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Abstract

Team formation is a core problem in AI. Remarkably,
little prior work has addressed the problem of mech-
anism design for team formation, accounting for the
need to elicit agents’ preferences over potential team-
mates. Coalition formation in the related hedonic games
has received much attention, but only from the perspec-
tive of coalition stability, with little emphasis on the
mechanism design objectives of true preference elici-
tation, social welfare, and equity. We present the first
formal mechanism design framework for team forma-
tion, building on recent combinatorial matching market
design literature. We exhibit four mechanisms for this
problem, two novel, two simple extensions of known
mechanisms from other domains. Two of these (one
new, one known) have desirable theoretical properties.
However, we use extensive experiments to show our
second novel mechanism, despite having no theoretical
guarantees, empirically achieves good incentive com-
patibility, welfare, and fairness.

Introduction
Teamwork has been an important and often-studied area of
artificial intelligence research. Typically, the focus is on co-
ordinating agents to achieve a common goal. The comple-
mentary problem of team formation considers how to form
high-quality teams, whose agents have skills that are jointly
well suited for a task (Marcolino, Jiang, and Tambe 2013).
Notable team formation applications include formation of
research teams, class project groups, groups of roommates,
or disaster relief teams.

Many prior team formation studies have assumed that
agents are indifferent about which other agents they are
teamed with, or have preferences known to the team forma-
tion mechanism. Models dealing with known agent prefer-
ences over teammates, termed hedonic games, have seen an
extensive literature since being introduced by Aumann and
Dreze (1974). In a hedonic game, the mechanism is given
a set of agents, each having public preferences over which
others might be on its team; the mechanism must partition
the agents into teams based on their preferences.
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Past research on hedonic games has focused on the prob-
lem of forming stable coalitions, from which no set of agents
would prefer to defect. Since a core partition may not ex-
ist in a hedonic game, even when preferences of players
are additively separable (Banerjee, Konishi, and Sönmez
2001), much research is focused on alternative notions of
stability, or on highly restricted agent preferences (Bo-
gomolnaia and Jackson 2002; Alcalde and Revilla 2004;
Cechlarova and Romero-Medina 2001), or on the time com-
plexity of testing core emptiness (Ballester 2004; Sung and
Dimitrov 2010).

We consider team formation as a mechanism design prob-
lem, where individuals have preferences over teammates, as
in hedonic games. As in traditional mechanism design (and
unlike hedonic games), we assume that these preferences
are private and must be elicited in order to partition play-
ers reasonably into teams. We draw a connection to another
budding literature, that of combinatorial matching market
design, which has course allocation as a typical applica-
tion (Budish and Cantillon 2012).

An important concern in combinatorial matching, which
we inherit, is the ex post fairness of allocations. For ex-
ample, consider a simple randomized mechanism, random
serial dictatorship, which has been proposed for course al-
location and is readily adapted to team formation. In ran-
dom serial dictatorship, agents are randomly ordered by the
mechanism and then take turns, in order, selecting their en-
tire teams from among the remaining agents. Random se-
rial dictatorship is strategyproof, meaning that it is a domi-
nant strategy for any agent to report its true preferences over
teams. Random serial dictatorship is also ex post Pareto ef-
ficient, in that any allocation it returns cannot be modified
to improve an agent’s welfare without reducing some other
agent’s (assuming no indifferences). But this mechanism re-
sults in a highly inequitable distribution of outcomes ex post.

Budish and Cantillon (2012) proposed a more sophisti-
cated alternative, approximate competitive equilibrium from
equal incomes (A-CEEI), which is strategyproof-in-the-
large (i.e., when the number of players becomes infinite),
and provably approximately fair (Budish and Cantillon
2012; Budish 2011). The work on combinatorial match-
ing in turn follows earlier work on bipartite matching and
school choice (Roth and Peranson 1999; Abdulkadiroglu
and Sönmez 2003).
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Our contributions are as follows.

