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Abstract

We consider the problem of repeatedly matching a set of al-
ternatives to a set of agents with dynamic ordinal preferences.
Despite a recent focus on designing one-shot matching mech-
anisms in the absence of monetary transfers, little study has
been done on strategic behavior of agents in sequential as-
signment problems. We formulate a generic dynamic match-
ing problem via a sequential stochastic matching process.
We design a mechanism based on random serial dictatorship
(RSD) that, given any history of preferences and matching de-
cisions, guarantees global stochastic strategyproofness while
satisfying desirable local properties. We further investigate
the notion of envyfreeness in such sequential settings.

Introduction
One-sided matching problems have been extensively stud-
ied in the context of microeconomics, artificial intelligence,
and mechanism design. These problems arise in various real-
life application domains such as assigning dormitory rooms
to college students, teaching load among faculty, college
courses to students, medical residents to hospitals, scarce
medical resources and organs to patients, etc. (Sönmez
and Ünver 2010a; 2010b; Roth, Sönmez, and Ünver 2004;
Ünver 2010; Dickerson, Procaccia, and Sandholm 2012;
Ashlagi et al. 2013; Krysta et al. 2014).

Despite the interest in matching problems, little has been
done in dynamic settings where agents’ preferences evolve
over time. In the real world, decisions do not exist in isola-
tion, but rather are situated in a temporal context with other
decisions and possibly stochastic events. Dynamic mech-
anism design (Parkes 2007) is a compelling research area
that has attracted attention in recent years. In these settings,
agents act to improve their outcomes over time, and deci-
sions both in the present and in the past influence how the
world and preferences look in the future. The dynamic pivot
mechanism for dynamic auctions (Bergemann and Välimäki
2010), dynamic Groves mechanisms (Cavallo 2009), and
many others (Vohra 2012; Athey and Segal 2013) are a few
of myriad examples of mechanisms in dynamic settings that
consider agents with private dynamic preferences. However,
almost all of these works (excluding a recent study on dy-
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namic social choice (Parkes and Procaccia 2013)) assume
an underlying utility function with possible utility transfers.

We study dynamic matching problems in which a se-
quence of decisions must be made for agents whose private
underlying preferences may change over time. In each pe-
riod, the mechanism elicits ordinal preferences from agents,
and each agent declares his preferences (truthfully or strate-
gically) so as to improve his overall assignment, now or in
the future. We propose a generic model to study the var-
ious properties of such environments including the strate-
gic behavior of agents. Our model captures a diverse set
of scenarios in real-life settings: assigning members to sub-
committees each year, tasks among team members on vari-
ous projects, nurses to various hospital shifts, teaching loads
among faculty, and students to college housing each year.

Consider the problem of scheduling nurses to shifts (nurse
rostering) in multiple planning periods.1 Self rostering is
one of the most advocated methods in nurse scheduling that
caters to individual preferences (Siferd and Benton 1992;
Burke et al. 2004). Each nurse has some internal prefer-
ence over hospital shifts at various times. At each plan-
ning period (typically 4–6 weeks), an assignment decision
is made based on the self-reported preferences. Although
self rostering reduces administrative burden and improves
nurse satisfaction, there is evidence that it encourages strate-
gic behavior among nurses (Alsheddy and Tsang 2011;
De Grano, Medeiros, and Eitel 2009). The preferences of
nurses may change dynamically according to their inter-
nal desires and past assignments and “those who are savvy
enough to game the system will always have an advantage
over the procrastinators” (Bard and Purnomo 2005). This ex-
ample and many other real-life applications raise several in-
triguing questions when designing matching mechanisms in
dynamic and uncertain settings.

Our model and results We consider a setting where a se-
quence of assignments should be made for fixed number of
agents and alternatives. Agents’ preferences are represented
as strict orderings over a set of alternatives, where these pref-
erences may change over time. We formulate a general dy-
namic matching problem using a history-dependent match-
ing process. The state of the matching process corresponds

1Assume skill category and hospital constraints are incorpo-
rated into shift schedules.
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to a history of preference profiles and matching decisions.
We show that simply running a sequence of indepen-

dent assignments induced by the random serial dictatorship
(RSD) mechanism does not satisfy global strategyproofness.
Subsequently, we design a stochastic matching policy that is
not manipulable. Our key idea is to extend a notion first in-
troduced for multi-period contracts (Townsend 1982), where
future matching decisions are used to incentivize desirable
behavior in the current time period. Our main result is a
mechanism that, given any history of preferences and de-
cisions and any preference dynamics, guarantees stochastic
strategyproofness while satisfying desirable local properties
of ex post efficiency, sd-strategyproofness, and equitability.
We further formulate the notion of envy in the context of
sequential matching by providing a systematic way of mea-
suring the degree of envy towards individual agents, arguing
that our mechanism provides a constant degree of individual
envy by balancing priority orderings.

