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Abstract

Stackelberg security games have been widely deployed in re-
cent years to schedule security resources. An assumption in
most existing security game models is that one security re-
source assigned to a target only protects that target. How-
ever, in many important real-world security scenarios, when
a resource is assigned to a target, it exhibits protection ex-
ternalities: that is, it also protects other “neighbouring” tar-
gets. We investigate such Security Games with Protection
Externalities (SPEs). First, we demonstrate that computing a
strong Stackelberg equilibrium for an SPE is NP-hard, in con-
trast with traditional Stackelberg security games which can be
solved in polynomial time. On the positive side, we propose
a novel column generation based approach—CLASPE—to
solve SPEs. CLASPE features the following novelties: 1)
a novel mixed-integer linear programming formulation for
the slave problem; 2) an extended greedy approach with
a constant-factor approximation ratio to speed up the slave
problem; and 3) a linear-scale linear programming that effi-
ciently calculates the upper bounds of target-defined subprob-
lems for pruning. Our experimental evaluation demonstrates
that CLASPE enable us to scale to realistic-sized SPE prob-
lem instances.

Introduction
Stackelberg security games have been successfully used for
computing optimal allocation of security resources in adver-
sarial and strategic scenarios (Basilico, Gatti, and Amigoni
2009; Tambe 2011; Conitzer 2012). In a Stackelberg se-
curity game, a defender allocates security resources (e.g.,
police guards, canines, or patrol units) to protect key infras-
tructures, such as airports, ports, and ferry ships. An attacker
first conducts surveillance and then chooses the best target to
attack. Algorithms have been designed to calculate the best
defender strategy for Stackelberg security games in various
settings, and systems applying such models have been de-
veloped and deployed in many real-world security domains
(e.g., Pita et al. 2008; Tsai et al. 2009; An et al. 2011; Pita et
al. 2011; Shieh et al. 2012; An et al. 2013a; An et al. 2013b;
Yin, An, and Jain 2014).

A common assumption in existing security game models
is that one security resource can be assigned to only one
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Figure 1: Protection externalities in real-world scenarios: (a) visi-
ble areas of surveillance cameras in a building; (b) reaction area of
mobile security units.

target at a time, and it protects this target only. However, in
real-world scenarios security resources often effectively pro-
tect multiple targets simultaneously. For instance, surveil-
lance cameras and radars can conduct surveillance over a
perceived range (Figure 1(a)). As another example, mobile
security units, such as policemen and patrol canines, can
keep their eyes on neighbouring targets within certain dis-
tance, and react to emergencies therein (Figure 1(b)). We
term such scenarios Security Games with Protection Exter-
nalities (SPE). Several existing security game applications
incorporate a form of protection externalities. Fang, Jiang,
and Tambe (2013) and Xu et al. (2014) study patrol path
planning for ferry ship protection, where patrollers can pro-
tect ferry ships within a protection radius. A major differ-
ence is that they assume the targets are located in a one-
dimensional space. In the Federal Air Marshal (FAM) al-
location domain and other patrolling domains (Tsai et al.
2009; Jain et al. 2010; Shieh et al. 2012), each resource
(e.g., an air marshal) can visit multiple targets (e.g., flights)
in a schedule and a target is protected only if it is visited
by the resource. There are in fact no protection externalities
in these domains (e.g., a resource cannot protect more than
one flight at a time). Thus, even though a schedule can be
viewed as a “neighborhood” in SPEs, past computational ap-
proaches have restricted attention to non-overlapping sched-
ules, and made other related structural assumptions (e.g.,
that a subset of a schedule is also a feasible schedule (Ko-
rzhyk, Conitzer, and Parr 2010)). In contrast, SPEs treat
neighborhoods as indivisible units, such that targets are au-
tomatically protected when resources are assigned to their
neighbouring targets.
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Protection externalities result in a complex marginal cov-
erage space for the defender, and make SPEs quite chal-
lenging to solve. The first contribution of this paper is that
we show that the problem of finding the optimal defender
strategy of an SPE under the strong Stackelberg equilib-
rium (SSE) solution concept is NP-hard. This is in con-
trast with traditional security games, which can be solved
in polynomial time (Kiekintveld et al. 2009; Korzhyk et al.
2011). To address the NP-hardness, our second contribution
is CLASPE, a novel algorithm which uses column genera-
tion to avoid enumerating the full (exponential in the number
N of targets) pure strategy space of the defender. Column
generation has been introduced in the security game domain
to solve problems facing similar scalability issues (Jain et al.
2010; Shieh et al. 2013). The key to the application of the
column generation framework is efficient computation of the
optimal column in the slave problem. We formulate the slave
problem as a mixed-integer linear programming (MILP),
and to speed up the process we proposed an extended greedy
approach which is in particular able to achieve a constant-
factor approximation ratio in the presence of a negative
weight. An O(N)-scale linear programming (LP) is also
devised to prune target-defined subproblems by efficiently
calculating their upper bounds. Experiments demonstrate
that CLASPE is able to solve realistically-sized SPE prob-
lem instances, leveraging the high-quality approximations
achieved by the greedy algorithm and the pruning LP.

