straints from the set T are implemented within the partial
orders using the gadget described just before the theorem
statement. We let D = A∪B∪C, where A = {a1, . . . , an},
B = {b1, . . . , bn}, and C = {c1, . . . , cn}, and form a partial
profileR = (r1, . . . , rm) over D as follows:
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1. For each ` ∈ [m], each i, j ∈ [n], i < j, each x ∈
{ai, bi, ci} and each y ∈ {aj , bj , cj}, we set r` : x � y.

2. For each triple t` = (si, sj , sk) ∈ T , we set:

ri : a` � b` � c`, rj : b` � a` � c`, rk : c` � b` � a`.

3. For each ` ∈ [m] every pair of candidates not mentioned
in the previous two points are incomparable in r`.

We claim that R is single-crossing if and only if I is a
“yes”-instance of BETWEENNESS. First, assume that R is
single-crossing with respect to some order @. By construc-
tion, for each triple t` = (si, sj , sk) ∈ T , we have either
ri @ rj @ rk or rk @ rj @ ri. This means that an order <
over S such that sx < sy if and only if rx @ ry witnesses
that I is a “yes”-instance of the BETWEENNESS problem.

On the other hand, assume that I is a “yes”-instance of
the BETWEENNESS problem and that some order < over S
witnesses this. We define an order @ over {r1, . . . , rm} so
that rx @ ry if and only if sx < sy . To show that R is
single-crossing with respect to @, we will now extend R to
a profile of total orders as follows. Consider a triple t` =
(si, sj , sk) ∈ T . W.l.o.g., assume that si < sj < sk (the
case sk < sj < si can be handled in a similar way). We
define the voters’ preferences regarding a`, b`, c` as follows:

1. For each rx such that rx @ ri, set rx : a` � b` � c`.
2. For each ry (y 6= j) such that ri @ ry @ rk, set ry : b` �

a` � c`.
3. For each rz such that rk @ rz , set rz : c` � b` � a`.

After this operation, the profile consists of total orders, and
it is clear that it is single-crossing with respect to @.

The partial orders in the profile from the proof of Theo-
rem 5 are, in fact, weak orders. Thus, we get the next result.

Corollary 6. WO-SCC is NP-complete.

Moreover, we can adapt our proof of Theorem 5 to show
that IP-SCC is NP-complete as well.

Theorem 7. IP-SCC problem is NP-complete.

Top Orders The case of top orders is by far the most impor-
tant and practical one. It turns out that it is also quite chal-
lenging: we have not been able to determine the exact com-
plexity of TO-SCC. Nonetheless, we will now describe sev-
eral polynomial-time algorithms for this problem that work
under additional mild constraints on voters’ preferences.

The first of these algorithms (Theorem 8) applies in a sit-
uation where we know the complete order of one of the two
extreme voters in the profile; alternatively, we could imag-
ine that we define this “extreme” voter ourselves and add it
to the profile that we have at hand. In essence, this means
that for this algorithm to be applicable, we need to know for
every pair of candidates a and b which one of them is closer
to a given extreme side of the opinions in the single-crossing
spectrum. In practice, in settings where we have a good un-
derstanding of the nature of the candidates, we should expect
to have the necessary information to use this algorithm.

Theorem 8. There is a polynomial-time algorithm that
given an instance I = (C,R) of TO-SCC, where R =
(r1, . . . , rn), and an index ` such that r` is a total order, de-
cides if there is an order @ such that: (i) for each k, k 6= `,
r` @ rk, and (ii)R is single-crossing with respect to @.

Proof. Without loss of generality, we can assume that ` = 1.
Our algorithm consists of two parts. First, in Algorithm L,
we compute an order @ witnessing that R is seemingly
single-crossing (if indeed it is), and then we invoke Algo-
rithm E to compute an appropriate extension of R. If Algo-
rithm L fails at any point, we reject the input (if we reach
Algorithm E , failure is impossible).