Related work In cardinal domains no matching mech-
anism exists that can satisfy ex ante Pareto efficiency,
anonymity, and strategyproofness (Zhou 1990). Determin-
istic serial dictatorship mechanisms sacrifice fairness and
anonymity for Pareto efficiency and strategyproofness. In
fact, Svensson showed that under ordinal preferences the se-
rial dictatorship mechanism is the only deterministic mech-
anism that is strategyproof, nonbossy, and neutral (Svens-
son 1999). It has been noted that randomization helps to
restore strategyproofness and equity in assignment prob-
lems (Abdulkadiroğlu and Sönmez 1998; Gibbard 1977),
several other measures such as efficiency and strategyproof-
ness remain incompatible. With ordinal preferences, this
incompatibility result persists (Bogomolnaia and Moulin
2001), and essentially states that no efficient solution can be
trusted. That is, the outcome of any efficient mechanism may
only be efficient with respect to the non-truthful preferences,
and hence, be inefficient under true underlying preferences.

The random serial dictatorship (RSD) is an ordinal mech-
anism that is strategyproof, anonymous, and equitable but
does not satisfy stochastic efficiency. Bogomolnaia and
Moulin (2001) noted the inefficiency of RSD, and charac-
terized an ordinal efficiency measure based on first-order
stochastic dominance (sd). They proposed the probabilistic
serial (PS) mechanism that is sd-efficient and sd-envyfree,
but does not satisfy sd-strategyproofness. This incompatibil-
ity result immediately applies to majoritarian scheme in so-
cial choice literature (Aziz, Brandt, and Brill 2013). There-
fore, in this paper we focus our attention only on RSD (or
random priority) as a strategyproof matching mechanism.

In matching markets, dynamic arrival and departure of
agents have been studied in various contexts such as campus
housing and organ transplant, which assume time-invariant
preferences (Kurino 2014; Bloch and Cantala 2013; Ünver
2010). Bade studied matching problems with endogenous
information acquisition, and showed that simple serial dicta-
torship is the only ex ante Pareto optimal, strategyproof, and
non-bossy mechanism when agents reveal their preferences
only after acquiring information about those with higher pri-
orities (Bade 2014).

A Matching Model for Dynamic Ordinal
Preferences

In this section we introduce our model for dynamic prefer-
ences. We start by introducing key preference and matching
terminologies for a single time step in the model. We then
generalize to the dynamic setting studied in this paper.

There is a set N = {1, . . . , n} of agents who have pref-
erences over a finite set of alternatives M = {1, . . . ,m},
where n ≥ m.2 Agents have preferences over alternatives,
and we use the notation a �ti b to mean that agent i strictly
prefers alternative a to b at time t. We let P(M) or P de-
note the class of all strict linear preferences over M where
|P| = m!. Agent i’s preference at time t is denoted by
�ti∈ P , thus, �t= (�t1, . . . ,�tn) ∈ Pn denotes the pref-
erence profile of agents at time t. We write �t−i to denote
(�t1, . . . ,�ti−1,�ti+1, . . . ,�tn), and thus �t= (�ti,�t−i).

A matching at time t, µt : N → M , is a bijective map-
ping, and we let µt(i) denote the alternative allocated to
agent i under matching µt at time t. A matching is feasible
at time t if and only if for all i, j ∈ N , µt(i) 6= µt(j) when
i 6= j. We let M denote the set of all feasible matchings
over the set of alternatives M . We also allow for random-
ization where µ̄t denotes a probability distribution over the
set of (deterministic) feasible matchings at time t . That is,
µ̄t ∈ ∆(M).

In this paper we are interested in settings where agents’
preferences evolve over time. In particular, we assume that
the preference held by an agent at time t depends on the
preferences it held earlier along with allocations (i.e. match-
ings) made previously. We let ht denote the joint history of
the joint states defined by agents’ preferences and realized
matchings up to time t−1 and including the joint preferences
at time t, that is, ht = (�1, µ1, . . . ,�t−1, µt−1,�t). The set
Ht contains all possible joint histories at time t. We assume
there is an underlying stochastic kernel P (�t+1 | �t, µt)
which denotes the probability that agents will transition to
a state where they have joint preference �t+1 after match-
ing decision µt in a state with joint preference�t. In a more
generic model, transitions could potentially be influenced by
the complete history of preferences and decisions. Nonethe-
less, our analysis of the agents’ reporting strategies consid-
ers generic strategic behaviors, and thus, holds under this
assumption. Furthermore, we assume the stochastic kernel
is common knowledge.

Since an agent’s preferences can change, it may be the
case that a �ti b while b �t+1

i a. For the sake of clarity, at
each time t we rank alternatives under preference ordering
�ti such that o1 �ti o2 �ti . . . �ti om denotes the ranking
positions, where the index of each alternative indicates its
ranking for agent i at time t.

We consider a discrete-time sequential matching deci-
sion process as a sequence of matchings prescribed by a
matching policy. Given a history ht ∈ Ht, a matching pol-
icy π(µ|ht) returns the probability of applying matching µ.
Given a matching policy, π, and a history ht the probability

2We accommodate the possibility of n > m by adding dummy
alternatives corresponding to a null assignment.
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of agent i being allocated alternative x at time t is

pti(x | ht) =
∑

µ∈M:µ(i)=x

π(µ | ht). (1)

where
∑
i∈N p

t
i(x | ht) = 1. The definition of a matching

policy, π, incorporates randomized or deterministic match-
ing policies. When it is clear from the context, we will abuse
notation and use π(ht) to also refer to the (random) match-
ing prescribed by policy π given the history ht.