Security Games with Protection Externalities
An SPE is played between a defender and an attacker. The
defender allocates K identical resources to protect a set of
targets [N ] = {1, . . . , N}, and the attacker chooses a single
target from [N ] to attack. The defender has a set S of pure
strategies. Each pure strategy is an allocation of resources
over targets [N ], and is denoted by a 0/1 vector s ∈ {0, 1}N ,
such that si = 1 if a resource is assigned to target i, and si =
0 otherwise. If a resource is assigned to a target, it protects
(covers) this target, as well as its neighbouring targets.1 The
neighbour relationships between targets are specified by an
adjacency matrix A = 〈aij〉, such that aij = 1 if assigning
a resource to target i also protects target j, and aij = 0
otherwise (notably, targets are neighbouring to themselves,
so that aii = 1 for all i). We use a vector c to represent the
protection status of the targets given a pure strategy s, such
that ci = 1 if

∑
j sj ·aji ≥ 1, i.e., when at least one resource

protects i, and ci = 0 if
∑
j sj ·aji = 0.2 Additionally, we

define a function Φ : s 7→ c that maps each pure strategy

1We restrict the allocation of resources to targets, while in more
general cases resources can also be placed on some non-target
places. This can be handled by converting each non-target place
to a dummy target which gives the attacker a utility of −∞ no
matter whether it is covered or not.

2In more general cases, a target can be partially protected by
a resource such that entries of the adjacency matrix are in the
range [0, 1]. Our algorithm applies to these general cases with
some minor modifications (see Appendix C; Appendix of this
paper can be found at http://www.ntu.edu.sg/home/boan/papers/
AAAI15 Externality Appendix.pdf).

to the targets’ protection status it leads to. The defender can
play a mixed strategy x, with xs ≥ 0 being the probability
of playing pure strategy s. As other work in the literature
(Conitzer and Sandholm 2006), we assume that the attacker
only attacks a single target, and thus his strategy space is the
set of targets.

The payoffs for each player depend on which target is at-
tacked and the probability that the target is covered. If the
attacker attacks target i and target i is covered, the defender
receives a reward Rdi and the attacker receives a penalty
P ai . Otherwise, if target i is not covered, the payoffs for
the defender and attacker are P di and Rai . We assume that
Rdi > P di and Rai > P ai in order to model that the de-
fender would always prefer the attack to fail, while the at-
tacker would prefer it to succeed. Given a strategy profile
〈x, i〉, the expected utilities for the defender and the attacker
are respectively given by:∑
s∈S

xs·Ud
(
Φ(s), i

)
, where Ud(c, i)=ciRdi + (1−ci)P di (1)∑

s∈S
xs·Ua

(
Φ(s), i

)
, where Ua(c, i)=ciP

a
i + (1−ci)Rai (2)

We adopt a Stackelberg game model as most security
game researches did. In a Stackelberg game, a leader (i.e.,
the defender) moves first, and a follower (i.e., the attacker)
reacts with an optimal (pure) strategy after observing the de-
fender’s strategy. SSE is the standard solution concept for
Stackelberg games. In an SSE, the defender chooses an op-
timal strategy accounting for the attacker’s best response to
this strategy, under the assumption that the attacker breaks
ties in favor of the defender (Von Stengel and Zamir 2004).

CLASPE—A Column Generation Approach
In this section, we first show that solving an SPE is NP-hard
in Theorem 1, by reducing an arbitrary set-cover decision
problem, which is known to be NP-complete (by a straight-
forward reduction from the set cover problem), to an SPE
problem. This is in contrast with polynomial-time solvabil-
ity of security games without protection externalities (e.g.,
ORIGAMI algorithm by Kiekintveld et al. 2009).