1. We present the problem of mechanism design for team
formation, focused on achieving (near-)incentive compat-
ible preference reporting, high social welfare, and fair al-
location. This problem is closely related to both combina-
torial and bipartite matching market design, but is distinct
from both in two senses: first, the matching is not bipar-
tite (players match to other players), and therefore typical
matching algorithms which only guarantee strategyproof-
ness for one side are unsatisfactory; and second, mecha-
nisms used in combinatorial exchanges to provide fairness
guarantees are not directly applicable, as they rely on hav-
ing a fixed set of items which are the subject of the match
and which are not themselves strategic;

2. we extend two well-known mechanisms (random serial
dictatorship and Harvard Business School draft) used for
combinatorial matching to our setting;

3. we propose two novel mechanisms for our setting (A-
CEEI for team formation, or A-CEEI-TF, and one-player-
one-pick draft, or OPOP);

4. we prove that A-CEEI-TF is approximately fair and
strategyproof-in-the-large;

5. we offer empirical analysis of all mechanisms, which
shows that our second mechanism, OPOP, outperforms
others on most metrics, and has better incentive proper-
ties than A-CEEI-TF.

An important and surprising finding of our investigation is
that the simple draft mechanism we propose empirically
outperforms the more complex A-CEEI-TF alternative by
a large margin in fairness and incentive compatibility, even
while A-CEEI-TF has more compelling theoretical guaran-
tees.

Mechanism Design Problem
Our point of departure is the formalism of hedonic games.
We define a hedonic game as a tuple (N,�), where N is
the set of players, and � is a vector containing each player’s
preference order over sets of other players that it could be
teamed with. The task is to partition the players in N into a
coalition structure, where each player is in exactly one coali-
tion.

We assume that player preferences are additively separa-
ble (Aziz, Brandt, and Seedig 2011), which means that there
exists an assignment of values ui(j) for all players i and
their potential teammates j, so that i’s total utility of a subset
of others S is

∑
j∈S ui(j) (which induces a corresponding

preference ordering over subsets of possible teammates). In
addition, we assume that ui(j) ≥ 0 for all i, j.

These assumptions are useful for two reasons. First, in
many data sets that record preferences of individuals over
others, the preferences are entered as non-negative values
for individuals, as in rank order lists or Likert ratings of indi-
viduals. Additive separable preferences are the most natural
way to induce preferences over groups from such data. Sec-
ond, many prior studies in team formation and the related
domain of course allocation have assumed that agents have

non-negative, additive separable preferences, as in the B-
preferences of (Cechlarova and Romero-Medina 2001) and
in the bidding points auction.

Most prior work on hedonic games focuses on coalition
stability. Our goal is distinct: We take as input player pref-
erences over teams (that is, over others that they could be
teamed with), which we assume to be additive with non-
negative values, and output a partition of the players into
teams. We assume that it is subsequently difficult for play-
ers to alter team membership. Our primary challenge, there-
fore, is to encourage players to report their preferences hon-
estly, and form teams that are fair and yield good teammate
matchings; all three notions shall be made precise presently.
Note that in this construction we assume that no money can
change hands (unlike the work by Li et al. (2004)).

Observe that in our model, all players always prefer to be
put on a single team (since values for all potential teammates
are positive). In reality, many team formation problems have
hard constraints on team sizes (or, equivalently, on the num-
ber of teams), particularly when multiple tasks need to be
accomplished. For example, project teams usually have an
upper bound on size. We capture this by introducing team
size constraints; formally, the size of any team must be in
the interval [k, k], with k ≥ 1, k ≤ |N |, and k ≤ k. For
example, if a classroom with 25 students must be divided
into 6 approximately equal-size teams, we could have k = 4
and k = 5. We assume throughout that the specific values of
k and k admit a feasible allocation. (This is not always the
case; see supplemental material for details.)

In contrast with a typical approach in mechanism design,
which seeks to maximize a single objective such as social
welfare or designer revenue, subject to a constraint set, we
take an approach from the matching market design litera-
ture, and seek a collection of desirable properties (see, e.g.,
Budish (2012)). Specifically, we consider three properties:
incentive compatibility, social welfare, and fairness. Given
the fact that all three cannot be achieved simultaneously in
our setting, we will analyze the extent to which each can be
achieved through specific mechanisms.