Policy Evaluation To determine whether a particular
matching policy, π, is a good policy, one must make com-
parisons between policies. In this paper we are interested
in settings where agents have ordinal preferences and so do
not rely on particular utility functions. Instead, to evaluate a
policy π we look at weights which can be interpreted as ex-
pected probabilities of being allocated particular alternatives
in the sequence of random matchings from time t onward.
More concretely, let o` be any alternative ranked in position
`. Given ht the expected probability that agent i receives al-
ternatives with rankings as good as ` under matching policy
π is defined recursively as

Wπ
i (ht, o`) =

o`∑
x=o1

pti(x|ht) × (2)∑
µ∈M

∑
�t+1∈Pn

π(µ|ht)P (�t+1 | �t, µ)Wπ
i (ht+1, o`)

where ht+1 = (ht, µt,�t+1) is the history at time t + 1.
Intuitively, Wπ

i (ht, o`) is the probability that agent i re-
ceives alternatives as good as ` in current period and all
future sequences of matchings up to any desired planning
horizon.

Example 1. Consider assigning 3 objects in two decision
periods to 3 agents with preference orderings, as shown
in Figure 1, at periods 1 and 2. For simplicity assume de-
terministic transitions that are independent of the realized
matching decisions, and let h1 = �1 so that the matching
starts at t = 1. A matching µ = xyz denotes that agents
1, 2, 3 receive objects x, y, z respectively. Consider a pol-
icy π that prescribes random matchings µ̄1 = ( 1

2abc,
1
2cba)

and µ̄2 = ( 1
2abc,

1
3acb,

1
6cab) at periods 1 and 2 respec-

tively. Using Equation 2, the expected probability that agent
1 receives his first rank alternatives (i.e. o1) in periods 1 and
2 given the above random decisions is calculated by (high-
lighted in pink in Figure 1):

Wπ
1 (�1, o1) = (1

2 )× ( 1
2 + 1

3 ) = 5
12

Similarly, we can compute the probability that agent 1 re-
ceives alternatives with rankings as good as rank 2 (i.e. o1
and o2) in periods 1 and 2:

Wπ
1 (�1, o2) = ( 1

2 + 1
2 )× ( 1

2 + 1
3 ) = 5

6

Intuitively,Wπ
1 (�1, o2) is the probability of all possible ran-

dom sequences in which agent 1 receives alternatives that
are ranked 1 or 2, that is, the following possible sequences
[µ1(1) = o1, µ2(1) = o1], [µ1(1) = o1, µ2(1) = o2],
[µ1(1) = o2, µ2(1) = o1], [µ1(1) = o2, µ2(1) = o2] (high-
lighted in Figure 1).

( �1
1: a � c � b
�1

2: b � c � a
�1

3: a � c � b

)
( �2

1: a � b � c
�2

2: b � a � c
�2

3: b � c � a

)

Figure 1: The preferences of agents and the probablity tree
for the two-time matching problem in Example 1.

Agents’ Strategies
We restrict attention to dynamic mechanisms in which each
agent interacts with the mechanism simply by declaring his
(perhaps untruthful) preference ordering at each decision pe-
riod. In each period t, the mechanism elicits reports from
agents regarding private preferences. Each agent observes
his private preference�ti, and the history of past preferences
and realized matchings ht−1, and based on the underlying
probabilistic kernel, takes an action by declaring a prefer-
ence ordering for time t, �̂ti. Then, the mechanism draws a
matching µt ∈ M according to matching policy π. Agent
i’s reporting strategy σi(�ti) specifies his declared prefer-
ence �̂ti=σi(�ti) when his true private preference is �ti.

Properties for the Model
Our goal is to implement stochastic matching policies so that
agents truthfully reveal their preferences, no matter what
other agents do, now or in the future. More specifically, we
are interested in matching policies that satisfy global strat-
egyproofness while inducing a sequence of locally strate-
gyproof and ex post efficient random matchings. In this sec-
tion, we formally define these local and global properties.

Stochastic dominance (sd) for two matching policies π
and π′ prescribes that given a transition model, for each rank
`, the expected probability that alternatives with rankings as
good as ` get selected under π, is greater or equal to the ex-
pected probability that π′ selects such alternatives.
Definition 1. Given a transition model P , matching policy
π stochastically dominates (sd) π′, if at all states ht ∈ Ht,
for all agents i ∈ N ,

∀o` ∈M, Wπ
i (ht, o`) ≥Wπ′

i (ht, o`) (3)
Strategyproofness in sequential settings (repeated assign-

ments) prescribes that not only an agent cannot improve her
current immediate outcome by misreporting her preferences
but also the agent’s current misreport will not make her bet-
ter off in the future.
Definition 2. A matching policy is globally sd-strategyproof
(gsd-strategyproof) if and only if truthfulness is a stochastic
dominant strategy for all possible realizations, i.e., for any
transition kernel P , given any misreport �̂ti = σi(�ti) such
that ĥti = (�1, . . . , (�̂ti,�t−i);µ1, . . . , µt−1) at time t, for
all agents i ∈ N ,

∀o` ∈M, Wπ
i (ht, o`) ≥Wπ

i (ĥt, o`) (4)
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Global sd-strategyproofness is an incentive requirement
which states that under any possible transition of prefer-
ence profiles, no agent can improve her sequence of random
matchings (now or in future) by a strategic report.