Theorem 1. Finding an optimal SSE strategy for the de-
fender in an SPE is NP-hard, even if the adjacency matrix is
symmetric, i.e., aij = aji, ∀i, j ∈ [N ].

Proof. We reduce a set-cover decision problem to an SPE
with symmetric adjacency matrix. Given a set U of ele-
ments, a set A of subsets of U such that

⋃
S∈A S = U ,

and an integerK, a set-cover decision problem asks whether
there exists a subset B ⊆ A, such that |B| ≤ K and⋃
S∈B S = U . Denote a set-cover decision problem as a

tuple 〈U ,A,K〉. For arbitrary 〈U ,A,K〉, we construct a
symmetric SPE as follows.

Step 1: We create a target i for each element i ∈ U , and set
the entries of the adjacent matrix aii=1, and aij=0∀j 6=i.

Step 2: For each S ∈ A, we create a new target, say target
i, and set aij = aji = 1 for all j∈S and all targets j
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created in this step (i.e., j /∈U). The other entries are set to
0. We say that target i and set S correspond to each other.
Note that now each set in A corresponds to a target cre-
ated in Step 2 with each other; and targets created in Step
2 are fully connected, i.e., assigning a resource to any one
of them covers all of them.

Step 3: Set the number of security resources to K. Set util-
ities P ai = P di = 0 and Rai = Rdi = 1, for all target i
created in Steps 1 and 2.

For example, for a set cover decision problem with U =
{1, 2, 3, 4} andA = {{1}, {1, 2}, {2, 3, 4}}, the above steps
create a symmetric SPE with 7 targets {1, . . . , 7} and the
following adjacency matrix:

1 1 1
1 1 1

1 1
1 1

1 1 1 1
1 1 1 1 1

1 1 1 1 1 1

 ,
where the sub-matrix in the upper left is generated in Step 1,
while the rest in Step 2.

Obviously, the above steps are done in polynomial time.
The defender can obtain a utility of 1 if and only if she can
cover every target with probability 1 with no more than K
resources, which is possible if and only if the set cover de-
cision problem has a solution B⊆A that covers U and con-
tains no more thanK elements. This is shown in the follows.

The ‘if’ direction: If the set cover decision problem has
a solution B, the defender can use a pure strategy with prob-
ability 1 by which |B| ≤ K resources are assigned to targets
corresponding to the sets in B. In such a way, all the targets
created in Step 1 must be covered since

⋃
S∈B S = U ; and

the other targets (those created in Step 2) are also covered
since they are fully connected.

The ‘only if’ direction: If the defender can cover all tar-
gets with probability 1, then she has at least one pure strat-
egy where all the targets are covered with no more than K
resources. This indicates that we can construct B with the
sets corresponding to the targets which have been assigned
resources, and the union of these sets must cover all ele-
ments in U . Note that there is no corresponding set for tar-
gets created in Step 1 (e.g., targets 1, . . . , 4 in the example).
Thus if resources are assigned to these targets by the pure
strategy, we cannot find a corresponding set when construct-
ing B in the above way. However, if this happens, i.e., a
resource is assigned to such a target i, we can always reas-
sign the resource to another target j created in Step 2 with
aji = 1 (such a target j always exists since

⋃
S∈A S = U).

In such a way, the resource on target j covers at least all the
targets covered by a resource on i, because assigning a re-
source on target i only covers itself and some targets created
in Step 2, while assigning a resource on target j covers tar-
get i (since aji = 1) and all targets created in Step 2 (since
they are fully connected). This means that we can transfer
all resources from targets created in Step 1 to those created
in Step 2 while at the same time all the previously covered
targets are covered as well.

The NP-hardness suggests that existing polynomial-time
algorithms are not applicable to solving SPEs. The difficulty
lies in the combinatorial explosion of defender’s pure strat-
egy space, and the complex marginal coverage space that
cannot be compactly represented. To address the difficulty,
we propose a novel algorithm CLASPE (a CoLumn gener-
ation based Algorithm for SPEs). CLASPE formulates an
SPE problem as multiple target-defined LPs, and uses col-
umn generation to deal with the exponential growth in the
size of the LPs as a result of the combinatorial explosion of
defender’s pure strategy space. To further speed up the pro-
cess, CLASPE also incorporates a greedy approach to ap-
proximate slave problems in the column generation process,
as well as an efficient procedure to prune the target-defined
LPs by calculating their upper bounds. We present the above
components of CLASPE in the rest of this section.