Incentive Compatibility Incentive compatibility holds if
there is no incentive for an agent to misreport its preferences.
We consider two forms of incentive compatibility: strate-
gyproofness, which means that it is a dominant strategy for
any agent to report its true preferences, and ex post equilib-
rium, which means that it is a Nash equilibrium for all agents
to report their true preferences. The former will be consid-
ered in theoretical analysis, while the latter will be the focus
of empirical incentive assessment. In particular, our theory
will focus on strategyproofness-in-the-large (Budish 2011),
defined as follows. Consider a market where each agent has
been replaced with a measure-one continuum of replicas of
itself, such that each individual agent has zero measure and
all agents are price takers. A mechanism is strategyproof-in-
the-large if, in such a market, it is a dominant strategy for
each agent to reveal its true preferences. An example of a
mechanism that is not strategyproof-in-the-large is the Har-
vard Business School draft considered below, in which an
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agent may benefit from misreporting its preferences, regard-
less of its own measure relative to the market size (Budish
and Cantillon 2012). In empirical analysis, in contrast, we
determine a lower bound on the regret of truthful reporting,
which is the most any agent can gain ex post by misreporting
preferences when all others are truthful.

Social Welfare As in traditional mechanism design, we
consider social welfare as one of our primary design cri-
teria. Social welfare is just the sum of player utilities
achieved by a specific partition of players into teams. For-
mally, if Q is a partition of players, social welfare is de-
fined as SW (Q) = 1

|N |
∑

S∈Q
∑

i,j∈S ui(j). In addition,
we consider the weaker notion of ex post Pareto optimality
when discussing alternative mechanisms and their theoret-
ical properties. A partition of players Q is ex post Pareto
optimal if no other partition strictly improves some agent’s
utility without lowering the utility of any other agent.

Fairness The measure of fairness we consider is envy-
freeness. An allocation is envy-free if each agent weakly
prefers its own allocation to that of any other agent. An ap-
proximate notion of envy-freeness that we adopt from Bud-
ish (2011) is envy bounded by a single teammate, in which
any allocation an agent prefers to their own ceases to be pre-
ferred through removal of a single teammate from it.1 The
following negative result makes apparent the considerable
challenge associated with the design problem we pose.

Proposition 1. There may not exist a partition of players
that bounds envy by a single teammate.

Proof Consider a team formation problem with 6 agents,
{A,B,C,D,E, F}, k = 3, k = 3, so that two equal-size
teams must be formed. The agents’ additive separable pref-
erences are encoded in Table 1.

A B C D E F
A x 0 1 2 4 8
B 8 x 4 2 1 0
C 8 0 x 4 2 1
D 8 1 0 x 4 2
E 8 2 1 0 x 4
F 8 4 2 1 0 x

Table 1: Each row i encodes the additive separable value for
agent i of each other agent.

No partition of these agents into two teams of size 3 gives
every agent envy bounded by a single teammate. To see this,
consider that each agent other than A has a bliss point on a
team with A and one other agent, where the second agent is
C for agent B, D for agent C, and so on until “wrapping
around” with B for agent F . Three of the agents will not be
on a team with agent A, and at least one of these agents, say
agent i, will not be on a team with its second-favorite agent

1In the supplemental material we discuss another measure of
fairness.

either. Some other agent j must then be on a team with the
two most-preferred agents of the player i. By construction,
player i is on a team of value 3 or less, while the team of
agent j has value 12 to agent i, and value 4 to agent iwith its
more valuable player (player A) removed. Therefore, envy
cannot be bounded by a single teammate for all agents.

Team Formation Mechanisms
We describe four mechanisms for team formation: two are
straightforward applications of known mechanisms, while
two are novel.