A one-shot matching process is a special case of our
model that coincides precisely with the random assignment
problem (Abdulkadiroğlu and Sönmez 1998; Bogomolnaia
and Moulin 2001). If there is a single decision period,
agents become myopic. Thus, a random matching induced
by matching mechanism π stochastically dominates another
random matching induced by π′ if for each item x ∈ M ,
the probability of selecting an outcome as good as x by π is
greater than or equal to π′.
Definition 3. Given a preference profile �t, a random
matching induced by π stochastically dominates (sd) an-
other random matching prescribed by π′, if for all agents
i ∈ N ,
∀y ∈M,

∑
x∈M :
x�t

iy

∑
µ∈M:
µ(i)=x

π(µ| �t) ≥
∑
x∈M :
x�t

iy

∑
µ∈M:
µ(i)=x

π′(µ| �t)

In other words, in a single-shot setting, every agent with
any utility model that is consistent with the private ordinal
preferences will prefer π over π′ if the random matching se-
lected by π first-order stochastically dominates the random
matching selected by π′.

A matching policy is locally sd-strategyproof in period
t, if an agent’s truthful report always results in a random
matching that stochastically dominates his random matching
under an untruthful misreport. In other words, at each period
t no agent can improve his current random assignment by a
strategic misreport.
Definition 4. A matching policy π is locally sd-
strategyproof (lsd-strategyproof) if and only if truthfulness
is a stochastic dominant strategy for time t, that is, for any
�t∈ Pn, for all agents i ∈ N , ∀y ∈M∑
x∈M :
x�t

iy

∑
µ∈M:
µ(i)=x

π(µ|(�ti,�t−i)) ≥
∑
x∈M :
x�t

iy

∑
µ∈M:
µ(i)=x

π(µ|(σi(�ti),�t−i))

A matching is Pareto efficient if there is no other matching
that makes all agents weakly better off and at least one agent
strictly better off.
Definition 5. A random matching is ex post efficient if it
can be represented as a probability distribution over Pareto
efficient deterministic matchings.

Sequential RSD
In this section, we briefly describe the random serial dic-
tatorship (RSD) (Abdulkadiroğlu and Sönmez 1998) mech-
anism for one-shot settings, and argue that a sequence of
RSD-induced decisions is manipulable when preferences are
dynamic.

To formally define the RSD mechanism, we first intro-
duce priority orderings and serial dictatorships. A priority
ordering f : {1, . . . , n} → N is a one-to-one mapping that
specifies an ordering of agents: agent f(1) is ordered first,
agent f(2) is ordered second, and so on.

Given a priority ordering f∈F and a preference profile�,
a Serial Dictatorship, SD(f,�), is as follows: agent f(1)

(a) Truthful
�1: a � c � b
�2: b � c � a
�3: a � c � b

(b) Misreport
�1: a � c � b
�2: b � c � a
�̂3 : a � b � c

Table 1: Preferences revealed by three agents.

receives her favorite objectm1∈M according to�f(1); f(2)
receives her favorite object m2∈M\{m1}; f(n) receives
her best object mn∈M\{m1, . . . ,mn−1}.

Random serial dictatorship is a convex combination of all
feasible serial dictatorships, induced by a uniform distribu-
tion over all priority orderings, and it is formally defined
as RSD(�) = 1

n!

∑
f∈F SD(f,�).

In single-shot settings, RSD is sd-strategyproof, equitable
(in terms of equal treatment of equals), and ex post effi-
cient (Abdulkadiroğlu and Sönmez 1998). While RSD sat-
isfies lsd-strategyproofness at each decision period, we ar-
gue that a stochastic policy consisting of a sequence of RSD
induced random matchings (or sequential RSD) is prone to
manipulation when agents have dynamic preferences. Se-
quential RSD selects a random matching at each round in-
dependent of the past history of decisions and preferences.
Theorem 1. Sequential RSD (a sequence of RSD induced
matchings) is not gsd-strategyproof.

Proof. Consider 2 decision periods with deterministic pref-
erence dynamics known to agents. Let µ̄2

µ1
denote the ran-

dom matching at t = 2 after assignment µ1 at t = 1. With
truthful preferences (Table 1a), RSD induces the following
random matching: ( 1

2µ1,
1
2µ2) = ( 1

2abc,
1
2cba). If agent 3

misreports (Table 1b), the probability distribution would be
( 2
6µ1,

3
6µ2,

1
6µ3) = (2

6abc,
3
6cba,

1
6acb). Assuming truthful-

ness in the second period, given a preference profile, identi-
cal decisions always result in identical next states. For each
ranking position `, we compute W3(·, o`):

W3(�t, o`) W3((�̂ti,�t−i), o`)
o1 3

6 ×
3
6 (µ̄2

µ1
) 3

6 ×
3
6 (µ̄2

µ1
)

o2 1× 3
6 [µ̄2

µ1
+ µ̄2

µ2
] 5

6 × [ 36 (µ̄2
µ1

) + 2
6 (µ̄2

µ2
)]

o3 1× 3
6 [µ̄2

µ1
+ µ̄2

µ2
] 1× [ 36 (µ̄2

µ1
) + 2

6 (µ̄2
µ2

) + 1
6 (µ̄2

µ3
)]

Table 2: Evaluation of the matching policy for agent 3.