Target-defined LPs
CLASPE formulates the problem of solving an SPE as a set
of target-defined LPs (t-LP). Each t-LP corresponds to a tar-
get, and computes the defender’s optimal strategy under the
constraint that the attacker’s best response is to attack this
target. The t-LP with the largest optimal objective value pro-
vides an optimal SSE strategy for the defender. Specifically,
the t-LP defined by target i+ is structured as follows.

max
x

∑
s∈S

xs · Ud
(
Φ(s), i+

)
(3)

s.t.
∑
s∈S

xs·Ua
(
Φ(s), i+

)
≥
∑
s∈S

xs·Ua
(
Φ(s), i

)
, ∀i (4)∑

s∈S
xs = 1 (5)

xs ≥ 0, ∀s ∈ S (6)

One issue with the above formulation is that the number of
variables increases exponentially with the size of defender’s
pure strategy space, we use column generation—a standard
technique for solving large scale LPs—to address this issue.

Column Generation for t-LPs
The idea of the column generation approach is to begin with
a restricted version of a t-LP, where only a small subset
S ′ ⊂ S of pure strategies are considered. The solution
of this restricted problem might not be optimal since some
other pure strategies in S \ S ′ might be in the support of the
optimal mixed strategy. Therefore, we search in S \ S ′ for
a pure strategy such that when it is added to the restricted
problem, the solution can be improved. The restricted prob-
lem is referred to as the master problem, while the problem
of finding a new pure strategy (i.e., a column) the slave prob-
lem. The master problem and the slave problem are solved
repeatedly, until no pure strategy can be added to improve
the solution when the optimum is reached.

To find a new pure strategy, the slave problem uses the
concept of reduced cost, which captures the potential change
in the solution of the master problem when a new column is
added. For an LP that maximizes gTx subjecting to Hx ≤ h
and x ≥ 0, the reduced costs for all columns as a vector is
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given by g −HTy, where y are the dual variables for con-
straints Hx ≤ h (Bertsimas and Tsitsiklis 1994). It follows
that in our problem, when s is added to the master problem,
the reduced cost r(s) is

Ud
(
Φ(s), i+

)
− yT

Ua
(
Φ(s), 1

)
− Ua

(
Φ(s), i+

)
...

Ua
(
Φ(s), n

)
− Ua

(
Φ(s), i+

)
− y′ (7)

where y and y′ are the dual variables corresponding to
Eqs. (4) and (5), respectively. The optimality is reached by
the master problem when no new column can be found with
a positive reduced cost. Next, we present a MILP formula-
tion for the slave problem.

A MILP for Slave Problems The reduced cost defined in
Eq. (7) is linear to the vector of protection status, i.e., c =
Φ(s). We can thus write the reduced cost as r(s) = w0 +∑
i wi · ci for simplicity, where w0, . . . , wN are constants.

Specifically, substituting Eqs. (1)–(2) into Eq. (7), we have

r(s) =
(
Rdi+ − P

d
i+ +

(
P ai+ −R

a
i+

)
·
∑
i6=i+

yi

)
· ci+

+
∑
i6=i+

(
Rai − P ai

)
· yi · ci

+
(
P di+ +Rai+ ·

∑
i6=i+

yi −
∑
i6=i+

yi ·Rai − y′
)

(8)

We formulate the slave problem as the following MILP.

max
c,s

w0 +
∑

i
wi · ci (9)

s.t. c, s ∈ {0, 1}N (10)∑
i
si ≤ K (11)

ci ≤
∑

j
sj · aji, ∀i ∈ [N ] (12)

ci ≥
1

K

∑
j
sj · aji, ∀i ∈ [N ] (13)

Here Eqs. (12) and (13) guarantee that c = Φ(s), because
Eq. (12) indicates that ci = 0 if

∑
j sj ·aji = 0; and Eq. (13)

indicates that ci = 1 if
∑
j sj · aji ≥ 1 as we always have∑

j sj · aji ≤ K. While this MILP will always compute an
optimal solution for the slave, it is relatively slow. Next, we
present an approximation algorithm which is much faster,
with the idea that we first apply the approximation algo-
rithm, and use the MILP only if no new column is thereby
found (which still ensures that the final solution is optimal).