Random Serial Dictatorship
Random serial dictatorship (RSD) has previously been pro-
posed in association with school choice problems (Abdulka-
diroglu and Sönmez 2003). In RSD, players are randomly
ordered, and each player chosen in this order selects his team
(with players thereby chosen dropping out from the order).
The process is repeated until all players are teamed up.

Proposition 2. Random serial dictatorship is strategyproof,
and ex post Pareto efficient as long as players choosing later
cannot choose a larger team. 2

While RSD is ex post Pareto efficient, this turns out to be a
weak guarantee, and does not in general imply social welfare
maximization, something that becomes immediately appar-
ent in the experiments below. Envy-freeness is, of course,
out of the question due to Proposition 1.

Harvard Business School (HBS) Draft
Players are randomly ordered, with the first T assigned as
captains. We then iterate over captains, first in the random
order, then in reverse, alternating. The current team captain
selects its most-preferred remaining player to join its team,
based on its reported preferences.

Proposition 3. HBS draft is not strategyproof or ex post
Pareto efficient.

One-Player-One-Pick (OPOP) Draft
Players are randomly ordered. Given the list of team sizes,
the first T players are assigned to be captains of the respec-
tive teams. Then iterate over the complete player list. If the
next player is a team captain, it selects its favorite unas-
signed agent to join its team. If the next player is unassigned,
it will be assigned to join its favorite incomplete team (as
defined below), and if the team still has space, this player
chooses its favorite unassigned agent to join them. We de-
fine a “favorite” incomplete team for an agent as follows.
Let S be an incomplete team with vS vacancies. Let the
mean value to player i of the unassigned players be µi. We
then assign the following utility of an incomplete team S to
agent i:

∑
j∈S ui(j) + (vS − 1)µi.

Proposition 4. The One-Player-One-Pick draft is not strat-
egyproof or ex post Pareto efficient.

2The proofs of this and other results are in the supplemental
material.
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Competitive Equilibrium from Equal Incomes

We now propose a more complex mechanism, based on
the Competitive Equilibrium from Equal Incomes (CEEI),
which is explicitly designed to achieve allocations that are
more ex post fair than the alternative mechanisms.

We begin by defining CEEI, previously introduced by
Varian (1974). Given a set of agentsN , a set of goodsC, and
agent preferences over bundles of goods �, a CEEI mecha-
nism finds a budget b ∈ R+ and price vector p∗ ∈ R|C|+ , such
that if each agent is allocated its favorite bundle of goods that
costs no more than b, then each good in C is allocated to ex-
actly one agent in N , or divided in fractions summing to 1
among the N . In combinatorial allocation problems, such as
course allocation, goods (seats in a class) are not divisible,
and certain bundles of goods (class schedules) are not al-
lowed to be assigned to an agent. As a result, an exact mar-
ket clearing tuple (b, p∗) may not exist. To deal with this
difficulty, CEEI was relaxed by Budish (2011) to an approx-
imate version, termed A-CEEI. A-CEEI works by assigning
nearly equal budgets to all agents, then searching for an ap-
proximately market clearing price vector and returning the
allocation induced by those prices. The result may not clear
the market exactly, but there is an upper bound on the worst-
case market clearing error. The resulting allocation satisfies
an approximate form of envy-freeness (Budish 2011).

Both CEEI and A-CEEI take advantage of the dichotomy
between agents and items which agents demand. This makes
our setting distinct: agents’ demand in team formation is
over subsets of other agents. A technical consequence is
that this gives rise to a hard constraint for CEEI that if an
agent i is paired with agent j, than j must also be paired
(assigned to) agent i; any relaxation of this constraint fails
to yield a partition on the agents and consequently does not
result in an admissible mechanism. We therefore design an
approximation of CEEI, termed A-CEEI-TF, that accounts
for the specific peculiarities of our setting. Conceptually, the
A-CEEI-TF mechanism works by alternating between two
steps. First, it searches in price space for approximate re-
laxed market-clearing prices. Second, it assigns a randomly
selected unmatched agent to form a team with its favorite
bundle of free agents that is affordable, based on current
prices. The result is a mechanism that is strategyproof-in-
the-large, and more fair than random serial dictatorship.