For o1 and o2, it is easy to see that the truthful revelation
stochastically dominates the matching decisions when agent
3 is non-truthful. For strategyproofness we must show that
for o3, 1× 3

6 [µ̄2
µ1

+ µ̄2
µ2

] ≥ 1× [ 36 (µ̄2
µ1

)+ 2
6 (µ̄2

µ2
)+ 1

6 (µ̄2
µ3

)].
By simple algebra, we see that for all preferences at the sec-
ond period wherein agent 3’s assignment under µ̄2

µ3
stochas-

tically dominates µ̄2
µ2

the above inequality does not hold.
Therefore, sequential RSD is not gsd-strategyproof.

Sequential RSD with Adjusted Priorities
In the previous section we showed that sequential RSD is
prone to manipulation when agents have dynamic prefer-
ences. In this section, we introduce a modification of RSD,
which uses information contained in histories of agents to
overcome strategic behavior. We start this section with some
observations about relationships between agents.
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A key property of RSD is that it prioritizes agents in each
round, and the agent with higher priority gets to choose its
more preferred item from the set of remaining objects. This
gives rise to the concept of dictatorial domination.
Definition 6. Given a preference profile and the realiza-
tion of a matching decision, we say that agent i dictatorially
dominates agent j at time t if and only if µt(i) �tj µt(j).

We can represent each agent’s dictatorial dominance as a
binary relation between every pair of agents. Each agent’s
dictatorial dominance on other agents is represented by
ωi = (ωi,1, . . . , ωi,n), where ωi,j = 1 denotes that agent
i has dominated agent j. A dominance profile is a matrix of
agents’ dictatorial dominances, ω = (ωi, . . . ,ωn).

Given a random matching mechanism, the probability that
agent i dominates agent j is equal to the sum of the probabil-
ities of all deterministic matchings wherein agent j prefers
the outcome of agent i to his own outcome.3 Given a random
matching policy π and ht, the probability of i dominating j
at period t is:

ωij(π(ht)) =
∑

µ∈M:µ(i)�t
jµ(j)

π(µ | ht) (5)

Similarly the probability that agent j prefers his own out-
come to agent i’s outcome is ω̄ij(π(ht)) = 1− ωij(π(ht)).

RSD ensures equal chance of dictatorships to agents, thus,
an agent’s strategic misreport can only increase his random
dictatorial dominance on another agent to 1

2 .

Proposition 1. Given RSD, for any�t∈ Pn we have ∀i, j ∈
N,ωij(π(�t)) ≤ 1

2 , that is, the probability of agent i domi-
nating another agent j is always bounded.

The intuition comes from the fact that RSD is a uni-
form distribution over all priority orderings. Thus, when two
agents have conflicting preferences over some alternatives,
RSD assigns equal probability to all orderings that prioritize
one agent lower than the other one.

Adjusted RSD
In this section, we provide a modification to the RSD mech-
anism based on adjusting agents’ priority ordering. We in-
troduce a simple structure to preserve the history of domi-
nations throughout the matching process. Formally, let dt−1
be a matrix representing the complete dominance history of
agents up to time t. As the dominance profile of agents is
attained after realization of decisions (ex post), the state of
the mechanism at t can be summarized by ht = (�t,dt−1).
As shown in Algorithm 1, ARSD runs as follows:
• If for a pair of agents the dominance history is unbal-

anced, that is, dt−1ij = 1, then for each priority ordering
f ∈ F , if agent j is ranked before i, we change the prior-
ity ordering to f ′ such that j has higher priority than agent
i, and add the new priority ordering to a new multiset F ′.
• The matching mechanism then draws a priority ordering

from a uniform probability distribution over all priority
orderings in the multiset F ′. Then, agents select alterna-
tives according to the selected ordering.
3Deterministic matching is a special case where given µt,

ωi,j = 1 iff µt(i) �tj µt(j).

Algorithm 1: RSD with adjusted priorities (ARSD)
Input: preference profile �t, dominance history dt−1

Output: A probability distribution prescribed by π
foreach priority ordering f ∈ F do

for i = 1 to n do
for j = 1 to n do

if f(i) < f(j) and dt−1
ij = 1 then

f ′ ← swap(f(i), f(j));
foreach µ ∈M do

if SD(f ′,�t) = µ then
π(µ | (�t,dt−1))← π(µ | (�t,dt−1)) + 1

n!
;

// Updating dt after realization of π
for i = 1 to n do

for j = 1 to n do
dtij = ωtij(µ

t)⊕ dt−1
ji ;

• After the realization of matching decision, and given the
dominance profile ωt at time t, the mechanism updates
the dominance history according to the following exclu-
sive disjunction: dt = ωt⊕ (dt−1)Tr, where (dt−1)Tr is
the transpose matrix of dt−1, i.e., for each element dt−1ij

the transpose element would be dt−1ji .