An Extended Greedy Approach for Slave Problems A
slave problem can be viewed as a weighted maximum cov-
erage problem (WMC). In a WMC we are given a col-
lection of N sets such that the ith set contains target j if
aij = 1, and are asked to choose a collection of no more
than K sets to cover the targets. If a target is covered, we
receive wi; otherwise, we receive 0. The goal is to max-
imize the total weight of covered targets. WMC is NP-
hard, but when all the weights are non-negative, it admits

Algorithm 1: A greedy algorithm for a WMC with
non-negative weights

Input: An adjacency matrix A = 〈aij〉
A set of weights w = 〈wi〉

Output: A pure strategy s

1 s← 0, c← 0;

2 for k = 1 to K do
3 î← arg max{i|si=0}

∑
{j | aij=1 and cj=0} wj ;

4 sî ← 1, c← Φ(s);

a (1− 1
e )-approximation with a polynomial-time greedy al-

gorithm which always assigns a resource to the target with
maximum marginal weight (see Algorithm 1) (Nemhauser,
Wolsey, and Fisher 1978). However, we cannot apply the
greedy algorithm directly, because the weight for target i+
might be negative (according to Eq. (8), weights for tar-
gets i 6= i+ are all non-negative since the dual variables
y are non-negative as they are associated with inequality
constraints). This means that the total weight may drop
when more targets are covered, and the optimal solution
may contain fewer than K sets. One simple solution is to
keep track of the total weight in each step of the main loop
(Lines 2–4), and choose the maximum record as the final
solution. However, such a naı̈ve greedy approach only pro-
vides a 1

K -approximation.3,4 We therefore introduce an ex-
tended greedy approach which preserves the above constant-
factor approximation ratio. Specifically, when wi+ < 0, we
convert the problem into two independent new problems:

• WMC0: by replacing wi+ with 0.

• WMC∞: by replacing wi+ with −∞.

Then we solve WMC0 and WMC∞ separately with Algo-
rithm 1 (note that to apply Algorithm 1 to WMC∞, we can
disable all sets containing target i+, such that the problem is
turned into one with all non-negative weight), and choose
the solution that gives larger total weight to the original
WMC. The intuition is that WMC0 properly approximates
a WMC when target i+ is covered by the optimal solution
of the WMC, and WMC∞ properly approximates a WMC
when target i+ is not covered. Thus the better solution of
WMC0 and WMC∞ properly approximates all instances.
Indeed, a (1 − 1

e )-approximation of the above approach is
demonstrated in Proposition 2.

Proposition 2. The extended greedy approach provides a
(1− 1

e )-approximation to a WMC with a negative weight.5

3To evaluate the approximation ability of the greedy algo-
rithm in the presence of the negative weight wi+ , a ratio γ =
GRD+|w

i+
|

OPT+|w
i+

| is introduced, where GRD is the objective value of
the solution obtained using the greedy approach, and OPT is the
objective value of the optimal solution. Clearly, 0 ≤ γ ≤ 1, and
larger γ indicates better approximation to the optimal solution.

4Please see Appendix B for details of the approximation bound.
5Please see Appendix A for proofs of propositions in this paper.
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Upper bounds of t-LPs for Pruning
To further improve the efficiency, CLASPE incorporates a
pruning procedure, where an efficient upper bound LP (u-
LP) is employed to prune unnecessary t-LPs by calculating
the upper bounds of their optimal values. Specifically, be-
fore we solve a t-LP with the column generation approach,
we can first evaluate its upper bound with a u-LP. If the up-
per bound is smaller than the maximum obtained so far, the
current t-LP can be simply skipped.

A u-LP redefines a t-LP on the marginal coverage space,
and then bounds the feasible marginal coverage space with
O(N) linear constraints. The marginal coverage of a target
is the probability that this target is covered. Given a mixed
strategy x, the corresponding marginal coverage vector is an
N -dimensional vector given by c̄ =

∑
s∈S xs ·Φ(s). Using

c̄, we can rewrite the attacker’s expected utility as∑
s∈S

xs·Ua
(
Φ(s), i

)
=
∑
s∈S

xs

(
φi(s)·P ai +

(
1−φi(s)

)
·Rai
)