A key part of A-CEEI-TF is a price update function,
which reflects the constraints of the team formation prob-
lem. We use a tâtonnement-like price update function f in
an auxiliary price space P̃ = [−1, 1+ b̄]|N

′|, whereN ′ is the
set of agents remaining (unassigned) at an iteration of the al-
gorithm, and b̄ is the supremum of allowable agent budgets.
We make two requirements of a price update function, one
ensuring that the iterative updates are well-defined, another
to ensure that fixed points of the process are actual solutions.

Definition 1. A price update function f is admissible if (a)
its fixed points correspond to (relaxed) market clearing, and
(b) P̃ is closed under f .

Algorithm 1 A-CEEI-TF Algorithm Outline.

Require: (N,�, k, k)
1: Randomly assign approximately equal budgets bi to the

agents, bi ∈ [1, b̄], b̄ < 1 + 1/|N |.
2: Randomly order the agents.
3: Search for a price vector p in price space P = [0, b̄]|N

′|

that approximately clears the (relaxed) market among
the N ′ remaining agents, given agent budgets b.

4: Take the next unmatched agent in the random order, and
assign it to join its favorite bundle of other free agents
that it can afford at the current prices, and that leaves
a feasible subproblem—i.e., feasible (N ′, k, k). If the
agent cannot afford any remaining bundle of legal size
that leaves a feasible subproblem, the agent is assigned
its favorite remaining bundle of legal size that leaves a
feasible subproblem.

5: Repeat steps 3 and 4 until each agent is on a team.

We now define a candidate price update function, fTF :

fTF (p̃)j = t(p̃)j +
(1 + ε− (ε/b̄)t(p̃)j)Dj − Uj

|N ′|
(1)

where Dj is the number of agents that demand j but whom
j does not demand, Uj = 1 if and only if no other agent
demands j, and 0 otherwise, b̄ is the supremum of allowable
agent budgets, and t(·) is a truncation function, which takes
a price vector p̃ and truncates it to the [0, b̄] interval.

Proposition 5. fTF (·) is admissible.

While admissibility of fTF (·) alone does not guarantee
convergence of the iterative process, it does guarantee that
if convergence happens, we have a solution. The following
proposition characterizes some of the properties such solu-
tions possess.

Proposition 6. A-CEEI-TF is strategyproof-in-the-large. In
addition, if A-CEEI-TF yields exact market clearing and in-
duces the same allocation at each stage of price search, it
yields envy bounded by a single teammate.

Proof We sketch a proof of strategyproofness-in-the-large.
If a team formation problem is modified such that each

agent is replaced with a measure-one set of copies of itself,
each copy being measure zero, we arrive at what is called
a continuum economy. If we run A-CEEI-TF in the con-
tinuum economy, any individual agent, being zero-measure,
has no influence on the approximate equilibrium price vector
arrived at by update function fTF (·), at any iteration of the
A-CEEI-TF mechanism. Therefore, the only effect the agent
can have on the outcome is that, if the agent is randomly
selected to choose its favorite affordable team of available
agents that leaves a feasible subproblem, the agent’s re-
ported preferences determine which team the agent is as-
signed. Thus, it is a dominant strategy for the agent to report
its true preferences, so that in this case the agent will be as-
signed its most-preferred allowable team.
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Experiments
Although RSD and A-CEEI-TF possess desirable theoreti-
cal properties, these results are loose, and the only approx-
imate fairness guarantee, shown for A-CEEI-TF, requires
strong assumptions on the environment. We now assess all of
the proposed mechanisms empirically through simulations
based both on randomly generated classes of preferences, as
well as real-world data. Our empirical results turn out to be
both one-sided (if one is interested in achieving all three de-
sired properties) and surprising: OPOP, a mechanism with
no provable theoretical guarantees, tends to outperform oth-
ers in fairness, and to perform nearly as well as the best other
mechanism in truthfulness and social welfare.
Data Sets: We use both randomly generated data and data
from prior studies on preferences of human subjects over
each other:

• Random-similar (R-sim) (Othman, Sandholm, and
Budish 2010): Each agent i, i ∈ {1, 2, . . . , |N |}, is as-
signed the public value i. A private error term is added to
the public value of i to derive the value of i to each other
agent j, drawn independently from a normal distribution
with zero mean and standard deviation |N |/5. The private
error term is redrawn until the sum of the private error
term and public value is non-negative. Then the value of i
to j is the sum of i and the private error term.