Proposition 2. When the dominance history is balanced, i.e.
dt−1ij = 0,∀i, j ∈ N , ARSD is equivalent to RSD.

Proof. According to Algorithm 1, for each priority ordering
f ∈ F since for all i, j ∈ N the dominance history is bal-
anced, i.e. dt−1ij = 0, it is easy to see that the updated priority
ordering f ′ = f . Thus at time t, the multisetF ′ is equivalent
to the set of all priority orderings F , and the a uniform dis-
tribution over F ′ is equivalent to the RSD mechanism.

ARSD and Strategic Behavior At each period, an agent’s
strategic behavior is either through manipulating the imme-
diate outcome (at the current period) or affecting the deci-
sion trajectory to gain advantage sometime in the future. We
first focus on strategic behavior of agents at the current state
and then show that no agent can obtain a more preferred out-
come (now or in future) by misrepresenting his preferences.

Lemma 1. Given any dominance history dt−1, ARSD is lsd-
strategyproof, i.e., for each agent i ∈ N ,
∀j ∈ N,

∑
µ∈M:

µ(i) �t
iµ(j)

π(µ|(�t,dt−1)) ≥
∑
µ∈M:

µ(i) �t
iµ(j)

π(µ|((�̂ti,�t−i),dt−1))

According to Lemma 1, an agent cannot improve the
matching chosen at time t by misreporting at time t. Nor
is an agent able to improve future matchings by increasing
its dominance in the current period since this will only lead
to the agent being given a lower priority in the matchings in
the future. Therefore, the only possible strategy of interest
to an agent is to try to decrease its dominance in the cur-
rent time step, in the hope for improved priority (and thus,
matchings) in the future. This potential strategizing is sim-
ilar to dynamic house allocation for 2 periods of decisions
where agents can opt out in the first period to get priority in
the second period (Abdulkadiroğlu and Loerscher 2007).
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We say that an agent’s strategy is dominance reducing if
it reports a preference that minimizes its current dominance.

Definition 7. Agent i’s reporting strategy σi(�ti) at t is
dominance reducing if given a matching policy π, ∀j ∈ N ,

ωij(π(σi(�ti),�t−i)) ≤ ωij(π(�ti,�t−i)) (6)

The next lemma states that given a random matching pre-
scribed by ARSD, agent i’s strategy to minimize her ex-
pected dictatorial dominance always results in reducing ex-
pected dominance caused by other agents on agent i.

Lemma 2. Given ARSD, and strategy profile σi(�ti), if
ωij(π(σi(�ti),�t−i)) < ωij(π(�ti,�t−i)) for some j ∈ N ,
then

ωji(π(σi(�ti),�t−i)) < ωji(π(�ti,�t−i)) (7)

Proof. For the ease of notation, and since the history up
to now would be fixed for any strategic report, we write
ωij(π(ht)) = ωij(π(�)) and drop the time indexes. By fea-
sibility of the probability distribution induced by RSD, we
can write ∀ �∈ Pn, ωij(π(�)) + ω̄ij(π(�)) = 1. Accord-
ing to the dominance reducing strategy, for misreport �̂i =
σi(�i) we have ωij(π((�̂i,�−i))) < ωij(π((�i,�−i))).
By applying the feasibility condition on both sides we have

1− ω̄ij(π((�̂i,�−i))) < 1− ω̄ij(π((�i,�−i))) (8)

ω̄ij(π((�̂i,�−i))) > ω̄ij(π((�i,�−i))) (9)
Thus, by reporting a dominance reducing preference,

agent i’s outcome gets improved, indicating that the prob-
ability of obtaining an object that is more preferred com-
pared to µ(j) according to the report �̂i will be higher than
the same probability according to the truthful report �i, i.e.,
ω̄ji(π((�̂i,�−i))) > ω̄ji(π((�i,�−i))).

For contradiction assume that agent i increased the domi-
nation of agent j on himself by misreporting ωji(π(�̂i,�−i
)) > ωji(π(�i,�−i)). By feasibility of the matching mech-
anism we have ω̄ji(π((�̂i,�−i))) < ω̄ji(π((�i,�−i))),
which contradicts the above finding.

We show that ARSD is not manipulable in the global
sense. Recall that our desired solution concept states that
given any transition model, no agent can obtain a more pre-
ferred sequence of outcomes, no matter how other agents
play now or in the future. Algorithm 1 ensures that after re-
alization of the random decision, a dominating agent loses
priority against a dominated agent in future steps. The next
lemma follows directly from the ARSD algorithm.