=
(
P ai −Rai

)∑
s∈S

xs·φi(s) +Rai ·
∑
s∈S

xs

=
(
P ai −Rai

)
· c̄i +Rai = Ua(c̄, i),

where φi(s) is the ith component of Φ(s). Similarly the de-
fender’s expected utility can be rewritten as Ud(c̄, i). There-
fore, the t-LP for target i+ is equivalent to:

max
c̄

Ud(c̄, i
+) (14)

s.t. Ua(c̄, i+) ≥ Ua(c̄, i), ∀i ∈ [N ] (15)

c̄ ∈

{∑
s∈S

xs·Φ(s)

∣∣∣∣∣∑
s∈S

xs=1, xs≥0

}
(16)

The last constraint implicitly defines the feasible marginal
coverage space. It is unlikely that this constraint admits any
compact representation due to the NP-hardness of an SPE
problem. Inspired by the MILP formulation of the slave
problem, we bound the complex feasible marginal coverage
space with the following linear constraints.

c̄, s̄ ∈ [0, 1]N (17)∑
i
s̄i ≤ K (18)

c̄i ≤
∑

j
s̄j · aji, ∀i ∈ [N ] (19)

c̄i ≥
1

K

∑
j
s̄j · aji, ∀i ∈ [N ] (20)

Proposition 3 shows that Eqs. (17)–(20) defines a superset
for the feasible marginal coverage space. Thus by replac-
ing Eq. (16) with Eqs. (17)–(20), we obtain an O(N)-scale
LP, i.e., the u-LP, whose optimal value is an upper bound
of the optimal value of t-LP. Since the u-LP runs signifi-
cantly faster than the column generation approach, and the
upper bounds it returns are usually very close to the accurate
optimal objective value of t-LPs, a more efficient approach
we adopt is to calculate upper bounds of all the t-LPs first,
and then run column generation for the t-LPs in descending
order of their upper bounds.

Proposition 3. Let the polytope defined by Eq. (16) be C̄,
and let the polytope of c̄ defined by Eqs. (17)–(20) be C̄′.
Then C̄ ⊆ C̄′.

Experimental Evaluations
Experimental evaluations are provided in this section to ex-
amine the performance of algorithms in this paper. All LPs
and MILPs are solved with CPLEX (version 12.4). All re-
sults are obtained on a machine with a 3.10GHz quad core
CPU and 4.00GB memory. We run our algorithm on game
instances randomly generated in the following way. For each
target i,Rdi andRai are randomly chosen between 0 and 100,
and P di and P ai are randomly chosen between −100 and 0.
We set all diagonal entries of the adjacency matrix to 1, and
set other entries to 1 with probability ρ and to 0 with 1− ρ.
Different settings of ρ are specified in the experiments. All
the experimental results are averaged over 50 samples.

Scalability Analysis
To analyse the scalability of CLASPE we run the algorithm
with SPE instances ranging from 100 to 200 targets. We
set K to a fixed ratio of N in each group of experiments.
We also fix ρK, so that the overall coverage rate offered by
the K resources, i.e., K·(ρ(N−1)+1)

N ≈ ρK + K
N is fixed.

Various settings of KN and ρK are tested in the experiments,
and the runtime results are depicted in Figure 2:(a)–(d). The
results show that our algorithm can solve SPE of real-world
problem size very efficiently, with problems of 200 targets
being solved in less than 100 seconds in the worst case. One
observation from the results is that the computation is most
costly when the overall coverage rate is closed to 50%.

Effectiveness of the Greedy Approximation We run an-
other set of experiments, where all slave problems are solved
with MILP only. The results are depicted in Figure 2:(e)–(h)
(tagged as ’MILP’), in comparison with the results obtained
with the greedy approximation (tagged as ’Grdy’). Signif-
icant efficiency improvement provided by the greedy algo-
rithm can be seen from the curves. We also record the ap-
proximation ratio of the greedy algorithm in Table 1, with
the setting K/N = 5% (results of other settings exhibit
similar high ratios). The results suggest high precision and
stable performance of the greedy approximation.

Table 1: Approximation ratio of the greedy algorithm
Number of Targets

100 120 140 160 180 200
ρK=0.1 0.999 1.000 1.000 1.000 1.000 1.000
ρK=0.2 0.997 0.996 0.998 0.997 0.997 0.998
ρK=0.5 0.978 0.976 0.982 0.988 0.983 0.986
ρK=1.0 1.000 1.000 1.000 1.000 1.000 1.000

Effectiveness of u-LPs We compare solutions of u-LPs
with the accurate solutions of t-LPs computed by column
generation. Since a t-LP can have negative objective val-
ues, we evaluate the approximation ratio of the u-LP by
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(a) K/N = 5% (b) K/N = 10% (c) K/N = 20% (d) K/N = 50%

(e) K/N = 5% (f) K/N = 10% (g) K/N = 20% (h) K/N = 50%

Figure 2: Scalability of CLASPE: (a)–(d), runtime of CLASPE; (e)–(h), runtime of CLASPE without greedy approximation.