• Random-scattered (R-sca): In this data set class, the
value of a player i is generated independently by each
other player j. To determine the value of other players to
player j, a total value of 100 is divided at random among
the other players as follows. Uniformly random numbers
∈ [0, 100] are taken, to divide the region into |N | − 1 re-
gions. The random draws for agent j are sorted, produc-
ing |N | − 1 values for the other agents, as the differences
between consecutive draws in sorted order.

• Newfrat: This data set comes from a widely cited study
by Newcomb, in which 17 students at the University of
Michigan in 1956 ranked each other in terms of friendship
ties. We use the data set from the final week, NEWC15
(Newcomb 1958). We let k = 4, k = 5.

• Freeman: The data are from a study of email messages
sent among 32 researchers in 1978. We use the third ma-
trix of values from the study. The data show how many
emails each researcher sent to each other during the study,
which we use as a proxy for the strength of directed social
links (Freeman and Freeman 1979). We let k = 5, k = 6.

For the randomly generated data sets, we set |N | = 20 and
k = k = 5, and our results are averaged over 20 generated
preference rankings for all players.

The four classes of data set we analyze differ most
saliently in their number of agents, |N |, and in the degree
of similarity among the player preferences. For example,
Random-similar agents largely agree on which other agents
are most valuable, while Random-scattered agents have lit-
tle agreement. Differences in degree of preference similarity
lead to marked differences in the performance outcomes of
the various mechanisms.

To measure agent preference similarity in a data set, we let
C equal the mean cosine similarity among all pairs of distinct
agents in the data set. Each agent assigns itself a value of 0 or
undefined, so we take the cosine similarity between agents i
and j only over their values for agents in N \ {i, j}:

ui−ij = ui \ {uii, uij}

C =

∑|N |
i=1

∑|N |
j=i+1

ui−ij ·uj−ij

‖ui−ij‖‖uj−ij‖

(|N |2 − |N |)/2

In Table 2, we present the mean cosine similarity for each
data set we discuss in this paper. Higher cosine similarities
indicate greater agreement among agents about the relative
values of other agents. We also show the number of agents
in each data set.

C |N | k k
Random-similar 20 0.914 20 5 5
Random-scattered 20 0.499 20 5 5
Newfrat 0.877 17 4 5
Freeman 0.551 32 5 6

Table 2: Mean cosine similarity over all pairs of distinct
agents; number of agents; minimum team size; and maxi-
mum team size. For random data set classes, C as shown is
the mean over 20 randomly generated instances of the class.

Empirical Analysis of Incentive Compatibility: To study
the incentive compatibility of the mechanisms, we used a
protocol similar to that used by Vorobeychik and Engel
for estimating the regret of a strategy profile (Vorobeychik
and Engel 2011). We ran each mechanism on 8 versions of
each data set, with different random orders over the play-
ers, which we held in common across data sets. We generate
deviations from truthful reporting for agent j one at a time
until 25 unique deviations have been produced. To produce a
deviation from an agent’s truthful values for other agents, we
first randomly select a number of pairs of values to swap ac-
cording to a Poisson distribution with λ = 1, with 1 added.
For each pair of values to swap, we first select the rank of
one of them, with lower (better) ranks more likely.