By the theorem’s assumptions, the first element in @, r1,
is a total order. We define a relation @∗ over {r2, . . . , rn}
as follows: For each i, j, 2 ≤ i, j ≤ n, if there is a pair of
candidates a, b ∈ C such that r1 and ri order a, b identically
but rj orders them differently, we set ri @∗ rj . Algorithm L
is given below:

Algorithm L : We compute the relation @∗ over
{r2, . . . , rn} and extend it to relation @∗∗ over R
as follows: for each pair i, j ∈ [n] we set ri @∗∗ rj if
either i = 1 or ri @∗ rj . Using the standard algorithm for
topological sorting, we check if @∗∗ can be extended to a
linear order. If so, we compute and return this order (this
will be our order @). If not, we reject.

It is immediate that if this algorithm rejects then R is not
single-crossing with respect to any order @ that places r1
first. We claim that if it does not reject, then the profileR is
seemingly single-crossing with respect to the order @ com-
puted by L. If it were not, then there would be two candi-
dates a and b and two integers k and `, 1 < k, ` ≤ n, k 6= n,
such that r1 @ rk @ r` and a �r1 b, b �rk a, and a �r` b.
However, by definition of @∗, we would have r` @∗ rk, con-
tradicting the fact that AlgorithmL did not reject. Thus,R is
seemingly single-crossing with respect to @. Now, by Theo-
rem 4, we can invoke Algorithm E withR and @ as input to
get a single-crossing extension ofR.

Let u-TO-SCC be the special case of the TO-SCC prob-
lem where each vote has at most u unranked candidates. As
we can guess the leftmost vote in @ (n options) and its ex-
tensions (u! options), we obtain the following corollary.
Corollary 9. The u-TO-SCC problem can be solved in
O(2u·log u · poly(m,n)) time.

For our next result, we need to assume that our profile of
top orders is narcissistic, i.e., every candidate is ranked first
by at least one voter; this assumption dates back to the work
of Bartholdi and Trick (1986), and has been used in several
recent computational social choice papers (Cornaz, Galand,
and Spanjaard 2012; Skowron et al. 2013); we expect it to
be satisfied when candidates are allowed to vote in the elec-
tion. For such profiles, we can relax the condition of Theo-
rem 8: we still require that at least one voter submits a total
order, but make no assumptions about this voter’s position in
the profile. We remark that one can assume that the profile
contains a total order if, e.g., the person who wants to under-
stand if the given election is single-crossing is herself a voter
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in this election; this assumption is also required for some of
the algorithmic results of Lackner (2014), and is known to
reduce vote elicitation complexity (Conitzer 2009).

Theorem 10. There is a polynomial-time algorithm that
given an instance I = (C,R) of the TOP PARTIAL OR-
DER SCC problem, where R = (r1, . . . , rn) is narcissistic
and contains at least one total order, decides if R is single-
crossing.

Independent-Pairs Orders: an Algorithm We can adapt
the algorithm from the proof of Theorem 8 to obtain a fixed-
parameter tractability result for IP-SCC. Let k-IP-SCC be
the special case of IP-SCC where each vote contains at most
k incomparable pairs of candidates.

Theorem 11. There is an algorithm that decides k-IP-SCC
in time O(2k · poly(m,n)).

5 Relaxing the Single-Crossing Condition
Throughout this paper, we implicitly assumed that voters’
true preferences are total orders, and the reasons why vot-
ers submit partial orders have to do with computation and/or
communication constraints. Alternatively, one can imagine
that some voters are truly indifferent between certain candi-
dates. It is not clear whether requiring the given profile of
partial orders to extend to a single-crossing profile of total
orders is the right generalization of the single-crossing con-
dition to such settings. In fact, one can argue that in case
of true indifferences seemingly single-crossing profiles are
exactly the partial profiles that should be considered single-
crossing: indeed, in such profiles no pair of alternatives can
be observed to cross more than once. If we view being seem-
ingly single-crossing as a desirable property of a partial pro-
file in its own right, it is natural to ask whether it can be
detected efficiently. However, this question turns out to be
computationally difficult, even if we restrict ourselves to
weak orders or independent-pairs orders.