U−mini P
d
i

Û−mini Pd
i

, where U is the accurate optimal objective value

of the t-LP, and Û is the upper bound computed by the u-
LP. The ratio is guaranteed to be in the range [0, 1], and
larger values indicate better approximation. The approxima-
tion ratios obtained with the setting K/N = 5% are shown
in Table 2 (results of other settings exhibit similar high ra-
tios). We also record the number of t-LPs that need to be
accurately computed with column generation after pruning
(Table 3). Given the high approximation ratios in Table 2, in
most cases, only the t-LP with the largest upper bound needs
to be accurately computed while the others are pruned.

Table 2: Approximation ratio of u-LPs
Number of Targets

100 120 140 160 180 200
ρK=0.1 0.999 1.000 1.000 1.000 1.000 1.000
ρK=0.2 0.999 1.000 1.000 1.000 1.000 1.000
ρK=0.5 0.999 0.998 0.999 1.000 1.000 1.000
ρK=1.0 1.000 1.000 1.000 1.000 1.000 1.000

Table 3: Number of t-LPs solved by column generation
Number of Targets

100 120 140 160 180 200
ρK=0.1 1.018 1.143 1.000 1.000 1.000 1.000
ρK=0.2 1.009 1.000 1.000 1.000 1.000 1.000
ρK=0.5 1.000 1.000 1.000 1.143 1.000 1.000
ρK=1.0 1.000 1.000 1.000 1.000 1.000 1.000

SPE Outperforms SSE
To show the necessity of considering protection externali-
ties under conditions where they do exist, we evaluate the
solution quality of SPEs against SSE solutions. The SSE
solutions are the defender’s optimal strategies when protec-
tion externalities are totally ignored, and are obtained with
CLASPE by setting the adjacency matrices to identity ma-
trices. We then compare the defender’s expected utilities, in
the presence of protection externalities, yielded by the SPE

and the SSE solutions. Figure 3 shows the results of small-
scale and large-scale settings. Utility losses resulted from
ignorance of protection externalities can be easily observed
in both figures. The losses are significant even when protec-
tion externalities are subtle, i.e., when ρ is small.

(a) N = 50, K = 5 (b) N = 200, K = 20

Figure 3: Solution quality comparison

Conclusion
This paper provides the following key contributions: 1)
We formally define and model SPE. 2) We prove the NP-
hardness of solving SPE. 3) To address the NP-hardness,
we propose a column generation based algorithm featuring
the following key components: i) a MILP formulation for
the slave problems; ii) a novel polynomial-time greedy ap-
proach providing a constant-factor approximation ratio in
the presence of a negative weight, to speed up the compu-
tation of slave problems; iii) an O(N)-scale u-LP that effi-
ciently calculates upper bounds of t-LPs for pruning. 4) Ex-
perimental evaluation demonstrates that our algorithm can
scale up to realistic-sized SPE instances, and shows the im-
portance of considering protection externalities in scenarios
where they exist, validating the motivation of this research.
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Tambe, M. 2009. Computing optimal randomized resource
allocations for massive security games. In Proceedings of
the 8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’09), 689–696.
Korzhyk, D.; Yin, Z.; Kiekintveld, C.; Conitzer, V.; and
Tambe, M. 2011. Stackelberg vs. Nash in security games:
an extended investigation of interchangeability, equivalence,
and uniqueness. Journal of Artificial Intelligence Research
41:297–327.
Korzhyk, D.; Conitzer, V.; and Parr, R. 2010. Complexity
of computing optimal Stackelberg strategies in security re-
source allocation games. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI’10), 805–810.
Nemhauser, G. L.; Wolsey, L. A.; and Fisher, M. L. 1978.
An analysis of approximations for maximizing submodular
set functionsłi. Mathematical Programming 14(1):265–294.

Pita, J.; Jain, M.; Marecki, J.; Ordóñez, F.; Portway, C.;
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