The results are shown in Table 3.3
RSD is not shown, since it is provably strategyproof,

but, remarkably, A-CEEI-TF empirically produces higher
(worse) regret of truthful reporting than HBS or OPOP,
even though A-CEEI-TF is strategyproof-in-the-large, and
the others are not. Both HBS and OPOP appear to offer play-
ers only small incentives to lie, with HBS slightly better.
Social Welfare: To facilitate comparison, we normalize the
total utility of all teammates for each agent to 1, so that so-
cial welfare (already normalized for the number of players)
falls in the [0, 1] interval. For comparison, we also include

3We only report results for the two random data sets and
Newfrat, as it was not feasible to rigorously analyze regret for the
far larger Freeman data set. (However, the Freeman data set is sim-
ilar to Random-scattered; see supplemental material for details.)
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R-sim. R-sca. Newfrat
HBS 0.02± 0.02 0.04± 0.02 0.03± 0.02
OPOP 0.07± 0.02 0.10± 0.05 0.06± 0.02
A-CEEI-TF 0.19± 0.04 0.29± 0.07 0.19± 0.03
Max-welfare 0.20± 0.03 0.29± 0.07 0.22± 0.03

Table 3: Mean maximum observed regret of truthful report-
ing, with 95% confidence intervals.

optimal social welfare for both Random data sets, as well as
Newfrat.4

The only related theoretical result is that RSD is ex post
Pareto optimal; the other three mechanisms do not even pos-
sess this guarantee. This makes our results, shown in Ta-
bles 4 and 5, remarkable: on Random-similar and Newfrat
data sets (both with preferences relatively similar across
players), there is little difference in welfare generated by the
different mechanisms, but on Random-scattered and Free-
man data sets, OPOP statistically significantly outperforms
the others.

R-sim. R-sca.
RSD 0.22± 0.004 0.25± 0.01
A-CEEI-TF 0.22± 0.004 0.25± 0.01
HBS 0.22± 0.004 0.25± 0.02
OPOP 0.22± 0.003 0.27± 0.01
Max-welfare 0.25± 0.001 0.35± 0.01

Table 4: Mean social welfare for the two Random data sets,
with 95% confidence intervals.

Newfrat Freeman
RSD 0.23± 0.01 0.20± 0.01
A-CEEI-TF 0.23± 0.01 0.19± 0.01
HBS 0.22± 0.05 0.20± 0.01
OPOP 0.22± 0.05 0.24± 0.02
Max-welfare 0.27± 0.00 -

Table 5: Mean social welfare for the Newfrat and Freeman
data sets, with 95% confidence intervals.

Fairness: Fairness of an allocation (in our case, a parti-
tion of players) can be conceptually described as the relative
utility of best- and worst-off agents. Formally, we measure
fairness in the experiments as the fraction of agents whose
envy is bounded by a single teammate (as defined above).

Our fairness results, shown in Tables 6 and 7 are unam-
biguous: RSD is always worse, typically by a significant
margin, then the other mechanisms. This is intuitive, and is
precisely the reason why alternatives to RSD are commonly
considered. What is far more surprising is that A-CEEI-TF,
in spite of some theoretical promise on the fairness front, and
in spite of being explicitly designed for fairness, is in all but
one case the second worst. While HBS and OPOP are com-
parable on the high-similarity data sets (Random-similar and

4It was infeasible to compute this for the Freeman data set due
to its size.

Newfrat), it dominates all others on the dissimilar data sets
(Random-scattered and Freeman).

R-sim. R-sca.
RSD 0.43± 0.03 0.59± 0.05
A-CEEI-TF 0.66± 0.05 0.62± 0.05
HBS 0.71± 0.04 0.61± 0.06
OPOP 0.70± 0.06 0.79± 0.04

Table 6: Mean fraction of agents with envy bounded by a
single teammate for the two Random data sets, with 95%
confidence intervals.

Newfrat Freeman
RSD 0.36± 0.02 0.43± 0.05
A-CEEI-TF 0.57± 0.03 0.55± 0.05
HBS 0.67± 0.05 0.64± 0.04
OPOP 0.68± 0.07 0.78± 0.05

Table 7: Mean fraction of agents with envy bounded by a
single teammate for the Newfrat and Freeman data sets, with
95% confidence intervals.