Proposition 12. The problem of deciding if a profile of weak
orders is seemingly single-crossing is NP-complete. Also,
the problem of deciding if a profile of independent-pairs or-
ders is seemingly single-crossing is NP-complete.

Proposition 12 follows from Corollary 6 and Theorem 7,
respectively, by observing that the partial profiles con-
structed in the respective proofs are single-crossing if and
only if they are seemingly single-crossing.

Now, in a seemingly single-crossing profile, as we
progress from left to right, for a given pair of candidates
a, b we may go from a voter who is indifferent between a
and b to one who clearly prefers a to b and then to one who
is indifferent between a and b again. It is perhaps more intu-
itive to require instead that the only allowable transitions are
from a � b to indifference between a and b to b � a, or vice
versa. We will call such profiles weakly single-crossing.

Definition 4. A profile R = (r1, . . . , rn) of partial orders
over a candidate set C is weakly single-crossing with re-
spect to a total order @ over [n] if for every pair of candi-
dates a, b ∈ C there exist indices 0 ≤ k ≤ ` ≤ n + 1 such
that either (i) for all 1 ≤ i ≤ k we have a �ri b, for all

k < i < ` candidates a and b are incomparable in ri, and
for all ` ≤ i ≤ n we have b �ri a, or, alternatively, (ii) for
all 1 ≤ i ≤ k we have b �ri a, for all k < i < ` candidates
a and b are incomparable in ri, and for all ` ≤ i ≤ n we
have a �ri b. A profile R = (r1, . . . , rn) of partial orders
is weakly single-crossing if it is weakly single-crossing with
respect to some total order @ over [n].

Observe that partial profile R from Example 1 is not
weakly single-crossing with respect to 1 @ 2 @ 3 @ 4:
we go from a � c to a⊥� c to a � c. Consequently, the
profileR′ from that example is not weakly single-crossing.

Clearly, it is easy to check if a given partial profile R
is weakly single-crossing with respect to a given order @.
Interestingly, while checking whether R is weakly single-
crossing appears to be more difficult, this problem turns out
to be polynomial-time solvable as well.

Theorem 13. There is a polynomial-time algorithm that
given a partial profileR checks whetherR is weakly single-
crossing, and, if the answer is positive, outputs an ordering
of the voters that witnesses this.

6 Conclusions and Open Problems
We summarize our results for SCC and SCC-F in Table 1. It
is instructive to compare them with recent results of Lack-
ner (2014) and Fitzsimmons (2014) for single-peaked pref-
erences. Lackner proves that one can check in polynomial
time whether a profile of partial votes is single-peaked with
respect to a given axis. In contrast, verifying the single-
crossing property appears to be hard even if the order of
the votes is fixed, though we have not been able to obtain
a formal hardness result. Moreover, powerful algorithmic
techniques that are very useful for working with incomplete
single-peaked preferences, such as reductions to 2-SAT and
to the consecutive ones problem, while applicable, appear to
produce much weaker results in our setting. These are indi-
cations that incomplete single-crossing preferences are more
difficult to work with than incomplete single-peaked prefer-
ences, and new insights are required.

The computational complexity of some of our problems
remains open. Perhaps the most intriguing is the complexity
of TO-SCC (top orders, arbitrary order of votes) and WO-
SCC-F (weak orders, fixed order of votes). Also, given that
much of the real-life election data consists of incomplete

SCC-F SCC

PO FPT(a, b) (Cor. 3) NPc (Thm. 5)
WO FPT(a, b) (Cor. 3) NPc (Cor. 6)

TO P (Thm. 4)
special cases (Thms. 8 and 10),
FPT(u) (Cor. 9)

IP FPT(a, b) (Cor. 3) NPc (Thm. 7),
FPT(k) (Thm. 11)

Table 1: Complexity results: P stands for “polynomial-time
solvable”, NPc stands for “NP-complete”, FPT stands for
“fixed-parameter tractable”
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preference orders, it would be interesting to check often real-
life elections admit single-crossing extensions.
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