Lemma 3. Given two states ht+1 = (�t+1,dt) and ĥt+1 =

(�t+1, d̂t) such that for agents i, j ∈ N , d̂tij > dtij , we have∑
µ∈M:

µ(i) �t+1
i µ(j)

π(µ | ht+1) ≥
∑
µ∈M:

µ(i) �t+1
i µ(j)

π(µ | ĥt+1) (10)

The implication of this lemma is that if an agent is dom-
inated by another agent in some previous decisions, for all
next steps where their dominance history is unbalanced, the
agent always prefers his own outcome to the outcome of the
dominating agent.

We now reach our main result in this section, which states
that given any transition dynamics ARSD is not manipu-
lable. Moreover, at each step ARSD prescribes a random
matching that is ex post efficient and lsd-strategyproof.

Theorem 2. ARSD is gsd-strategyproof while satisfying ex
post efficiency and lsd-strategyproofness in each round.

Proof. In each time, ARSD prescribes a random matching
over deterministic Pareto efficient matchings induced by pri-
ority orderings, thus it satisfies ex post efficiency.

For strategyproofness, we must prove that agent i’s mis-
report does not improve her overall allocation outcome, in-
cluding immediate and future possible outcomes. That is,
given any transition dynamic the following must hold, ∀o` ∈
M, Wπ

i (ht, o`) ≥ Wπ
i (ĥt, o`). Lemma 1 implies that no

agent can immediately benefit from misreporting. For gsd-
strategyproofness, we need to show that under all possible
transition dynamics, there does not exist a period τ ≥ t such
that agent iwill experience a better outcome by misreporting
at time t. Let �̂ti ∈ σi(�ti) denote agent i’s strategic report
at time t. Let dt and d̂t denote the dominance history re-
porting according to�ti and �̂ti respectively. We analyze the
following cases based on the possible strategic misreports:

Case 1: ∀j ∈ N,ωij(π(�̂ti,�t−i)) ≥ ωij(π(�t)), mean-
ing that agent i’s misreport increases his dominance on all
other agents. Since the dominance history up until t is the
same, by the exclusive disjunction for the dominance profile
we can immediately write d̂tij > dtij . By Lemma 3 we have∑

µ∈M:

µ(i) �t+1
i µ(j)

π(µ | (�t+1, d̂t)) ≤
∑
µ∈M:

µ(i) �t+1
i µ(j)

π(µ | (�t+1,dt))

Similarly for all future periods τ > t where the dominance
history is unbalanced the above inequality holds, implying
that agent i cannot achieve a better outcome by increasing
her dominance at time t.

Case 2: ∀j ∈ N,ωij(π(�̂ti,�t−i)) ≤ ωij(π(�t)), that
is, agent i’s strategic misreport reduces his dominance on
all other agents. By Lemma 2, reducing dominance on an
agent reduces the expected domination on agent i, thus,
∀j ∈ N,ωji(π(�̂ti,�t−i)) ≤ ωji(π(�t)), and d̂tji < dtji.
By Lemma 1 we can assume that the agent is truthful in all
future periods. By Lemma 3 we write ∀j ∈ N, ω̄ij(π((�t+1

, d̂t))) ≥ ω̄ij(π((�t+1,dt))), which holds ∀τ > t.
For contradiction, assume that agent i has improved

its overall assignment by misreporting. Therefore,∑
τ=t ω̄ji(π((�τ , d̂τ−1))) >

∑
τ=t ω̄ji(π((�τ ,dτ−1))).

Adding these inequalities yields that for all times,
T∑
τ=t

∑
i∈N

ω̄ji(π((�τ , d̂τ−1))) >

T∑
τ=t

∑
i∈N

ω̄ji(π((�τ ,dτ−1)))

which means that in a sequence of random matchings such
that at some τ > t every agent’s assignment (including agent
i) strictly improves when agent i misreports, contradicting
the feasibility of the ARSD mechanism.

Case 3: In this case, we assume that agent i’s misreport
has weakly increased his dominance on some agents while
strictly reducing his dominance on a subset of agents. More
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formally, ∀j ∈ Nd, ωij(π(�̂ti,�t−i)) < ωij(π(�t)), and
∀k ∈ N\Nd, ωik(π(�̂ti,�t−i)) ≥ ωik(π(�t)), where Nd ⊆
N denotes a subset of agents such that for some j ∈ Nd
agent i’s dictatorial dominance changes to ωij(π(�̂ti,�t−i)).

For all k ∈ N\Nd since d̂tik ≥ dtik by Lemma 3 we can
write, ω̄ki(π(�τ , d̂τ−1)) ≤ ω̄ki(π(�τ ,dτ−1)), ∀τ > t. For
the sake of our proof, assume the outcome for agent i after
a dominance increasing report is as good as being truthful
∀k ∈ N\Nd, i.e., ω̄ki(π(�τ , d̂τ−1)) = ω̄ki(π(�τ ,dτ−1)).

For all j ∈ Nd, by Lemma 2, we have ωji(π(�̂ti,�t−i)) <
ωji(π(�t)) yielding that d̂tji > dtji. Thus for all j ∈ Nd and
all times τ > t,

ω̄ij(π(�τ , d̂τ−1)) ≤ ω̄ij(π(�τ ,dτ−1)) (11)

∃ t′ > t, ω̄ij(π(�t
′
, d̂t

′−1)) < ω̄ij(π(�t
′
,dt

′−1)) (12)
Adding the inequalities for all agents in N , we have ∀j ∈
N\i,

∑T
τ=t ω̄ij(π(�τ , d̂τ−1)) <

∑T
τ=t ω̄ij(π(�τ ,dτ−1)).