Next, we consider informal perspectives on the fairness of
the various mechanisms. For mechanisms that use a random
serial order over players, we can study typical outcomes for
a player given its serial index. If players with lower (better)
serial indexes receive drastically better outcomes than agents
with higher (worse) indexes, such a mechanism is not very
fair. In Figure 1 (left), we plot a smoothed version of the
mean fraction of total utility achieved by agents at each ran-
dom serial index from 0 to 19, for the mechanisms RSD,
HBS draft, OPOP draft, and A-CEEI-TF. Results are based
on 20 instances of Random-scattered preferences, held in
common across the mechanisms, with different serial orders
over the players. From this Figure, it is apparent that ran-
dom serial dictatorship gives far better outcomes to the best-
ranked agents than to any others. Surprisingly, A-CEEI-TF
follows a similar pattern in this case, although we did ob-
serve that for some other game types (not shown), A-CEEI-
TF’s curve gives better outcomes to low-ranked agents than
RSD. In the HBS draft, a “shelf” of high utility for the sev-
eral best-ranked agents is typical, as all of the team captains
receive similarly high utility, with a steep drop-off in utility
for non-captain agents. In the OPOP draft, in contrast to all
others, the utility curve is far more flat across random se-
rial indexes: even the agents with high (bad) serial indexes
achieve moderately good outcomes for themselves.

Some mechanisms for team formation tend to give better
outcomes to an agent that is “popular,” having a high mean
value to the other agents. For example, random serial dicta-
torship biases outcomes in favor of popular players, because
even if a popular player is not a team captain, it is likely
that this player will be selected by some team captain along
with other desirable players. An unpopular player, however,
will likely be left until near the final iteration of RSD, to
be selected along with other unpopular players. Therefore,
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Figure 1: Left: Mean fraction of total utility earned versus
the random serial index of the agent. Fraction of total utility
is between 0 (worst) and 1 (best). A cubic smoothing spline
is applied. Right: Mean rank of an agent’s teammates, versus
mean rank of the agent by other agents. Possible ranks range
from 1 (best) to 20 (worst). Each point represents a sin-
gle agent’s mean outcome. Best-fit lines use ordinary least
squares.

we might expect RSD to yield better outcomes to popular
players, especially when agents’ preferences are highly sim-
ilar. To quantify this intuition, we plot in Figure 1 (right) the
mean rank of an agent’s teammates according to the agent’s
preferences, versus the agent’s mean rank assigned by the
other agents. Each point in the scatter plot represents a sin-
gle agent’s mean outcomes across 20 instances of Random-
similar preferences, held in common across the mechanisms.
We find best-fit lines via OLS regression, for each of RSD,
HBS draft, and OPOP draft. The results indicate that, as ex-
pected, RSD offers better outcomes to popular agents than
to unpopular ones, with a distinctly positive trend line. The
HBS draft and OPOP draft appear less biased for or against
popular agents, with OPOP showing slightly lower correla-
tion than HBS between an agent’s popularity and the mean
value of its assigned team.

Conclusion
We considered team formation as a mechanism design prob-
lem, in which the mechanism elicits agents’ preferences
over potential teammates in order to partition the agents into
teams. The teams produced should have high social welfare
and fairness, in the sense that few agents should prefer to
switch teams with others. We proposed two novel mecha-
nisms for this problem: a version of approximate compet-
itive equilibrium for equal incomes (A-CEEI-TF), and the
one-player-one-pick draft (OPOP). We showed theoretically
that A-CEEI-TF is strategyproof-in-the-large and approxi-
mates envy-freeness. OPOP lacks these theoretical guaran-
tees but empirically outperformed A-CEEI-TF in truthful-
ness and fairness, as well as in social welfare for data sets
with sufficiently dissimilar agent preferences. In addition,
OPOP surpassed other mechanisms tested, including ran-
dom serial dictatorship and the HBS draft, in social welfare
and fairness. The HBS draft, however, produced slightly bet-
ter truthfulness that the OPOP draft. Given the relative sim-
plicity of implementing OPOP, this mechanism emerges as
a strong candidate for team formation settings.
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