Assume for contradiction that agent i has improved its over-
all outcome. This means that there exists at least one time
step τ > t such that agent i is strictly better off: ∀j ∈
N, ω̄ji(π(�τ , d̂τ−1)) > ω̄ji(π(�τ ,dτ−1)). This implies
that misreporting has improved the expected assignments
for agent i as well as for all other agents, which contra-
dicts the feasibility of the random matching. Thus, agent i
does not gain any expected benefit in the future by changing
the trajectory of decisions, implying Wπ

i ((�t,dt−1), o`) ≥
Wπ
i ((�̂i

t
,�t−i,dt−1), o`),∀o` ∈M .

Fairness in Sequential Matchings
We showed that a modification to the RSD mechanism in dy-
namic settings encourages truthful reporting by incorporat-
ing the history of past assignments. In this section, we argue
that as a result of balancing priorities, ARSD also satisfies
some desirable notions of local and global fairness.

We consider two notions of fairness in sequential match-
ing problems; a local fairness notion of equity (equal treat-
ment of equals), and a global notion of ex post envyfreeness.
Definition 8. A sequential matching mechanism is equitable
at each time step t if and only if ∀i, j ∈ N with identical
dominance histories dt−1ij = dt−1ji , if �ti = �tj then

∀y ∈M,
∑

x∈M :x�t
iy

pti(x|(�t,dt−1)) =
∑

x∈M :x�t
jy

ptj(x|(�t,dt−1))

In sequential mechanisms, envyfreeness relies on balanc-
ing priorities over the course of the assignment sequence.
We consider ex post envyfreeness at each time based on the
sequence of decisions up to and including the current period.
Definition 9. Given a sequence of matchings (µ1, . . . µt), a
matching mechanism is periodic ex post envyfree (PEF) if
at all times t, ∀i, j ∈ N ,

∑t
s=1 ωji(µ

s) =
∑t
s=1 ωij(µ

s).
Proposition 3. ARSD does not satisfy PEF, but does yield a
sequence of equitable local matchings.

PEF is a strict requirement that is not satisfied even with
fixed preferences. Nevertheless, for two agents with fixed
preferences there is a positive result.

Proposition 4. When n = 2 with fixed preferences, ARSD
satisfies PEF at least in all even periods.

To see why this does not hold for n > 2, consider the
following fixed preferences �1= a � b � c, �2= b � a �
c, �3= a � c � b.
Degree of Envy The nonexistence of ex post envyfreeness
for n > 2, raises a crucial question of whether our mecha-
nism ensures some degree of envy. Among several plausible
ways of defining envy (Chevaleyre and Endriss 2007), we
consider a natural notion of envy; the envy of a single agent
towards another agent. Given a history of assignments ht,
agent i’s degree of envy with respect to agent j is

eij(h
t) =

∑t
s=1 [ωji(µ

s)− ωij(µs)] (13)
Definition 10. A sequential mechanism is c-envious if for
all times t, ∀i ∈ N agent i is envious to agent j for at most
c assignments. That is, c = maxij eij(h

t),∀t.
Theorem 3. An ARSD matching mechanism is 1-envious.

In fact, ARSD interplays between random assignments in
repeated decisions to maintain an approximately fair global
policy. It is easy to see that the maximum envy of a society
of agents with ARSD mechanism is n(n−1)

2 .

Discussion
We studied the incentive and fairness properties of sequen-
tial matching problems with dynamic ordinal preferences.
We showed that in contrast to one-shot settings, a sequence
of RSD-induced matchings is prone to manipulation. Sub-
sequently, we proposed a history-dependent matching pol-
icy (namely ARSD) that guarantees global strategyproofness
while sustaining the local properties of the sequential RSD.

We restricted our analysis to problems where n ≥ m.
Although our main results immediately apply to problems
with n < m when the agent with the highest priority
chooses m − n + 1 alternatives, in most situations RSD
mechanism requires a careful method for picking the se-
quence at each serial dictatorship (Kalinowski et al. 2013;
Bouveret and Lang 2014).

An important open question is how much efficiency
is being sacrificed in order to guarantee strategyproof-
ness. The incompatibility of ordinal efficiency and sd-
strategyproofness in static settings (Bogomolnaia and
Moulin 2001) prevents us from designing truthful optimal
policies in dynamic settings. However, there may exist some
approximately efficient random policies in the policy space
that incentivizes truthfulness in sequential settings, perhaps,
by renouncing the ex post efficiency in each round.

Finally, in static large markets where there are large num-
ber of copies of each object (such as assigning students
to housing), the inefficiency of the RSD mechanism van-
ishes (Che and Kojima 2010). One potential direction would
be to study the efficiency and envyfreeness of sequential
matching problems in markets with multiple capacities and
various agent/object ratios.
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